

2002

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme

Suitable for all boards

Designed to test your ability and thoroughly prepare you

80 Minutes

Time allowed

OCR AS & A LEVEL

Percentage

%

Mark Scheme

Module 2: Foundatons in chemistry

www.exampaperspractice.co.uk

Score

/67

Question	Answer	Marks	Guidance
1 (a)	The (weighted) mean mass of an atom (of an element) OR The (weighted) average mass of an atom (of an element) ✓ compared with 1/12th (the mass) ✓ of (one atom of) carbon-12 ✓	3	ALLOW average atomic mass DO NOT ALLOW mean mass of an element ALLOW mean mass of isotopes OR average mass of isotopes DO NOT ALLOW the singular; 'isotope' For second and third marking points ALLOW compared with (the mass of) carbon-12 which is 12 ALLOW mass of one mole of atoms ✓ compared to 1/12th ✓ (mass of) one mole OR 12g of carbon-12 ✓ ALLOW mass of one mole of atoms 1/12th mass of one mole OR 12g of carbon-12.
(b)	FIRST CHECK THE ANSWER ON THE ANSWER LINE If answer = 32.09 award 2 marks $32 \times 95.02 + 33 \times 0.76 + 34 \times 4.22$ 100 OR 30.4064 + 0.2508 + 1.4348 OR = 32.092 (calculator value) \checkmark $(A_r =) 32.09 \checkmark$	2	ALLOW one mark for ECF from transcription error in first sum provided final answer is to 2 decimal places and is between 32 and 34 and is a correct calculation of the transcription

C	Questi	ion			Ans	wer		Marks	Guidance
1	(c)		³³ S ³⁴ S ²⁻	protons 16 16	neutrons 17 18	electrons 16 18	*	2	Mark by row
	(d)		If answ (mol of OR (no. of OR (no. of $10^{24} \checkmark$ Correct 6.02 ×	ver = 5.78 : atoms) = 0 molecules) S atoms in	× 10²² awar 0.0120 × 8 = 0 = 0.0120 × 1 mole of S es (number o	d 2 marks 0.0960 (mo 6.02×10^{23} $_{8}) = 8 \times 6.02$	NSWER LINE 1) = 7.224×10^{21} $\times 10^{23} = 4.816 \times 10^{21}$ 0.0120 × 8 ×	2	If there is an alternative answer, check to see if there is any ECF credit possible using working below ALLOW 5.8 x 10 ²² up to calculator value of 5.7792 x 10 ²² ALLOW correct rounding of ECF to 2 significant figures or more up to calculator value ALLOW answers in non standard form such as 0.578 x 10 ²³ correctly rounded to 2 or more significant figures
	(e)	(i)	Unever <i>Type o</i> Creates dipole (<i>Induct</i>	f dipole m s or causes in a molec ion of a se	on of electron ark s an instanta ule) ✓ econd dipol	ineous dipol	e OR temporary nolecules ✓	3	Use annotations with ticks, crosses, ECF etc for this part ALLOW movement of electrons ALLOW changing electron density ALLOW 'transient', 'oscillating' 'momentary' 'changing' DO NOT ALLOW induces a temporary dipole for the second marking point ALLOW induces a dipole in neighbouring molecules ALLOW causes a resultant dipole in other molecules ALLOW atoms for molecules

G	Questi	on	er	Marks	Guidance
1	(e)	(ii)	Only one type of atom OR No (permanent) dipoles OR non-polar OR no polar bonds ✓	1	ALLOW no difference in electronegativity IGNORE 'No hydrogen bonding' IGNORE 'No lone pairs'
	(f)		+ 2 ✓	1	ALLOW 2(+)
	(g)	(i)	There are no waters of crystallisation \checkmark	1	ALLOW 'without water' 'no water' etc IGNORE dehydrated
		(ii)	248.2 ✓	1	IGNORE units DO NOT ALLOW 248
		(iii)	FIRST CHECK THE ANSWER ON THE ANSWER LINE If answer = 7.91 (g) award 2 marks	2	If there is an alternative answer, check to see if there is any ECF credit possible using working below
			(amount of Na ₂ S ₂ O ₃ •5H ₂ O) = 12.41/248.2 OR = 0.05(00) (mol) ✓		ALLOW ECFs from answer to (g)(ii) for both marking points
			(mass of Na₂S₂O₃) = 0.05 x 158.2 = 7.91 (g) ✓		ALLOW ECF for calculated mol of $Na_2S_2O_3\bullet 5H_2O \times 158.2$ correctly calculated for the 2nd mark
					ALLOW calculator value or rounding to 3 significant figures or more but IGNORE 'trailing' zeroes, eg 0.200 allowed as 0.2

G	Questi	on	er	Marks	Guidance
1	(h)	(i)	Sulfur has six bonded pairs (and no lone pairs) \checkmark	2	ALLOW 'It has six bonded pairs' ALLOW bonds for bonded pairs IGNORE regions OR areas of negative charge
			Electron pairs repel (one another equally) 🗸		ALLOW 'bonds repel' DO NOT ALLOW 'Atoms repel' or 'electrons repel' 'Lone pairs repel more than bonded pairs' would score the second mark but would contradict the first mark if there is no reference to no lone pairs
		(ii)	 The ability of an atom to attract electrons ✓ in a (covalent) bond ✓ (The octahedral shape) is symmetrical ✓ 	3	ALLOW dipoles cancel out IGNORE polar bonds repel IGNORE charges cancel
			Total	23	

G	uesti	ion	Answer	Marks	Guidance
2	(a)	(i)	$CI_2 + H_2O \rightarrow HCIO + HCI \checkmark$	1	
		(ii)	 (Chlorine compounds are) carcinogenic OR (Chlorine compounds are) toxic OR poisonous ✓ 	1	 ALLOW 'they' OR 'chlorinated hydrocarbons' OR 'it' for 'chlorine compounds' IGNORE harmful OR dangerous IGNORE references to HCl or HClO IGNORE chlorine is toxic DO NOT ALLOW chlorine is carcinogenic
	(b)	(i)	Precipitation ✓	1	
		(ii)	$Ag^{+}(aq) + Cl^{-}(aq) \rightarrow AgCl(s) \checkmark$	1	Equation AND state symbols required for mark DO NOT ALLOW spectator ions
	(c)	(i)	8.604/143.4 = 0.06(00) (mol) ✓	1	

(c) (ii) If a Group 2 chloride is used amount of Group 2 chloride = $\frac{1}{2} \times 0.0600 \text{ OR} = 0.0300$ Mass of 1 mol of Group 2 chloride = $\frac{2.86}{2.86} = 95.3(3) \checkmark$ 0.0300 [Relative atomic mass of M = $95.3(3) - 71.0$) = 24.3 (g mol ⁻¹)] AND metal = Mg \checkmark	3	DO NOT ALLOW 24.3 and Mg without appropriate working Check to see if there is any ECF credit possible using working below ALLOW calculator value or rounding to 2 significant figures or more but IGNORE 'trailing' zeroes, eg 0.200 allowed as 0.2 ALLOW ECF for correctly calculated $\frac{1}{2}$ × answer to (c)(i) Must be at least 1 decimal place for second marking point ALLOW ECF for 2.86/mol of metal chloride seen above eg MCI will give 0.0600 mol of metal chloride and this will likely give 2.86/0.0600 = 47.7 eg MCl ₃ will give 0.0200 mol of metal chloride and this will likely give 2.86/0.0200 = 143.0 ALLOW ECF for mass of Group 2 chloride – 71.0 provided it is not a negative value ALLOW ECF for mass of metal chloride was given as a whole number above ALLOW ECF for mass of metal chloride – 35.5 if amount of metal chloride = 0.0600 mol eg 47.7 – 35.5 = 12.2 AND Be ALLOW ECF for mass of metal chloride – 106.5 if amount of metal chloride = 0.0200 mol

G	Questi	ion	Answer	Marks	Guidance
2	(d)	(i)	A shared pair of electrons AND both electrons are donated by one atom ✓	1	
		(ii)	NH₄ ⁺ AND CI [−] ✓	1	ALLOW $NH_4CI \rightarrow NH_4^+ + CI^-$ OR $NH_4^+ + CI^- \rightarrow NH_4CI$
		(iii)	Ammonium ion with three covalent ' <i>dot-and-cross</i> ' bonds AND one dative covalent bond ✓	2	
			Chloride ion with 8e ⁻ AND 1 of these electrons different \checkmark		ALLOW other symbols for dots and crosses eg triangles
			$\begin{bmatrix} H \\ \bullet \times \\ H & \bullet \times \\ H & \bullet \times \\ H \end{bmatrix}^{+} \begin{bmatrix} \bullet \bullet \\ \bullet \bullet \\ \bullet & \bullet \\ H \end{bmatrix}^{-}$		IGNORE charges IGNORE 'dative' arrow within the lone pair of the N atom
	(e)	(i)	(Thermal) decomposition ✓	1	

G	Questi	on	Answer	Marks	Guidance
2	(e)	(ii)	FIRST CHECK THE ANSWER ON THE ANSWER LINE If answer = 242 (cm ³) award 3 marks	3	 IGNORE over rounding to two significant figures once DO NOT ALLOW over rounding to two significant figures twice eg ALLOW the following answer for 3 marks 241 (cm³) (0.00672 was rounded to 0.0067 OR 0.0101 was rounded to 0.010) ALLOW the following answers for 2 marks 240 (cm³) (0.00672 was rounded to 0.0067 AND 0.0101 was rounded to 0.010) 252 (cm³) (0.00672 was rounded to 0.007) 161 cm³ (no multiplying by 3/2)
			(amount of KClO ₃) = 0.824/122.6 OR = 0.00672 (mol) ✓		If there is an alternative answer, check to see if there is any ECF credit possible using working below ALLOW up to correctly rounded calculator value of 0.006721044046
			(amount O ₂) = (mol of KClO ₃) 0.00672 × 3/2 OR = 0.0101 (mol)		ALLOW up to correctly rounded calculator value ALLOW ECF for mol of KClO ₃ × $3/2$ for 2nd mark
			(volume of O_2) = 0.0101 × 24 000 = 242 (cm ³) \checkmark		ALLOW ECF for (mol of KClO ₃) × $3/2 \times 24000$
			Total	16	

Q	Question		Answer	Mark	Guidance
3	(a)	(i)	mol of $H_xA = 25.00 \times 0.0500$ = 1.25 × 10 ⁻³ OR 0.00125 mol \checkmark 1000	1	ALLOW 0.0013 OR 1.3×10^{-3} ALLOW correct answer only without working
		(ii)	mol of NaOH = <u>12.50 × 0.200</u> = 2.5(0) × 10 ⁻³ OR 0.0025(0) mol ✓	1	ALLOW correct answer without working
		(iii)	1000 Answer 2a(ii) Answer 2a(i)	1	ALLOW answer without working if answers to 2a(i) AND 2a(ii) are seen
			If 2a(i) and 2a(ii) are correct this will be $x = \frac{2.50 \times 10^{-3}}{1.25 \times 10^{-3}} = 2$ OR H ₂ A		DO NOT ALLOW responses without seeing answers in 2a(i) AND 2a(ii)
	(b)	(i)	$\frac{HNO_3}{CuO} \neq 2HNO_3 \rightarrow Cu(NO_3)_2 + H_2O \checkmark$	2	IGNORE state symbols ALLOW correct multiples
		(ii)	(Electrostatic) attraction between oppositely charged ions ✓	1	Attraction is essential IGNORE references to metal and non-metal
		(iii)	lons are mobile OR ions can move ✓	1	IGNORE 'free ions' IGNORE 'delocalised ions' IGNORE ions can move when molten IGNORE charge carriers DO NOT ALLOW Any mention of electrons moving ALLOW ions move when in a liquid IGNORE responses which give liquid ions
		(iv)	(+) 5 ✓	1	ALLOW V

Question		Answer		Mark	Guidance	
(c)		Cu(NO ₃) ₂ •6H ₂ O ✓		1	ALLOW $Cu(NO_3)_26H_2O$ ALLOW $Cu(NO_3)_2(H_2O)_6$ ALLOW $Cu(NO_3)_2.6H_2O$ DO NOT ALLOW $CuN_2O_6\bullet 6H_2O$	
			Total	9		

G	luest	ion	Answer	Mark	Guidance
4	(a)	(i)	Creating the dipole mark uneven distribution of electrons ✓	3	Use annotations with ticks, crosses ECF etc. for this part ALLOW movement of electrons ALLOW changing electron density
			<i>Type of dipole mark</i> creates an instantaneous dipole OR temporary dipole ✓		ALLOW 'transient', 'oscillating', 'momentary', 'changing'
			<i>Induction of a second dipole mark</i> causes induced dipole(s) in neighbouring molecules ✓		ALLOW 'induces a dipole in neighbouring molecules' ALLOW 'causes a resultant dipole in neighbouring molecules' ALLOW 'atoms' for 'molecules'
		(ii)	boiling points increase down the group ✓ greater number of electrons OR stronger intermolecular forces OR stronger van der Waals' forces ✓	3	Use annotations with ticks, crosses ECF etc. for this part ALLOW Bpt of iodine is highest OR Bpt of chlorine is lowest ALLOW CI for chlorine etc. For 'down the group' ALLOW 'as molecules get bigger' ALLOW number of electron shells increases IGNORE 'more shells' (if no reference to electrons) ALLOW 'more' for 'stronger'
			more energy needed to break intermolecular OR van der Waals' forces ✓		 ALLOW iodine has most electrons ALLOW chlorine has fewest electrons DO NOT ALLOW any implication that the attraction is between atoms not molecules for third mark
	(b)		Same number of outer(most) electrons OR same outer(most) electron structure ✓	1	ALLOW same number of electrons in outer shell ALLOW It has seven outer electrons IGNORE same group DO NOT ALLOW 'same number of electrons'

G	luest	ion	Answer	Mark	Guidance
4	(c)	(i)	Colours: (Add Br ₂ to NaCl,) (Cyclohexane layer) turns orange OR yellow \checkmark (Add Br ₂ to Nal,) (Cyclohexane layer) turns purple OR lilac OR violet OR pink OR mauve \checkmark Equation: Br ₂ + 2l ⁻ \Rightarrow l ₂ + 2Br ⁻ \checkmark	6	Use annotations with ticks, crosses ECF etc. for this part ALLOW any combination of these but no others ALLOW any combination of these but no others DO NOT ALLOW 'precipitate' with either colour DO NOT ALLOW equation mark if incorrect equation(s) also seen IGNORE $Br_2 + 2CI^- \rightarrow Br_2 + 2CI^-$ IGNORE correct non-ionic version of equation IGNORE state symbols
			Reactivity: Reactivity decreases down the group OR Oxidising power decreases down the group ✓ Explanations: Chlorine will gain electron easiest OR form negative ion easiest ✓		 ALLOW Chlorine is the most reactive ALLOW Cl for chlorine etc. ALLOW lodine is the least reactive ALLOW chlorine is best at electron capture ALLOW chlorine has 'greatest' electron affinity IGNORE chlorine is most electronegative DO NOT ALLOW explanations in terms of displacement <i>Quality of Written Communication – Electron(s) OR negative spelled</i> <i>correctly at least ONCE for marking point 5</i>
			Because chlorine (atom) is smallest OR Outer(most) shell of chlorine least shielded OR Nuclear attraction on electrons of chlorine is greatest ✓		ALLOW Chlorine atom has fewest shells ALLOW outer(most) shell closest to the nucleus ALLOW Chlorine atom has lowest shielding ORA for marking points 4, 5 and 6

Question		er	Mark	Guidance
4 (c)	(ii)	Bromine is toxic ✓	1	ALLOW cyclohexane is toxic ALLOW bromine irritates the lungs DO NOT ALLOW Cl ₂ is toxic IGNORE 'strong smelling' IGNORE 'halogens' are toxic
(d)	(i)	$2F_2 + 2H_2O \rightarrow 4HF + O_2 \checkmark$	1	ALLOW correct multiples, including use of ½ O ₂ ALLOW 4FH IGNORE state symbols
	(ii)	Oxygen has been oxidised as (oxidation number has increased from) $O = -2$ to $O = 0 \checkmark$ Fluorine has been reduced as (oxidation number has decreased from) $F = 0$ to $F = -1 \checkmark$	2	IGNORE references to oxygen in any incorrect products DO NOT ALLOW $O_2 = -2 \rightarrow O = 0$ but ALLOW $F_2 = 0 \rightarrow F = -1$ ALLOW 'F is reduced from 0 to -1' regardless of product (or no product) in 5d(i) except ALLOW ECF for F = -2 if H ₂ F is seen ALLOW one mark for O = -2 and O ₂ = 0 AND F ₂ = 0 and F = -1 if no reference OR incorrect reference to oxidation / reduction is seen Look at equation in 5d(i) for oxidation numbers if not seen in 5d(ii) IGNORE reference to electron loss / gain if correct DO NOT ALLOW incorrect reference to electron loss / gain
(e)	(i)	(1s ²) 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ² 4p ¹ ✓	1	IGNORE 1s ² twice ALLOW 4s ² before 3d ¹⁰ ALLOW '3D'
	(ii)	GaF₃ ✓	1	
		Total	19	