

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme

Suitable for all boards

Designed to test your ability and thoroughly prepare you

Time allowed **44 Minutes**

2002

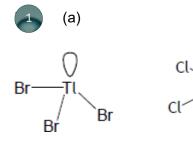
CHEMISTRY

Mark Scheme

AQA AS & A LEVEL

Percentage

%


3.1 Physical chemistry

www.exampaperspractice.co.uk

Score

/37

Cl Mark is for correct number of bonds and lone pair in each case. Ignore charges if shown.

2

1

1

1

Pyramidal / trigonal pyramid Allow tetrahedral.

107°

Allow 107 to 107.5°.

(b) M1 Ionic

CE = 0 / 3 if not ionic.

M2 Oppositely charged ions / TI⁺ and Br⁻ ions If molecules / intermolecular forces / metallic bonding, CE=0.

M3 <u>Strong attraction</u> between ions M3 dependent on M2. Allow 'needs a lot of energy to break / overcome' instead of 'strong'.

(c)
$$TI + \frac{1}{2}Br_2 \longrightarrow TIBr$$

Allow multiples.
Ignore state symbols even if incorrect

[8]

1

1

1

1

1

1

1

- (a) Giant covalent / giant molecular / macromolecular Not giant alone. Not covalent alone.
- (b) Shared pair of electrons / one electron from each C atom

- (c) No delocalised / free / mobile electrons
 Allow all (outer) electrons involved in (covalent) bonds.
 Ignore ions.
- (d) CH
- Allow HC C and H must be capital letters.

[4]

(a)

(i) d (block) **OR** D (block)

Ignore transition metals / series. Do not allow any numbers in the answer.

(ii) Contains positive (metal) ions or protons or nuclei and <u>delocalised /</u> <u>mobile / free / sea of electrons</u> *Ignore atoms.*

Strong attraction between them or strong metallic bonds

Allow 'needs a lot of energy to break / overcome' instead of 'strong'.

If strong attraction between incorrect particles, then CE = 0 / 2.

If molecules / intermolecular forces / covalent bonding / ionic bonding mentioned then CE=0.

(iii)

M1 is for regular arrangement of atoms / ions (min 6 metal particles). M2 for + sign in each metal atom / ion. Allow 2⁺ sign.

2

1

1

1

1

(iv) <u>Layers / planes / sheets of atoms or ions</u> can slide over one another *QoL.*

(b) (i) 1s² 2s² 2p⁶ 3s² 3p⁶ 3d⁸ (4s⁰) Only.

1

1

1

(ii) NiCl₂.6H₂O + **6** SOCl₂ \longrightarrow NiCl₂ + **6** SO₂ + **12** HCl Allow multiples.

> NaOH / NH₃ / CaCO₃ / CaO Allow any name or formula of alkali or base. Allow water.

> > [9]

(a) 2-bromo-2,3-dimethylbutane *Ignore punctuation.*

 $\begin{array}{c} C_n H_{2n+1} Br \ or \ C_n H_{2n+1} X \ or \ C_x H_{2x+1} Br \\ \\ \mbox{ Any order.} \end{array}$


Stronger / more <u>vdw</u> (forces) <u>between molecules</u> (of 1-bromohexane) *QoL Allow converse arguments for Z Not just more IMF. Ignore size of molecule.*

1

1

1

 C_2H_4CI

Any order

[5]

1

1

M1 550 × $\frac{100}{95}$ = 579 g would be 100% mass Allow alternative methods. There are 4 process marks:

.(a)

1

	579
M2	So 65 = 8.91 moles NaN ₃
or	550
M1	$65 = 8.46 \text{ moles NaN}_3 \text{ (this is 95\%)}$
M2	So 100% would be 8.46 × 95 = 8.91 moles NaN ₃
	1: mass ÷ 65
	2: mass or moles × 100 / 95 or × 1.05
	3: moles NaN₃ × 2
	4: moles NaNH ₂ × 39

1

Then M3 Moles NaNH₂ = 8.91 \times 2 = (17.8(2) moles)

1

1

1

1

1

1

M4 mass NaNH₂ = 17.8(2) <u>× 39</u>

M5 <u>693</u> or <u>694</u> or <u>695</u> (g) If 693, 694 or 695 seen to 3 sig figs award 5 marks

(b) M1 308 K and 150 000 Pa

M2 n =
$$\frac{PV}{RT}$$
 or $\frac{150\ 000 \times 7.5 \times 10^{-2}}{8.31 \times 308}$

M3 = 4.4(0) or 4.395 moles N₂ Allow only this answer but allow to more than 3 sig figs

For more help please visit our website www.exampaperspractice.co.uk

	M4	Moles NaN ₃ = 4.395 $\times \frac{2}{3}$ (= 2.93)		
		2		
		M4 is for M3 \times 3		1
	M5	Mass NaN ₃ = (2.93) <u>× 65</u>		
		M5 is for moles M4 \times 65		1
	M6 =	= 191 g		
		Allow 190 to 191 g allow answers to 2 sig figs or more		1
(c)	(i)	150 / 65 = 2.31 moles NaN ₃ or 2.31 moles nitrous acid		
. ,		1000		1
		Conc = 2.31 × 500		
		M2 is for M1 × 1000 / 500		
		4.6(1) or 4.6(2) (mol dm⁻³)		1
		Only this answer		
	<i>(</i> 1)			1
	(ii)	$3HNO_2 \longrightarrow HNO_3 + 2NO + H_2O$ Can allow multiples		
Ionic				1
Ionic		If not ionic then $CE = 0/3$		
Onno	citaly	charged <u>ions</u> / Na ⁺ and N ₃ ⁻ ions	1	
Obbo	Silery	Penalise incorrect ions here but can allow $M3$		
Otron	a atta	estion between (ennesitely cherned) isne (late of energy needed to	1	
		action between (oppositely charged) ions / lots of energy needed to (strong) attractions (between ions)		
		M3 dependent on M2	1	

(d)

	(e)	(i) $N \equiv N \longrightarrow N^{-}$ Only	1	
		(ii) CO ₂ / N ₂ O / BeF ₂ / HN ₃ Allow other correct molecules	1	
		(iii) MgN ₆ Only	1	[21]
6	(a)	Macromolecular / giant covalent / giant molecule <i>Not giant atomic</i>	1	
	(b)	No delocalised electrons / no free ions / no free charged particles	1	
	(c)	$SiO_2 + 6HF \longrightarrow H_2SiF_6 + 2H_2O$ Accept multiples	1	[3]