

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme

Suitable for all boards

Designed to test your ability and thoroughly prepare you

Time allowed 80 Minutes

2002

CHEMISTRY

Mark Scheme

AQA AS & A LEVEL

Percentage

%

3.1 Physical chemistry

www.exampaperspractice.co.uk

Score

/67

(a)	Homogeneous;	All reactants in the same phase or state (1)
	Dynamic;	Continuous or 'on-going' (1)
	Equilibrium:	Concentrations of reactants and products constant or rates of forward and backward reactions equal (1)
	Equation;	$2NH_3 \rightleftharpoons N_2 + 3H_2$ (Must be decomposition) (1)
	Кс;	$[N_2][H_2]^3/[NH_3]^2$ (1)

(b)	Conditions:	decomposition favoured by high temp (1)	
		since the reaction endothermic or logical statement with application of Le Chatelier's principle (1)	
		decomposition favoured by low pressure (1)	
		2 mole gas giving 4 moles gas or more gas moles on right (1)	
		4	
(c)	In practise	low pressure means low production (1) low pressure means low rate (1)	
		high temperature means high rate (1) high temperature expensive (1)	
	Catalyst	equilibrium yield unaffected (1) rates of forward and backwards reactions increased by an equal amount (1) more hydrogen produced in a given time (1)	
		Max 6	

[15]

5

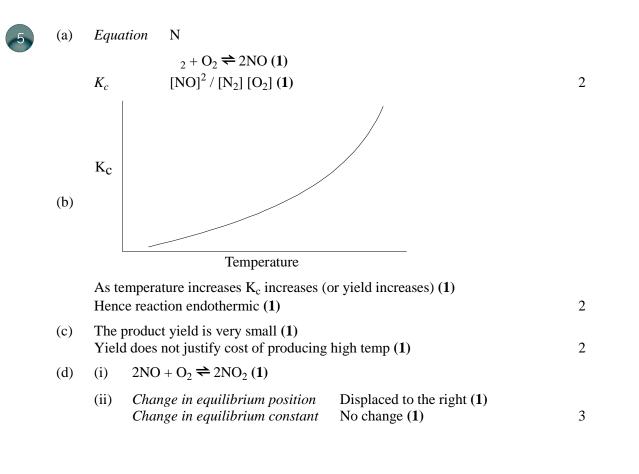
1 (;

(a)

(i) Moles NaOH = $mv/1000 = 1.50 \times 72.5/1000 = 0.108$ to 0.11 (1)

broken and made must be the same

Moles of ethanoic acid at equilibrium = moles sodium hydroxide (1) Moles ester = moles water (=moles acid reacted) (1) = 0.200 - 0.108 = 0.090 to 0.92 (1) Moles ethanol = 0.110 - 0.091 = 0.018 to 0.020 (1) = [Ester] [Water]/[Acid] [Alcohol] (1) $K_{\rm C}$ Allow if used correctly $= (0.091)^2 / 0.109 \times 0.019 = 3.7$ to 4.9 (1) 7 Ignore units NB Allow the answer 4 one mark as correct knowledge (ii) Similar (types) of bond broken and made (1) <u>Same</u> number of the bonds broken and made (1) 2 any number if equal NB If a list given then the total number of each type of bond


[9]

3	(a)		$Kc = \frac{[H_2]}{[H_2]}$	$\frac{\left \left[I_{2}\right]\right }{\left[I\right]^{2}}$ (1)			
			0.05 or 1/	(20 (1)		2	
	(b)	(i)	forward ra	ate increases (1)			
			reverse ra	reverse rate increases (1)			
				allow 1 mark for just 'increased' allow 2 marks for 'both increased'			
	(ii) no change (1)			1			
		(iii)	no change	e (1)		1	[6]
4)	(mus	t state correct effect on yield or rate to score the reason mark)				
		Т	effect: effect: reason:	higher temp: higher temp: endothermic	yield greater or shifts equilibrium to right; rate increased;	1 1	
			OR				
		more particles have $E > E_a$		1			
			OR				
			mo	re successful/prod	uctive collisions;	1	
		Р	effect:	higher pressure:	yield less or shifts equilibrium to left;	1	
			effect:	higher pressure:	rate increased;		
			reason: increase in gas moles L to R				
			OR				
			greater co	greater collision frequency;		1	
			(Q of L mark)				

[6]

 $(a) \qquad K_{c} = \frac{[Y][H_{2}O]^{2}}{[X][CH_{3}OH]^{2}} \ (1)$ if K_c expression wrong lose units mark in (e) also must be []

- (b) Moles of X: 0.25 0.13 = 0.12 (1) Moles of methanol: 0.34 - 0.26 = 0.08 (1) Moles of water: 0.26 (1)
- (c) Equal no. of moles on each side of equation (1) OR V cancels out (provided not incorrectly qualified)

Units of K_c : none (1) but lose this mark if K_c is wrong even if none given

(e) decrease (1)

[9]

1

1

3

1

3

1

7	(a)	(i)	Increase (if wrong no further marks in part (i) higher <i>P</i> gives lower yield or moves to left	1 1
			Eqm shifts to reduce P or eqm favours side with fewer moles	1
		(ii)	Endothermic if wrong no further marks in part (ii)	1
			increase T increases yield or moves to right	1
			Eqm shifts to reduce T or eqm favours endothermic direction	1
	(b)	(i)	Moles of iodine $= 0.023$	1
	(0)	(1)	Moles of HI $= 0.172$	1
			If $\times 2$ missed, max 1 in part (iv)	-
			If wrong no marks in (i)	
		(ii)	$K_{\rm c} = \frac{[{\rm H}_2][{\rm I}_2]}{[{\rm HI}]^2}$ must be square brackets (penalise once in paper)	1
			- if round, penalise but mark on in (iv)	
			if K_c wrong, no marks in (iv) either but mark on from a minor	
			slip in formula	
		(iii)	V cancels in $K_{\rm c}$ expression	
			or no moles same on top and bottom of expression	
			or total moles reactants = moles products,	
			i.e. total no of moles does not change	1
		(iv)	$K_{\rm c} = \frac{(0.023)^2}{(0.172)^2}$	1
			$(0.172)^2$	
			$= 0.0179 \text{ or } 1.79 \times 10^{-2}$	
			Conseq on (i)	1
			Allow 0.018 or 1.8×10^{-2}	
		(v)	$K_{\rm c} = 55.9 \text{ or } 56$	1
			Conseq i.e. (answer to $(iv))^{-1}$	

[13]