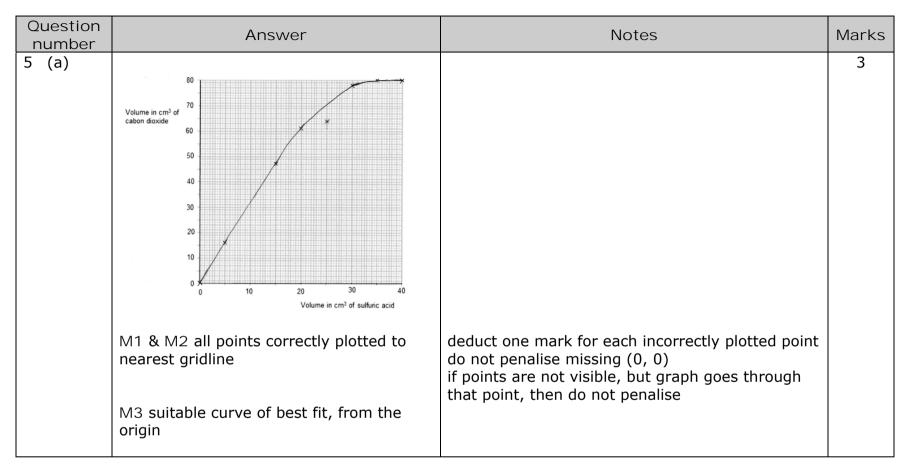
Question number	Answer	Notes	Marks
1 (a)	hydrated copper(ill) sulfate open tube ice water	ACCEPT a flame if >1 arrow drawn, all must be correct	1
	NB the arrow must point to the solid		
(b)	to condense the (water) vapour / steam	ACCEPT to cool the water vapour ACCEPT to cool/condense the gas (given off) IGNORE to condense the water IGNORE to stop the water escaping as water vapour IGNORE to condense the product	1
(c)	M1 $n(CuSO_4.5H_2O) = 2.50 \div 250 \text{ OR } 0.01$ (mol)	mark csq throughout	3
	M2 $n(H_2O) = 0.01 \times 5 \text{ OR } 0.05 \text{ (mol)}$ M3 mass of water = $(0.05 \times 18) = 0.9(0) \text{ (g)}$ OR M1 $5 \times 18 \text{ OR } 90$ M2 $250 \text{ (g)} \rightarrow 90 \text{ (g)}$ M3 $2.50 \text{ (g)} \rightarrow 0.9(0) \text{ (g)}$ OR M1 $5 \times 18 \text{ OR } 90$ M2 $90 \div 250 \times 100 \text{ (\%)} \rightarrow 36 \text{ (\%)}$ M3 $36 \text{ (\%)} \times 2.50 \text{ (g)} \rightarrow 0.9(0) \text{ (g)}$	correct final answer (with no working) scores 3 ACCEPT calculations that use <i>A</i> _r of Cu as 63.5 (giving 0.9(05) (g) as a final answer) M2 subsumes M1 for all methods	


Question number	,	Answer		Notes	Marks
2 (a)	$Solid$ $KHCO_3$ K_2O KOH K_2CO_3 all four correct = 1			ALLOW values (corrected rounded) from 1 sf up to calculator value	2
(b)	M1 equation 3 M2 the (mole) ratio /reactant to pro		3	mark csq on amounts given in part (a)	2

Question number	Answer	Notes	Marks
3 (a) i	cross in box A (zinc sulfate)		1
li	cross in box B (iron) cross in box C (magnesium)	Apply list principle - 3 crosses = max 1 4 or 5 crosses = 0 marks	1 1
3 (b)	burns with a pop/squeak OR use burning/lit splint/flame to see if pop/squeak	Must be reference to test and result Reference to splint/match with no indication of flame is not enough Reject reference to glowing splint Ignore flame extinguished 'Squeaky pop test' on its own is not sufficient	1
3 (c)	2 (1) 2	Accept multiples and fractions	1
3 (d) i	cross in box 3		1
ii	reversible / can go in both directions / can go backwards and forwards	Ignore references to equilibrium Ignore references to other reaction types (e.g. hydration / oxidation / exothermic) Accept either equation with ≠	1
		Total	7

Question number	Answer	Accept	Reject	Marks
4 (a) (i)	measuring cylinder			1
(ii)	M1 44	answers in other correct units, e.g.		1
	M2 cm ³	0.044 dm ³		1
(iii)	M1 $\frac{44 \times 0.01(0)}{1000}$			1
	M2 0.00044(0) Mark csq on answer to (a)(ii)	0.44 for 1 mark only	0.0004	1
		correct answer with no working for 2 marks		
(b)	<u>zinc</u> because			
	M1 1 mol zinc reacts with 2 mol HCl			1
	M2 only 0.005 mol of zinc are needed			1
	M1 is standalone M2 is dep on zinc given as being in excess			
(c) (i)	(rate) increases/faster reaction	less time for reaction to take place	faster time	1
(ii)	no effect/same volume (of hydrogen) produced	none/no change		1
			Total	9

For more help please visit our website www.exampaperspractice.co.uk

Question number	Answer	Notes	Marks
(b) (i)	25 (cm ³)	accept anomalous point based on graph drawn	1
(ii)	M1 the volumes (of gas) are the same	accept `no more gas is being produced/collected (after 35 cm ³)'	2
	M2 therefore the reaction has finished / <u>all</u> of the solid/MgCO ₃ has reacted / the solid/MgCO ₃ has been used up	reject `all of the reactants have reacted' reject `all of the acid has reacted' ignore refs to MgCO ₃ dissolving accept refs to MgCO ₃ being limiting reagent	
(iii)	value correctly read to nearest gridline from candidate's graph		1
(iv)	value correctly read to nearest gridline from candidate's graph		1

Question number	Answer	Notes	Marks
6 (a) (i)	$2HgO \rightarrow 2Hg + O_2$	accept halves and multiples	1
(ii)	redox	accept `(thermal) decomposition' ignore `oxidation' allow `reduction'	1
(b) (i)	(tap / dropping / separating) funnel	reject `filter / thistle funnel'	1
(ii)	(the gas / it) contains air (from the conical flask)	accept 'contains impurities' or ref to possible named impurity eg nitrogen reject 'water vapour' allow 'contains less <u>oxygen</u> '	1
(c)	M1 perform reaction with and without catalyst M2 keep remaining variables (eg concentration or volume of hydrogen peroxide / temperature) the same M3 measure time (to fill the gas jar with oxygen) M4 <u>oxygen produced</u> more quickly/at a faster rate/in a shorter time (in experiment) with catalyst OR M1 weigh a sample of manganese(IV) oxide	accept: M1 perform reaction with and without catalyst M2 <u>oxygen produced</u> more quickly/at a faster rate/in a shorter time (in experiment) with catalyst M3 weigh a sample of manganese(IV) oxide (before putting it into the conical flask) M4 the mass at the end of the reaction should be the same as at the start	4

	(before putting it into the conical flask)		
	M2 filter (to remove the solid)		
	M3 dry the solid (and re-weigh it)		
	M4 the mass should be the same as before		
(d) (i)	$SO_2 + H_2O \rightarrow H_2SO_3$	accept SO ₂ + H ₂ O + $\frac{1}{2}O_2 \rightarrow H_2SO_4$ allow products shown as correct ions	1
(ii)	M1 (Universal Indicator turns) orange/yellow	accept 'red' allow 'contains sulfurous / sulfuric acid'	2
	M2 (the solution/it) is acidic / contains hydrogen ions / contains H ⁺ ions		

For more help please visit our website www.exampaperspractice.co.uk