

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme

Suitable for all boards

Designed to test your ability and thoroughly prepare you

Time allowed 62 Minutes

2002

CHEMISTRY

AQA AS & A LEVEL

Percentage

%

Mark Scheme

3.3 Organic chemistry

www.exampaperspractice.co.uk

Score

/52

(a)	(i) Two rings only around nitrogen or sulfur Lose this mark if more than 2 atoms are ringed.
	Do not allow two atoms at the same end of the ion.
	(ii) 275.8 Accept this answer only. Do not allow 276
	(iii) Carboxylate / COO⁻ Allow salt of carboxylic acid or just carboxylic acid.
(b)	(32.1 / 102.1) = 31.4% Do not penalise precision but do not allow 1 significant figure.
(c)	Zineb is mixed with a <u>solvent / water</u> Max=2 if M1 missed
	Use of column / paper / TLC Lose M1 and M2 for GLC
	Appropriate collection of the ETU fraction OR Appropriate method of detecting ETU <i>Allow ETU is an early fraction in a column or collecting a</i>

For more help please visit our website www.exampaperspractice.co.uk

range of samples over time, lowest retention time / travels furthest on paper or TLC (allow 1 mark for having the longest retention time in GLC).

Method of identification of ETU (by <u>comparison</u> with standard using chromatography) If method completely inappropriate, only M1 is accessible

[8]

1

(a) 2,6-diaminohexanoic acid Ignore additional , or – or spaces.

NB both N must be protonated. Allow $-NH_3^+$ allow CO_2H Allow $-^+H_3N$. Penalise $-C_4H_8$ – here.

(ii)

$$H_{2}N(CH_{2})_{4}$$
 $-C - COO$
 NH_{2} (Na⁺)

Allow CO_2^{-} . Allow $-H_2N$. Allow -COONa but penalise O-Na bond shown.

(iii)

$$H_{2}N(CH_{2})_{4} - C - COOCH_{3}$$

$$NH_{2}$$

$$Allow CO_{2}CH_{3}.$$

$$Allow - NH_{3}^{+} \text{ or } -H_{2}N.$$

1

1

1

1 for <u>displayed formula</u> of fragment ion.
1 for molecular ion of alanine AND radical.
Allow molecular ion without brackets and fragment ion in brackets with outside +.
Allow dot anywhere on radical.
Allow [C₃H₇NO₂]+* for molecular ion.

(d)

OR

OR

[9]

- (a) 3-hydroxypropanoic acid allow 3-hydroxypropionic acid must be correct spelling
- (b) (i) must show trailing bonds

or can start at any point in the sequence, e.g.

(ii) condensation (polymerisation) *Allow close spelling*

1

1

1

(c) (i) C=C or carbon-carbon <u>double</u> bond

1

must show ALL bonds including O-H

1

(iii) must show trailing bonds

1

1

1

Allow COONa or COO⁻ Na⁺ but not covalent bond to Na allow NH₂–

(ii)

OR

For more help please visit our website www.exampaperspractice.co.uk

In (e), do not penalise a slip in the number of carbons in the -CH₂CH₂- chain, but all must be bonded correctly NB two ester groups allow NH₂- or +NH₃-

(iii)

(f)

OR

OR

In 4(e), do not penalise a slip in the number of carbons in the -CH₂CH₂- chain, but all must be bonded correctly allow anhydride formation on either or both COOH groups (see below) with or without amide group formation

1 (amino acids) travel at different speeds or take different times [13]

(a) If 2 stage test for one compound, award no marks for that compound, eg no mark for ROH or RX to alkene then **Best**. If reagent is wrong or missing, no mark for that test; if wrong but close/incomplete, lose reagent mark but can award for correct observation. In each test, penalise each example of wrong chemistry, eg AgClr₂

propan-1-ol

acidifiedpotassiumdichromate

sodium

Named acid + conc H_2SO_4

named acyl chloride

PCl₅

M1

1

1

(orange) turns green

effervescence

Sweet smell

Sweet smell /misty fumes

Misty fumes

M2

propanal

add Tollens or Fehlings / Benedicts

	acidifiedpotassiumdichromate		
	Bradys or 2,4-dnph		
	if dichromate used for alcohol cannot be used for alc	lehyde	
		M3	1
	Tollens: silver mirror or Fehlings/ Benedicts: red ppt		1
	(orange) turns green		
	Yellow or orange ppt		
		M4	
pro	panoic acid		1
	Named carbonate/ hydrogencarbonate		
	water and UI (paper)		
	Named alcohol + conc H_2SO_4		
	sodium or magnesium		
	PCI₅		
	if sodium used for alcohol cannot be used for acid		
		M5	1
			1
	effervescence		
	orange/red		
	Sweet smell		
	effervescence		
	Misty fumes		
	II PCI5 USED IOF ACCOULT CATIFICE DE USED IOF ACIO		
		M6	

1-chloro propane

NaOH then acidified AgNO₃ AgNO₃ If acidification missed after NaOH, no mark here but allow mark for observation M7 1 white ppt white ppt M8 1 (b) oxidation (of alcohol by oxygen in air) M1 1 absorption at 1680 -1750 (due to C=O) Must refer to the spectrum M2 1

comparison of polarity of molecules or correct imf statement:propanone is less polar OR propan-2-ol is more polarOR propanone has dipole-dipole forcesOR propan-2-ol has hydrogen bonding

about attraction to stationary phase or solubility in moving phasePropan-2-ol has greater affinity for stationary phase or vice versaOR propanone is more soluble in solvent/moving phase or vice versa

M4

M3

1

1

[12]

(a) Wear plastic gloves:

Essential - to prevent contamination from the hands to the plate

Add developing solvent to a depth of not more than 1 cm³:

Essential – if the solvent is too deep it will dissolve the mixture from the plate

Allow the solvent to rise up the plate to the top:

Not essential – the $R_{\rm f}$ value can be calculated if the solvent front does not reach the top of the plate

1

1

1

1

Allow the plate to dry in a fume cupboard:

Essential – the solvent is toxic Allow hazardous

(b)	Spray with developing agent or use UV	1	
	Measure distances from initial pencil line to the spots (<i>x</i>)	1	
	Measure distance from initial pencil line to solvent front line (<i>y</i>)	1	
	R_r value = x / y	1	
(c)	Amino acids have different polarities	1	
	Therefore, have different retention on the stationary phase or different solubility in the developing solvent	1	[10]