

Question	Answer	Mark
1(a)((i)	Sketch of <u>curved</u> optic fibre with light ray undergoing at least one total internal reflection	B1
(a)(ii)	Light travels down (optic) fibres into or out of body	B1
	To examine internal organ/part Light travels both ways into and out of body OR To destroy (cancerous) cells by heating OR Endoscope/fibre bundle inserted into body	B1 B1 (B1) (B1)
(b)	To view internal organ body part OR for keyhole surgery Light in air: $3 \times 10^8 \text{m/s}$ Microwaves in vacuum: $3 \times 10^8 \text{m/s}$ Sound in steel: 6000m/s	(B1) B1 B1 B1
(c)	n = speed in air/speed in glass (or rearranged) OR $1.5 = 3 \times 10^8$ /speed in glass (or rearranged) 2.0×10^8 m/s	C1 A1
		Total: 9

2	(a	clear attempt at semi circles, at least 3 same wavelength as incoming wavefronts, by eye	[1] [1]
	(b)	speed \div wavelength or 20 \div 2.5 or $v = f\lambda$ 8 Hz or 8 s ¹ or 8 waves/second	[1] [1]
	(c)	candidate's (b) OR "the same" OR nothing	[1]
	(d)	low frequency signals have longer wavelength (than high frequency signals) OR high frequency signals have shorter wavelength	[1]
		low frequency signals / long wavelength signals diffract more OR	[1]

3	(a	(1)	X-rays	B1
		(ii)	Infra-red	B1
	(b)	(i)	$v = f\lambda$ in any form OR $v \div f$ OR $3.0 \times 10^8 \div (2.45 \times 10^9)$ 0.12 m	C1 A1
		(ii)	$(Q =) \ ml \ \ {\sf OR} \ \ 150 \times 330 \ \ 49000({\sf J}) \ \ {\sf OR} \ \ 49000({\sf J}) \ \ {\sf OR} \ \ 50000({\sf J})$	C1
			$P = Q/t$ in any form OR $(t =) Q/P$ OR (0.65×1100) OR 715 69 s	C1 A1
				[Total: 8]
4	(a	(i)	2.0 – 4.0 × 10 ⁸ m/s *Unit penalty applies	B1

ecf from 6(b)(i)

ecf from 6(b)(i)

C1 A1

B1

C1

Α1

[6]

(ii) $(f =) v/\lambda \text{ or } 3.0 \times 10^8/4.0 \times 10^{-7}$ ecf from **6(a)(i)** 7.5 × 10¹⁴ Hz *Unit penalty applies ecf from **6(a)(i)**

*Apply unit penalty once onl

(b) (i) 55° *Unit penalty applies

(ii) $\sin i/\sin r = n \text{ or } \sin 55^{\circ}/1.5 \text{ or } 0.54610$

33° *Unit penalty applies

5 (a (i) light of a single wavelength / frequency ignore 'one colour' B1 (ii) $n = \sin i / \sin r$ OR $1.52 = \sin 50 / \sin r$ OR $\sin r = \sin 50 / 1.52$ C1 30.26° at least 2 s.f. Α1 B1 (iii) ray closer to normal in block ray parallel to incident ray emerging from block B1 **(b) (i)** $n = v_A/v_G$ OR $n = 1.54/v_G$ OR $v_G = 3 \times 10^8/1.54$ C1 $1.948 \times 10^8 \text{ m/s}$ (ii) ray with smaller angle of refraction than red in block i.e. violet ray under red ray **B1** emerging ray parallel to incident ray B1 [9]

6 (a (i) sound

(ii) particle OR mechanical OR compression OR longitudinal OR matter wave

B1

(iii) ultra violet/uv

B1

(b) $v = f\lambda$ OR $\lambda = v/f$ $3.0 \times 10^8/2.5 \times 10^8$ OR $3.0 \times 10^8 = 2.5 \times 10^8 \lambda$ C1
1.2 m

[Total: 6]

red ray refracted away from normal violet ray refracted more than red ray in prism violet ray further refracted from red ray to screen	B1 B1 B1 3
1.52 = $\sin 40^{\circ}/\sin r$ $\sin r = \sin 40^{\circ}/1.52$ (= 0.423) $r = 25^{\circ}$	M1 C1 A1 3
(i) 3 x 10 ⁸ m/s (ii) same as (i)	A1 A1 2 [8]
	violet ray refracted more than red ray in prism violet ray further refracted from red ray to screen 1.52 = $\sin 40^{\circ}/\sin r$ $\sin r = \sin 40^{\circ}/1.52 (= 0.423)$ $r = 25^{\circ}$ (i) $3 \times 10^{8} \text{ m/s}$

8	(a (i)	x-rays or gamma ra infra red or radio	B1 B1	2
	(b)	$f = v/\lambda$ or 3 x 10 ⁸ / 1 x 10 ¹² = 3 x 10 ²⁰ Hz	C1 A1	2
	(c)	3 x 10 ⁸ m/s	1	1 [5]

9 (a)			expect two intern	al reflections at sensible angles	1	1
	(b) angle of incidence at Y greater than critical angle total internal reflection occurs		1 1	2		
	(c)	(i)	frequency = velocity/wavelength or $1.9 \times 10^8/3.2 \times 10^7$ = 5.9×10^{14} Hz		1 1	
		(ii)	refractive index	= 3/1.9 or 1.9/3 = 1.58 (no e.c.f.)	1	4 (7)