

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme

Suitable for all boards

Designed to test your ability and thoroughly prepare you

CHEMISTRY

AQA AS & A LEVEL

Mark Scheme

3.3 Organic chemistry

www.exampaperspractice.co.uk

1 (a)	Wear plastic gloves: Essential – to prevent contamination from the hands to the plate Add developing solvent to a depth of not more than 1 cm³:	1
	Essential – if the solvent is too deep it will dissolve the mixture from the plate	1
	Allow the solvent to rise up the plate to the top:	
	Not essential – the $R_{\mbox{\tiny f}}$ value can be calculated if the solvent front does not reach the top of the plate	1
	Allow the plate to dry in a fume cupboard:	
	Essential – the solvent is toxic Allow hazardous	1
(b)	Spray with developing agent or use UV	1
	Measure distances from initial pencil line to the spots (x)	1
	Measure distance from initial pencil line to solvent front line (y)	1
	R_{f} value = x / y	1
(c)	Amino acids have different polarities	1
	Therefore, have different retention on the stationary phase or different solubility in the developing solvent	1

[10]

(a) 2,6-diaminohexanoic acid

Ignore additional, or – or spaces.

1

(b) (i)
$$H_{3}N(CH_{2})_{4}-C-COOH_{1}+NH_{3}$$
 (2Cl⁻)

NB both N must be protonated.

Allow -NH₃⁺ allow CO₂H Allow -⁺H₃N.

Penalise – C₄H₈ – here.

(ii) $\begin{array}{c} H_2N(CH_2)_4 - C - COO \\ NH_2 & (Na^+) \end{array}$ Allow CO_2^- .

Allow −H₂N.
Allow −COONa but penalise O–Na bond shown.

(iii) $\begin{array}{c} H \\ H_2N(CH_2)_4 - \overset{-}{C} - COOCH_3 \\ NH_2 \end{array}$

Allow CO_2CH_3 . Allow $-NH_3^+$ or $-H_2N$.

(c) $\begin{bmatrix} CH_3 \\ H-C-COOH \\ NH_2 \end{bmatrix} + \bullet \qquad H-C-H \\ \rightarrow \qquad H-C+ \qquad + \quad COOH$

1 for displayed formula of fragment ion.

1 for molecular ion of alanine AND radical.

Allow molecular ion without brackets and fragment ion in brackets with outside +.

Allow dot anywhere on radical.

Allow $[C_3H_7NO_2]$ + for molecular ion.

2

1

(d)

OR

OR

Dipeptide, not repeating unit /.
Allow CO₂H Allow –H₂N.
Allow –CONH–.

(e) M1 In acid lysine has double positive or more positive charge

M2 (Lysine ion) has greater affinity / greater attraction / adheres better / sticks better to polar / stationary phase

M2 only scores after a correct M1.

Ignore greater retention time.

[9]

1

1

(d)

Allow -NH₃+ and +NH₃-

1 (b)

$$H_3C$$
— C — $COOCH_3$
 NH_2

Allow protonated form, i.e. ¬NH₃+ or +NH₃-

(c)

 $Allow - CO_2^-$

Allow zwitterion with any COO-

[4]

1

4 (a)

(b)

1

1

(c)

(d) 2-amino-3-hydroxybutanoic acid

1

(e)
$$\begin{picture}(60,0) \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0)$$

re.

1

[5]

(a) 3-hydroxypropanoic acid

allow 3-hydroxypropionic acid

must be correct spelling

1

(b) (i) must show trailing bonds

or can start at any point in the sequence, e.g.

not allow dimer

allow -O-CH2CH2COOCH2CH2CO-

or -CH₂CH₂COOCH₂CH₂COO-

ignore () or n

NB answer has a total of 6 carbons and 4 oxygens

- (ii) condensation (polymerisation)

 Allow close spelling
- (c) (i) C=C or carbon-carbon <u>double</u> bond

1

1

(ii)

must show ALL bonds including O-H

1

(iii) must show trailing bonds

allow polyalkene conseq on their c(ii) ignore n

1

(d)

allow NH₃⁺ allow COO⁻

1

(e) (i)

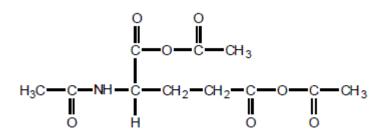
In (e), do not penalise a slip in the number of carbons in the -CH₂CH₂- chain, but all must be bonded correctly NB two carboxylate groups
Allow COONa or COO- Na⁺ but not covalent bond to Na

1

(ii)

allow NH₂-

OR


In (e), do not penalise a slip in the number of carbons in the -CH₂CH₂- chain, but all must be bonded correctly NB two ester groups allow NH₂- or ⁺NH₃-

1

(iii)

In 4(e), do not penalise a slip in the number of carbons in the -CH₂CH₂- chain, but all must be bonded correctly allow anhydride formation on either or both COOH groups (see below) with or without amide group formation

(f) **M1** phase or eluent or solvent (or named solvent) is moving or mobile

1

1

M2 stationary phase or solid or alumina/silica/resin

1

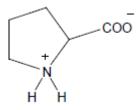
M3 separation depends on balance between solubility or affinity (of compounds) in each phase

ÒR

different adsorption or retention

OR

(amino acids have) different R_f values

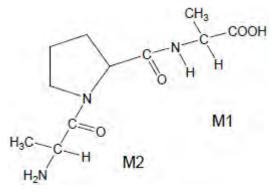

OR

(amino acids) travel at different speeds or take different times

[13]

Allow CO₂ and NH₂+

(ii) NOTE - Two marks for this clip


M1 for alanine section bonded through N M2 for alanine section bonded through C But penalise error in proline ring 1

1

1

1

1

Allow MAX 1 for correct tripeptide in polymer structure

(b) (i) <u>3-methylpent-2-ene</u>

Ignore E-Z, commas, spaces or missing hyphens

(ii) <u>4-amino-3-methylbutanoic acid</u> *Ignore commas, spaces or missing hyphens*

ignore commue, epaces or imaging hypricine

(iii)

or any polyamide section containing 8 carbons plus two C=O plus two N-H, such as

$$\begin{array}{c|c} -C - \left(CH_2\right)_4 & C - N - \left(CH_2\right)_4 & N - \\ O & O & H & H \end{array}$$

Trailing bonds are required

1

- (iv) Non polar OR no polar groups / bonds (for attack by water / acids / alkalis / nucleophiles or for hydrolysis)
 - C-C bonds are strong

1

[7]

$$H_2N$$
 CH_3
 CH_3
 CH_3
 CH_2N
 CH_3
 CH_2N
 CH_3
 CH_2N
 CH_2N
 CH_2N
 CH_3
 CH_3
 CH_2N
 CH_3
 C

(ii)

Allow - NH₃+ and +NH₃₋

(iii) 2-amino-3-hydroxybutanoic acid

Ignore 1 in butan-1-oic acid

Do not penalise commas or missing hyphens Penalise other numbers

(iv)

Allow –NH₃+ and +NH₃-

1

1

1

(b) Condensation (i) Allow polyester

1

(ii) propane-1,3-diol

Must have e

Allow 1,3-propanediol

1

(c) (i) Addition

Not additional

1

(ii)

Allow monomers drawn either way round Allow bond to F in CF₃

1

OR

1 for each structure within each pair

1

(d) С

If wrong, CE = 0

1

C-C or C-F bonds too strong

1 [11]