

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme

Suitable for all boards

Designed to test your ability and thoroughly prepare you

Maths

Mark Scheme

AQA AS & A LEVEL

%

3.8 G: Differentiation

www.exampaperspractice.co.uk

(b)
$$\frac{dy}{dx} = \frac{(2x+1)3 - 2(3x+1)}{(2x+1)^2} = \frac{6x+3-6x-2}{(2x+1)^2} \qquad M1$$

use of quotient rule

$$=\frac{1}{\left(2x+1\right)^2}$$

A1 3 AG (no errors)

Alternative
$$-2(3x+1)(2x+1)^{-2} + 3(2x+1)^{-1}$$

$$= \frac{1}{(2x+1)^{2}}$$
(A1)

Alternative:

$$y = \frac{3}{2} - \frac{1}{2} (2x+1)^{-1}$$
 M1A1

$$\frac{dy}{dx} = (2x+1)^{-2}$$
 A1

$$= \frac{1}{(2x+1)^2}$$
 AG

2(a)
$$y = (3x-1)^{10}$$

 $\frac{dy}{dx} = 10 (3x-1)^9 \times 3$
 $= 30 (3x-1)^9$

M1 A1 2 M1 for $a(3x-1)^9$ where a = constant

6(a)(i)
$$y = (4x^2 + 3x + 2)^{10}$$
$$\frac{dy}{dx} = 10(4x^2 + 3x + 2)^9(8x + 3)$$

2(a)
$$4(x-1)^3$$
 or in expanded form

1 allow
$$-4(1-x)^3$$

Why so short?

Because the techniques learnt are embedded and checked in questions on other topics.