

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme

Suitable for all boards

Designed to test your ability and thoroughly prepare you

Time allowed **70 Minutes**

2002

CHEMISTRY

OCR AS & A LEVEL

Mark Scheme

Module 6: Organic chemistry and analysis

Percentage

%

www.exampaperspractice.co.uk

Score

/58

G	uesti	on	Answer	Mark	Guidance		
			Where circles have been placed round charges,	this is fo	or clarity only and does not indicate a requirement		
1	(a)	(i)	COO Na COO Na ✓	1	ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous DO NOT ALLOW –O–Na OR -COO-Na (covalent bond) ALLOW –O ⁻ ALLOW –ONA ALLOW –COONA OR – O ⁻ ALLOW delocalised carboxylate		
1	(a)	(ii)	(Bromine) would be decolourised/turn (from orange/red/yellow/brown) to colourless OR white precipitate/solid/emulsion (formed) ✓	1	IGNORE goes clear DO NOT ALLOW other colours for bromine IGNORE cream precipitate DO NOT ALLOW salicylic acid turns colourless/decolourised IGNORE temperature/fumes		
1	(a)	(iii)	$\begin{array}{c} & & & \\ & &$	1	ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous MUST be all correct to score mark ALLOW molecular formulae, i.e. $C_7H_6O_3 + Br_2 \rightarrow C_7H_5O_3Br+ HBr$		

	Questi	on	Answer	Mark	Guidance
1	(a)	(iv)	$(CH_3)_2CHOH/CH_3CH(OH)CH_3/propan(-)2(-)ol$ AND acid/H ⁺ /H ₂ SO ₄ (catalyst)	1	 ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous ALLOW 2-propanol DO NOT ACCEPT incorrect name or incorrect formula of alcohol IGNORE reflux/concentrated (acid)
1	(b)	(i)	Image: Product of the system OH Image: Product of the system Image: Product of the system Image: Product of the system Image: Product of the system Image: Product of the system Image: Product of the system Image: Product of the system Image: Product of the system Image: Product of the system Image: Product of the system Image: Product of the system Image: Product of the system Image: Product of the system Image: Product of the system Image: Product of the system Image: Product of the system Image: Product of the system Image: Product of the system Image: Product of the system Image: Product of the system Image: Product of the system Image: Product of the system Image: Product of the system Image: Product of the system Image: Product of the system Image: Product of the system Image: Product of the system Image: Product of the system Image: Product of the system Image: Product of the system Image: Product of the system Image: Product of the system Image: Product of the system Image: Product of the system Image: Product of the system Image: Product of the system Image:	4	ALLOW mechanism with Br^* electrophile (Maximum 3 marks) $\downarrow \downarrow $

(Questi	on	Answer	Mark	Guidance
1	(b)	(ii)	(In salicylic acid)	3	ALLOW diagram to show movement of lone pair into ring but delocalised ring must be mentioned
			(partially) delocalised into the ring \checkmark		ALLOW lone pair/pair of electrons on O(H)/phenol is (partially) drawn/attracted/pulled into delocalised ring
			electron density increases/is high ORA \checkmark		IGNORE 'activates the ring'
					ALLOW more electron rich
					DO NOT ALLOW charge density or electronegativity
			Br_2 /electrophile is (more) polarised ORA \checkmark		ALLOW (salicylic acid) attracts electrophiles more/more susceptible to electrophilic attack
					ALLOW Br_2 is (more) attracted OR Br_2 is not polarised by benzene OR induces dipoles (in bromine/electrophile)
			QWC : delocalised/delocalized/delocalise <i>etc</i> . must be spelled correctly in the correct context at least once		Delocalise(d) needed to score the first marking point
1	(c)	(i)	Step 1	4	
	.,	.,	Add HNO ₃		ALLOW reagent mark if HNO₃ in equation
			OH CHARLES OH		IGNORE H ₂ SO ₄ (NOTE : H ₂ SO ₄ not required with phenols)
		$ \qquad \qquad (\bigcirc) \qquad + HNO_3 \longrightarrow \qquad (\bigcirc) \qquad + \qquad $	IGNORE concentrations of acids/temperature		
			\sim COOH O_2N' COOH H_2O		ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous
			~		Equations MUST be completely correct for one mark each

C	Questi	ion	Answer	Mark	Guidance
			Step 2 Tin AND concentrated HCl \checkmark OH + 6 [H] O_2N OH + 2 H ₂ O H_2N OH + 2 H ₂ O		DO NOT ALLOW 3H ₂
1	(c)	(ii)	Nitrogen electron pair OR nitrogen lone pair accepts a proton/H⁺	1	 DO NOT ALLOW nitrogen/N lone pair accepts hydrogen (proton/H⁺ required) ALLOW nitrogen donates an electron pair/lone pair to H⁺ IGNORE NH₂ group donates electron pair
1	(c)	(iii)	compound \mathbf{A} \checkmark compound \mathbf{B} $\bigcirc N$ $\bigcirc N$ $\bigcirc N$ $\bigcirc N$ $\bigcirc OH$ $\bigcirc OH$ $\bigcirc OH$ $\bigcirc OH$ \checkmark $\bigcirc OH$ \checkmark $\bigcirc OH$ $\bigcirc OH$ \checkmark \checkmark \checkmark \checkmark $\bigcirc OH$ $\bigcirc OH$ \checkmark \checkmark \checkmark $\bigcirc OH$ \checkmark \land	2	ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous ALLOW $-N_2Cl$ OR $-N_2^+Cl^-$ DO NOT ALLOW $-N\equiv N^+$ OR $-N\equiv N^+Cl^-$ DO NOT ALLOW $-N_2^-Cl$ (covalent bond)

Q	uesti	on	er	Marks	Guidance
2	(a)		In benzene, electrons OR π -bond(s) are delocalised \checkmark		ANNOTATIONS MUST BE USED
					ALLOW diagram with (π-bond) electrons
					AND delocalised labelled
			QWC requires delocalised/delocalized spelled correctly		
			and used in correct context		IGNORE benzene has delocalised structure or ring
					ALLOW diagram with π -bond labelled
			In alkenes, II-electrons are OR II-bond is		ALLOW pi bond for π -bond
			AND		
			localised OR between two carbons V		π -bond OR π -electrons essential for this mark
					ICNOPE charge density
			benzene has a lower electron density		DO NOT ALLOW electronegativity
			OR alkene/C=C has a higher electron density ✓		
			Comparison essential		
					ALLOW Br–Br for Br ₂
					ALLOW electrophile for Br ₂
					ALLOW henzene dess NOT poleries hromins / Dr
			benzene polarises bromine / Br ₂ LESS		ALLOW benzene does NOT polarise bromine / BI_2 OR alkene/C=C polarises Br_2
					ALLOW benzene does NOT attract bromine / Br ₂
			OR benzene attracts bromine / Br ₂ LESS		OR alkene/C=C attracts Br ₂
					ALLOW henzene deep NOT induce dipole in hroming / Pr
			OR benzene induces a weaker dipole in bromine / $Br_2 \checkmark$	4	ALLOW benzene does NOT induce dipole in bromine / BI_2 OR alkene/C=C induces dipole in Br_2

Question	er	Marks	Guidance
(b) (H = C = C = H	1	ALLOW correct structural OR displayed OR skeletal formula ALLOW combination of formulae as long as unambiguous
(ii)	6 ✓	1	NO ECF from (i)
(iii)	Two of the three structures below with 1 mark for each correct structure $\checkmark \checkmark$	2	 ALLOW correct structural OR displayed OR skeletal formula ALLOW combination of formulae as long as unambiguous Structures must clearly show position of Br on benzene ring in relation to side chain ALLOW ECF from (i) if BOTH Br atoms on same carbon on side chain DO NOT ALLOW ECF from (i) if EITHER bromine has been substituted onto the benzene ring
(iv)	reaction 1: electrophilic addition ✓		ALLOW electrophile addition
	reaction 2 : electrophilic substitution ✓	2	ALLOW electrophile substitution ALLOW other phonetic spellings for electrophilic, e.g. electrophylic, etc.
	Total	10	

Qu	estic	on	er	Mark	Guidance
	(b)	(i)	CI I		Each mark is independent of the other
					ALLOW C_6H_5CI for chlorobenzene
			2 + Cl ₃ CCHO		ALLOW any unambiguous structure for Cl ₃ CCHO, e.g. CCl ₃ CHO
			*		BUT DO NOT ALLOW CCI3COH
			+ H ₂ O		
			ie $2 C_6 H_5 CI + CI_3 CCHO$		Standalone mark
			2nd mark : product, (correctly balanced) ✓	2	Standalone mark
		(ii)	6 ✓	1	
	(c)	,	substitution/nitration/NO ₂ at different positions (on the ring)	•	ALLOW examples, e.g. 1-chloro-2-nitrobenzene and
			OR		1-chloro-2-nitrobenzene
			orms different isomers		ALLOW It for hitro group
			multiple substitution/nitration ✓	1	ALLOW examples, e.g. 1-chloro-2,3-dinitrobenzene IGNORE nitrate/NO ₃
	(d)				ANNOTATIONS MUST BE USED
			In phenol, (lone) pair of electrons on O is (partially) delocalised into		ALLOW diagram to show movement of lone pair into
			the ring \checkmark		ring but delocalised ring must be mentioned
			QWC: delocalised/delocalized/delocalise, etc must be spelt		ALLOW lone pair of electrons on O is (partially) drawn/
			correctly in the correct context for benzene OR phenol at		attracted/pulled into delocalised ring
			least once		IGNORE activates the hing
			electron density increases/is high ✓ ORA		DO NOT ALLOW charge density or electronegativity
			Cl₂/electrophile is (more) polarised ✓ ORA	3	ALLOW Cl ₂ is (more) attracted
					OR Cl ₂ is not polarised by benzene
			Ta4a1	40	OR induces dipoles (in chlorine/electrophile)
			lotal	13	

Qı	Question		Expected Answers	Marks	Additional Guidance
4	а		Bond length intermediate between/different from (short) C=C and (long) C–C \checkmark ΔH hydrogenation less exothermic than expected (when compared to ΔH hydrogenation for cyclohexene) \checkmark Only reacts with Br ₂ at high temp or in presence of a halogen carrier / resistant to electrophilic attack \checkmark Please annotate, use ticks to show where marks are awarded	3	ALLOW all carbon–carbon bonds the same length ALLOW ΔH hydrogenation less (negative) than expected ALLOW ΔH hydrogenation different from that expected DO NOT ALLOW ΔH halogenation/hydration ALLOW doesn't decolourise/react with/polarise Br ₂ ALLOW doesn't undergo addition reactions (with Br ₂)
	b	1	compound A ↓ NO ₂ if NO ₂ in wrong position penalise here and ECF for rest of b(i) and b(ii) ✓ compound B ↓ NH ₂ ↓ compound C ↓ NH ₂ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	4	ALLOW any 4-nitro-1,3-dimethylbenzene drawn in any orientation ALLOW $\downarrow \downarrow \downarrow \downarrow$ $\downarrow \downarrow \downarrow$ $\downarrow \downarrow$ \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow

Question	Expected Answers	Marks	Additional Guidance
ii	<u>mark 1</u> HNO ₃ + 2H ₂ SO ₄ \rightarrow H ₃ O ⁺ + 2HSO ₄ ⁻ + NO ₂ ⁺ \checkmark		Equation to show formation of NO ₂ ⁺ ion \checkmark ALLOW HNO ₃ + H ₂ SO ₄ \rightarrow H ₂ O + HSO ₄ ⁻ + NO ₂ ⁺ HNO ₃ + H ₂ SO ₄ \rightarrow HSO ₄ ⁻ + H ₂ NO ₃ ⁺ \rightarrow H ₂ O + NO ₂ ⁺
If NO ₂ is in correct position do not penalise even if compound A in b(i) is not in correct position	$\underbrace{\underline{mark 4}}_{\text{to reform } \pi \text{ ring } \underline{AND}}_{\text{correct products }} \checkmark$	5	ALLOW mark 2 curly arrow must be from 1,3- dimethylbenzene to NO ₂ ⁺ and ECF for marks 3 and 4 DO NOT ALLOW intermediate π -ring must be more than $\frac{1}{2}$ + $\frac{1}{2}$ + $\frac{1}{2}$
	mark 2 arrow from π ring to ${}^{+}NO_{2}\checkmark$ mark 3 intermediate with π ring broken in the correct place \checkmark Link to compound A in part (i) - cannot score full marks [in b(i) & b(ii)] if NO ₂ is not adjacent to a methyl		ALLOW CH ₃ s shown ALLOW H ₃ O ⁺ + HSO ₄ ⁻ \rightarrow H ₂ O + H ₂ SO ₄
	2√	1	No other correct response
	- -		
	lotal	13	