

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme

Suitable for all boards

Designed to test your ability and thoroughly prepare you

Time allowed **98 Minutes**

2002

CHEMISTRY

OCR AS & A LEVEL

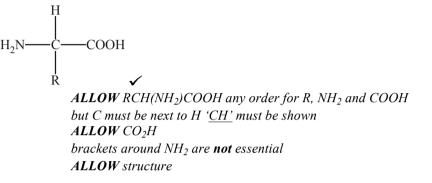
Mark Scheme

Module 6: Organic chemistry and analysis

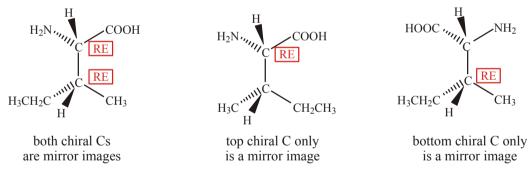
Percentage

%

www.exampaperspractice.co.uk


Score

/82

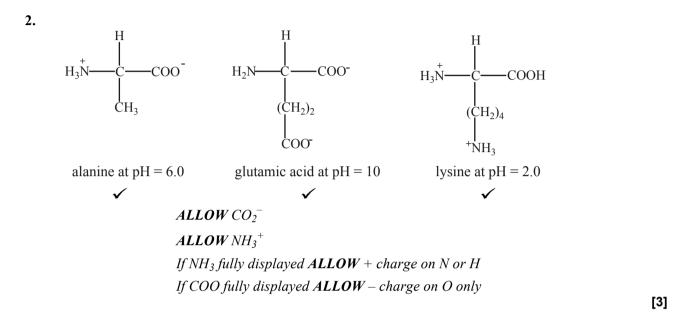

F324: Rings, Polymers & Analysis 4.2.1 – Amino Acids & Chirality MARK SCHEME

1. (i)

(ii) must attempt 3D

use <u>RE</u> symbol in the "tools" to denote whether or not each chiral C is a reflection of the one given in the question

each chiral C must have 2 — bonds, 1 wedge bond (**IGNORE** shading) & 1 dash bond (**IGNORE** wedge) check the clockwise orientation of each C. For each C start with the H and if on the:


- top C the H is followed by COOH it is not a mirror image. If it is a mirror image annotate using RE.
- bottom C the H is followed by CH₃ it is not a mirror image. If it is a mirror image annotate using RE.

the four groups can be attached in any order. If the molecule is drawn upside down – clockwise becomes anti-clockwise. **MUST** check that the drawn structure is non-superimposable irrespective of the orientation or the way it has been drawn. **IGNORE** bond linkage for all groups

[4]

3

3. valine–glycine–leucine \checkmark

ALLOW val-gly-leu DO NOT ALLOW structures

4. (i) one amide link shown correctly (1) glycine and phenylalanine parts shown correctly (1) proline linked correctly (1)
(ii) 6 (1)
(iii) gas/liquid chromatograph separates the tripeptides (1) mass spectrometer produces a distinctive fragmentation pattern (1) identification by computer using a spectral database (1)

[1]

5. General formula of an α -amino acid

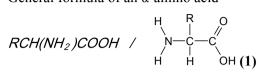
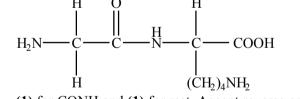


Diagram to show length of polypeptide / repeat unit – eg

with:

displayed peptide bond (1)

correct structure with a minimum of two amino acids joined (can be scored by a dipeptide) (1)


idea of polymerisation shown by 'end bonds' (1)

loss of water (1)

relate variety to different R groups / sequence of amino acids (1) AW

Quality of written communication: correct organisation and use of **both** of the terms: condensation polymer(isation) and peptide bond/link (1)

6.

(1) for CONH and (1) for rest. Accept reverse order.

[2]

[8]

7

1

2

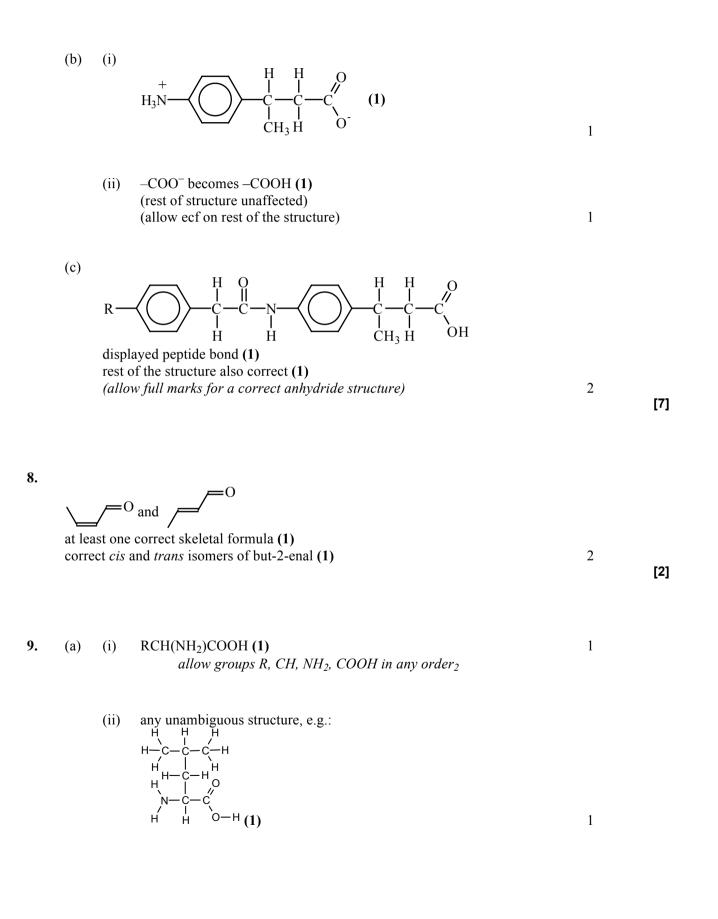
1

2

7.

(a)

(i)


is an amine and a carboxylic acid / contains both NH2 and COOH functional groups (1) AW

(ii) RCH(NH₂)COOH (1)

Does not fit the formula because NH_2 and COOH are not attached to the same carbon (1) AW

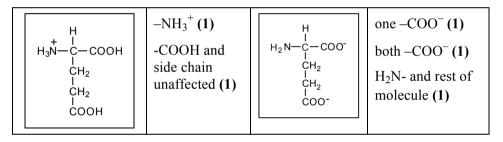
For more help please visit our website www.exampaperspractice.co.uk

For more help please visit our website www.exampaperspractice.co.uk

	(b)	(i)	molecule/ion/'it' has both + and – charges	1
		(ii)	description or diagram to show proton/H ⁺ transfer from COOH to NH ₂ (1) H_{-N-C-C}^{+1} H_{-N-C-C}^{-1} H_{-H}^{-1} (1) <i>NOT just 'hydrogen' transfer</i>	2
	(c)	(i)	heat/warm/reflux (1) named strong acid/base an enzyme (which need not be named) (1) NOT conc HNO ₃ or conc H ₂ SO ₄	2
		(ii)	hydrolysis (1)	1 [8]
10.	(i)	о С– НО	ноно - I I* // - C С С I I н н ^{ОН} (1)	1
	(ii)	C I	ure with correct use of at least two 3-D bonds (1) – e.g. CH_2COOH CH_2COOH HO	1 [2]
11.	(a)		e / C=C double bond ary) alcohol / hydroxy(l) (1)	1
	(b)	(i)	molecules with the same structure / order of bonds but different arrangements in space / 3-D arrangment (1)	1
		(ii)	cis-trans / geometric (1)	1
		(iii)	the double bond does not rotate (1)	1

For more help please visit our website www.exampaperspractice.co.uk

(iv) same groups at one end / need different groups at both ends of the C=C (1) AW


12. (a) (i)
$$H_2NCHRCOOH / H_2N - \stackrel{R}{c} - \operatorname{COOH}(1)$$

allow R CH NH₂ and COOH in any order

(ii) they both have the $H_2N - \dot{c} - COOH$ group / or in words (1) H NOT just "they both have NH_2 and COOH"

_

R group is H in glycine and CH_2CH_2COOH in glutamic acid (1) 2

(b)

5

[5]

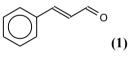
1

... is <u>chiral (1)</u>

... the mirror images/isomers cannot be superimposed AW (1)

one diagram showing **two** 3-D bonds not opposite each other, and not with angles looking like 90° (1)

3-D diagram of the other isomer (allow ecf on one 3-D error) (1)


all groups correctly connected for glutamic acid in both diagrams (1)

glycine

only has three different groups / two groups are the same / 3-D diagram used to show symmetry (1)

quality of written communication

for correct use and organisation of at least **one** technical term: *(in the correct place), non-superimposable, enantiomer, stereoisomer(ism), tetrahedral, assymetric (1)

(b)	C=C double bond does not rotate (1)	
	two different groups on each carbon (of the C=C) AW (1)	2
	NOT on "each side" of the $C=C$	

- i. trans because H / groups are on opposite sides AW (1)
- ii. any formula that shows the H on the same side eg

[5]

[16]

14. (i) water / evidence of a solution in water – eg (aq), 'dil', '6M' or ' conc' for HCl (1) *NOT conc HNO*₃ *or conc H*₂SO₄

a named strong acid or alkali (heated under) reflux / a suitable enzyme at around 37°C (1)

2

8

1

1

^{...} has four different / distinguishable groups attached to a carbon (1) NOT just "different atoms"

structure of benzene-1,4-dicarboxylic acid (1) amide /peptide bond displayed (1) repeat unit of correct polymer indicated (1) formula of water shown as the product in an equation (1)

[6]