

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme

Suitable for all boards

Designed to test your ability and thoroughly prepare you



Time allowed 53 Minutes

Score

/44

Percentage

%

## **CHEMISTRY**

## OCR AS & A LEVEL

**Mark Scheme** 

Module 6: Organic chemistry and analysis

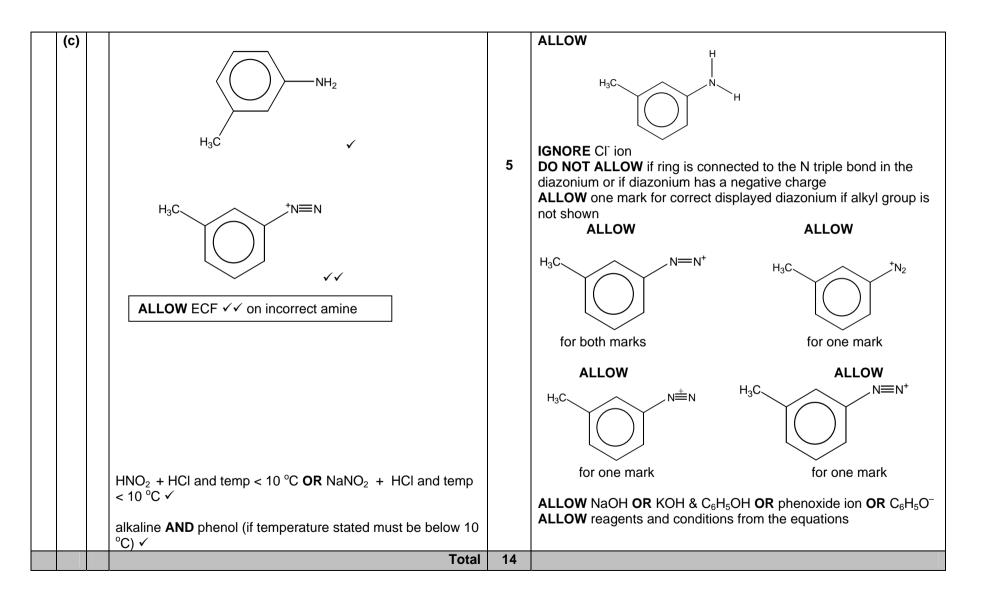
## www.exampaperspractice.co.uk



| Question       | Answer                                                                                                                                                                                                                                                                                                                                             | Mark | Guidance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Question 1 (a) | CH <sub>3</sub> CH <sub>2</sub> Curly arrow from curly arrow from C-H bond back to reform ring  To NO <sub>2</sub> 1 mark for intermediate  1 mark for curly arrow |      | Guidance  ANNOTATIONS MUST BE USED  ALLOW skeletal CH <sub>3</sub> ALLOW 1st curly arrow from the ring OR from within the ring to any part of the NO <sub>2</sub> <sup>+</sup> including the + charge  DO NOT ALLOW intermediate with broken ring less than halfway down:  CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub> ALLOW Kekulé mechanism:  CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub> ALLOW double bonds shown in other Kekulé arrangement |
|                |                                                                                                                                                                                                                                                                                                                                                    |      | IF CH <sub>3</sub> has been omitted completely ( <i>ie</i> benzene shown), DO NOT AWARD intermediate mark OR products mark (max 2) IF NO <sub>2</sub> is shown in incorrect position in intermediate or product, DO NOT AWARD intermediate mark but award other marks (max 3)                                                                                                                                                                                                                                                                            |



| Question | er                                                                                                                                                                                                | Mark | Guidance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 (b )   | $O_2N$ $O_2$ $O_2N$ $O_2$ $O_2$ $O_2$ $O_2$ $O_2$                                                                                                                                                 | 2    | ALLOW NO <sub>2</sub> —  Note: connectivity is NOT being assessed in this part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1 (c)    | 1st stage isomer: isomer 3 ✓ product:  CH <sub>3</sub> reagents: Sn AND (conc) HCI ✓ equation:  CH <sub>3</sub> + 12 [H]  + 4 H <sub>2</sub> O  NH <sub>2</sub> NH <sub>2</sub> NH <sub>2</sub> V |      | ALLOW structure of isomer 3 shown separately OR in equation  ALLOW structure of product shown separately OR in equation ALLOW correct name (3,5-diaminomethylbenzene) IGNORE incorrect name DO NOT ALLOW CH <sub>3</sub> C <sub>6</sub> H <sub>3</sub> (NH <sub>2</sub> ) <sub>2</sub> ALLOW Zn + HCl/H <sub>2</sub> + metal catalyst/LiAlH <sub>4</sub> /Na in ethanol IGNORE NaBH <sub>4</sub> ALLOW Sn and HCl followed by NaOH DO NOT ALLOW Sn and HCl and NaOH  IF isomer 3 OR product are given in equation but not shown previously then credit here  Also credit reagents here if shown (eg above arrow)  ALLOW correct structural OR displayed OR skeletal formula ALLOW combination of formulae as long as unambiguous |




| Question | er                                          | Mark | Guidance                                                                                                                                                                                                                                                                  |
|----------|---------------------------------------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (c) (i)  | 2nd stage organic compound: HOOC−CH₂−COOH ✓ | 6    | DO NOT ALLOW molecular formula  ALLOW name of compound: propanedioic acid OR propane-1,3-dioic acid ALLOW absence of 'e' after 'propan'  ALLOW acyl dichloride: CIOC-CH <sub>2</sub> -COCl ALLOW cyclic acid anhydride of propanedioic acid:  CH <sub>2</sub> O C C C C C |
|          | type of polymer. polyamide ✓                |      | ALLOW Nylon or Kevlar DO NOT ALLOW polypeptide DO NOT ALLOW amide                                                                                                                                                                                                         |
|          | Total                                       | 12   |                                                                                                                                                                                                                                                                           |



| C | uest | ion   | Expected Answers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Marks | Additional Guidance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---|------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 | (a)  |       | $+$ Br <sub>2</sub> $\longrightarrow$ Br $+$ HBr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1     | ALLOW $C_6H_6 + Br_2 \longrightarrow C_6H_5Br + HBr$ DO NOT ALLOW multiple substitution DO NOT ALLOW $Br^+$                                                                                                                                                                                                                                                                                                                                                                                                         |
|   | (b)  | (i)   | White precipitate <b>OR</b> white solid <b>OR</b> white crystals ✓  Br  Br  Br  ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2     | DO NOT ALLOW colourless DO NOT ALLOW white ppt and bubbles  DO NOT ALLOW  Br <sub>3</sub> C <sub>6</sub> H <sub>2</sub> OH OR 2,4,6-tribromophenol OR tribromophenol                                                                                                                                                                                                                                                                                                                                                |
|   |      | (ii)  | 1,2-Dibromocyclohexane ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1     | ALLOW 1,2dibromocyclohexane OR 1-2dibromocyclohexane OR 12dibromocyclohexane OR cyclo-1,2-dibromohexane DO NOT ALLOW dibromocyclohexane OR C <sub>6</sub> H <sub>10</sub> Br <sub>2</sub> OR structures                                                                                                                                                                                                                                                                                                             |
|   |      | (iii) | MUST spell delocalised/delocalized or localised/localized correctly once in the answer to obtain all 5 marks  benzene electrons or π-bonds are delocalised ✓  phenol a lone or non-bonded pair of electrons on the oxygen or the OH group is (partially) delocalised into the ring ✓  cyclohexene electrons are localised OR delocalised between two carbons ✓  benzene has a lower electron density OR phenol has a higher electron density ✓  benzene cannot polarise or induce a dipole in Br₂ OR phenol can polarise the Br₂ OR cyclohexene can polarise | 5     | ALLOW diagram to show overlap of all 6 p-orbitals for delocalisation  DO NOT ALLOW benzene has delocalised structure or ring  ALLOW diagram to show movement of lone pair into ring for phenol  ALLOW diagram or description of overlap of 2 adjacent p-orbitals for bonding in cyclohexene  DO NOT ALLOW cyclohexene has a C=C double bond  IGNORE slip if cyclohexene is written as cyclohexane but π - bonding correctly described  DO NOT ALLOW charge density OR electronegativity instead of electron density |
|   |      |       | Br <sub>2</sub> or the Br–Br bond $\checkmark$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | ALLOW Br <sup>8+</sup> OR electrophile Br <sup>+</sup> as alternate to polarise                                                                                                                                                                                                                                                                                                                                                                                                                                     |







| C | uesti | on  | Answer                                                                               | Mark | Guidance                                                                                                                                                                                                                                                                                                                                                             |
|---|-------|-----|--------------------------------------------------------------------------------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3 | (a)   | (i) | M1                                                                                   | 4    | ANNOTATE ANSWER WITH TICKS AND CROSSES ETC                                                                                                                                                                                                                                                                                                                           |
|   |       |     | p-orbitals overlap (to form pi/π-bonds) ✓                                            |      | IGNORE p-orbitals overlap to form sigma bonds                                                                                                                                                                                                                                                                                                                        |
|   |       |     | M2<br>π-bond(s) are <u>delocalised</u> in <b>structure B</b> ✓                       |      | ALLOW electrons are delocalised in structure B IGNORE B has delocalised structure or ring (must be electrons or π-bonds)                                                                                                                                                                                                                                             |
|   |       |     | M3 π-bonds are localised/between two carbons in <b>structure A</b> ✓                 |      | ALLOW π-electrons/p-orbital overlap localised/between two carbons in structure A ALLOW p-orbitals overlap with one other carbon IGNORE electrons are localised OR structure A has localised structure (must be π-bonds/π-electrons/p-orbital overlap) ALLOW labelled diagram showing overlap of p-orbitals between two carbon atoms DO NOT ALLOW C=C in this diagram |
|   |       |     | AND AND                                                                              |      | Diagram for structure A must show the full ring for M4 IGNORE C=C in M4 diagram                                                                                                                                                                                                                                                                                      |
|   |       |     | Diagrams show correct position of delocalised and localised π-bonds/π-electrons      |      | IGNORE charge density                                                                                                                                                                                                                                                                                                                                                |
|   |       |     | OR correct position of p-orbital overlap ✓                                           |      | DO NOT ALLOW electronegativity  Structures do not need to be labelled A and B if the description matches the structure                                                                                                                                                                                                                                               |
|   |       |     | P QWC requires delocalised/delocalized spelled correctly and used in correct context |      |                                                                                                                                                                                                                                                                                                                                                                      |



| C | Question |      | Answer                                                                                 | Mark | Guidance                                                                                      |
|---|----------|------|----------------------------------------------------------------------------------------|------|-----------------------------------------------------------------------------------------------|
|   |          | (ii) | structure B/delocalised structure is (more) stable                                     | 2    | ALLOW structure B is low in energy                                                            |
|   |          |      | <b>√</b>                                                                               |      | IGNORE structure B is less reactive                                                           |
|   |          |      | structure B is a better because (enthalpy change of hydrogenation for benzene is) less |      | <b>ALLOW</b> enthalpy change/hydrogenation for benzene is less (negative) than 3 × (–)119     |
|   |          |      | (exothermic) than (-) 357 (kJ mol <sup>-1</sup> )                                      |      | <b>IGNORE</b> more positive than (-)357 kJ mol <sup>-1</sup>                                  |
|   |          |      | <b>✓</b>                                                                               |      | <b>ALLOW</b> enthalpy change is less than 3x enthalpy change for cyclohexene                  |
|   |          |      |                                                                                        |      | <b>ALLOW</b> structure <b>B</b> is more stable by 149 kJ mol <sup>-1</sup> (2 marks)          |
|   |          |      |                                                                                        |      | DO NOT ALLOW more/less energy needed for the reaction                                         |
|   |          |      |                                                                                        |      | Answer must refer to data given in the question and must be a comparison                      |
|   |          |      |                                                                                        |      | IGNORE 360 kJ mol <sup>-1</sup>                                                               |
|   |          |      |                                                                                        |      | No marks can be awarded if structure <b>A</b> is selected                                     |
|   | (b)      |      | +<br>N=N +<br>:F-                                                                      | 2    |                                                                                               |
|   |          |      |                                                                                        |      | First curly arrow must come from bond not from C atom                                         |
|   |          |      | curly arrow from C–N bond to N <sup>+</sup> ✓                                          |      | <b>ALLOW</b> first curly arrow to nitrogen atom <b>OR</b> to positive charge on nitrogen atom |
|   |          |      |                                                                                        |      | <b>ALLOW</b> second curly arrow from negative charge on fluoride ion                          |
|   |          |      | curly arrow from lone pair on fluoride ion to positive charge on benzene ring          |      | <b>ALLOW</b> second curly arrow to carbon atom with positive charge                           |



| Que | Question |     | Answer                                                          | Mark | Guidance                                                                                                                         |
|-----|----------|-----|-----------------------------------------------------------------|------|----------------------------------------------------------------------------------------------------------------------------------|
|     | (c)      |     | $(CH_3)_2CHBr + FeBr_3 \longrightarrow (CH_3)_2CH^+ + FeBr_4^-$ | 1    | ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous                      |
|     |          |     |                                                                 |      | <b>ALLOW</b> positive charge anywhere on the electrophile <b>IGNORE</b> AlCl <sub>3</sub> <b>OR</b> AlBr <sub>3</sub>            |
| (   | (d)      | (i) | First reactant = HNO₂ ✓                                         | 3    | ALLOW NaNO <sub>2</sub> + HCl OR HNO <sub>2</sub> + HCl                                                                          |
|     |          |     |                                                                 |      | IGNORE conditions/concentration                                                                                                  |
|     |          |     | Second reactant =                                               |      |                                                                                                                                  |
|     |          |     | Br NH <sub>2</sub>                                              |      | ALLOW correct structural <b>OR</b> displayed <b>OR</b> skeletal formulae <b>OR</b> a combination of above as long as unambiguous |
|     |          |     |                                                                 | ✓    |                                                                                                                                  |
|     |          |     | Third reactant =                                                |      | ALLOW                                                                                                                            |
|     |          |     |                                                                 |      | CI NH <sub>2</sub>                                                                                                               |
|     |          |     | $HO \longrightarrow NH_2$                                       |      | ОН                                                                                                                               |
|     |          |     | OH ~                                                            |      |                                                                                                                                  |



| Question | Answer                                                                                                                                                                                                                                                  | Mark | Guidance                                                                                                                                                                                                                                                           |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (ii)     | FIRST CHECK THE ANSWER ON THE ANSWER LINE IF answer = 1.35 (g) award 3 marks IF answer = 0.54 (g) award 2 marks (no scale-up) IF answer = 0.216 (g) award 2 marks (incorrect scale-up)                                                                  | 3    | ANNOTATE ANSWER WITH TICKS AND CROSSES ETC If there is an alternative answer, check to see if there is any ECF credit possible ALLOW ECF from incorrect amount, scale-up or molar mass                                                                             |
|          | $n(\text{compound D}) = 1.73/346 = 0.00500 \text{ mol}$ $\checkmark$ $n(1,3\text{-diaminobenzene}) \text{ required} = 100/40 \times 0.005$ $= 0.0125 \text{ mol}$ $\checkmark$ Molar mass of 1,3-diaminobenzene = 108 (g mol <sup>-1</sup> ) <b>AND</b> |      | Alternative 1<br>n(compound D) = $1.73/346 = 0.00500$ mol<br>Molar mass of 1,3-diaminobenzene = $108$ (g mol <sup>-1</sup> )<br>AND<br>Mass of 1,3-diaminobenzene = $(0.00500)(108) = 0.540$ g<br>Mass of 1,3-diaminobenzene required = $(0.540)(100/40) = 1.35$ g |
|          | Mass of 1,3-diaminobenzene = (108)(0.0125) = 1.35 g ✓                                                                                                                                                                                                   |      | <b>Alternative 2</b> 346 g gives 108 g 1.73 g gives 108/364 x 1.73 = 0.54 g 0.54/40 x100 = 1.35 g                                                                                                                                                                  |
| (iii)    | (compound D has) <b>two</b> chiral centres ✓                                                                                                                                                                                                            | 3    | <b>ALLOW</b> (Compound <b>D</b> ) has two asymmetric carbons <b>OR</b> has two stereocentres                                                                                                                                                                       |
|          | Four optical isomers exist ✓                                                                                                                                                                                                                            |      | ALLOW four enantiomers OR two pairs of enantiomers                                                                                                                                                                                                                 |
|          | (Synthesis could) use enzymes <b>OR</b> bacteria <b>OR</b> use (chemical) chiral synthesis <b>OR</b> chiral catalysts <b>OR</b> use natural chiral molecules <b>OR</b> single isomers (as starting materials)                                           |      | INDEPENDENT MARK ALLOW biological catalysts ALLOW chiral transition metal complex/catalyst OR stereoselective transition metal complex/catalyst ALLOW 'chiral pool'/chiral auxiliary                                                                               |
|          | Total                                                                                                                                                                                                                                                   | 18   |                                                                                                                                                                                                                                                                    |