

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme

Suitable for all boards

Designed to test your ability and thoroughly prepare you

Maths

AQA AS & A LEVEL

Mark Scheme

3.3 B: Algebra and functions

www.exampaperspractice.co.uk

1(a)(i)	f(1) = 0	B1	1	
(ii)	f(-2) = -24 + 8 + 14 + 2 = 0	B1	1	
(iii)	$\frac{(x-1)(x+2)}{3x^3+2x^2-7x+2} = \frac{(x-1)(x+2)}{(x-1)(x+2)(ax+b)}$	B1		Recognising $(x-1)$, $(x+2)$ as factors PI
	$ax^3 = 3x^3 \qquad -2b = 2$ $a = 3 \qquad b = -1$	B1 B1	3	a b Or By division M1 attempt started M1 complete division
				A1 Correct answers
(b)	Use $\frac{1}{3}$	B1		
	Use $\frac{1}{3}$ $3\left(\frac{1}{3}\right)^3 + 2\left(\frac{1}{3}\right)^2 - 7 \times \frac{1}{3} + d = 2$	M1		Remainder Th ^M with $\pm \frac{1}{3}, \pm 3$
	d=4	A1F	3	Ft on $-\frac{1}{3}$ (answer $-\frac{4}{9}$)
	T-4-1		8	Or by division M1 M1 A1 as above
	Total	l	8	

5(c)	$2x^2 - 3 =$			
	$A(1-x)^2 + B(3-2x)(1-x) + C(3-2x)$	M1		Or by equating coefficients
	$x=1$ $-1=C\times 1$ $x=\frac{3}{2}$ $\frac{3}{2}=A\times \frac{1}{4}$	M1		M1 same A1 collect terms M1 equate coefficients A1 2 correct A1 3 correct
	C = -1 $A = 6x = 0$ $(-3 = 6 + 3B - 3)$	A1		Follow on A and C
	or other value \Rightarrow equation in A, B, C	m1		
	B = -2	A1	5	

1 (a)(i)	p(2) = 0	B1	1	
(ii)	See $-\frac{1}{2}$	B1		
	$p\left(-\frac{1}{2}\right) = 6 \times \left(-\frac{1}{8}\right) - 19 \times \frac{1}{4} + 9\left(-\frac{1}{2}\right) + 10$ $= 0$	M1 A1	3	Use $\pm \frac{1}{2}$ Arithmetic to show = 0 and conclusion. Long division : $0/3$
(iii)	p(x) = (2x+1)(x-2)(3x-5)	B1 B1	2	x-2 Complete expression
(b)	$\frac{3x(x-2)}{(2x+1)(x-2)(3x-5)}$	M1		For $\frac{3x(x-2)}{\text{their (a)(iii)}}$
	$= \frac{3x}{(2x+1)(3x-5)}$	A1	2	$Or \frac{3x}{6x^2 - 7x - 5} \qquad \text{No ISW on A1}$
	Total		8	

3(a)	$9x^{2} - 6x + 5$ $= 3(3x - 1)(x - 1) + A(x - 1) + B(3x - 1)$ $x = 1 \qquad x = \frac{1}{3}$ $B = 4 \qquad A = -6$	B1 M1 A1A1	4	Or $3 + \frac{6x + 2}{(3x - 1)(x - 1)}$ Substitute $x = 1$ or $x = \frac{1}{3}$ Or equivalent method (equating
(b)	$\int = \int 3 - \frac{6}{3x - 1} + \frac{4}{x - 1} \mathrm{d}x$	M1		coefficients, simultaneous equations) Attempt to use partial fractions
	=3x	B1		
	$-2\ln(3x-1)+4\ln(x-1)(+c)$	M1		$p\ln(3x-1) + q\ln(x-1)$
		A1F	4	Condone missing brackets Follow through on A and B; brackets needed.
	Total		8	

2(a)	$f\left(\frac{3}{2}\right) = 2\left(\frac{3}{2}\right)^3 - 7\left(\frac{3}{2}\right)^2 + 13$	M1		Substitute $\pm \frac{3}{2}$ in $f(x)$
	= 4	A1	2	
(b)	$g\left(\frac{3}{2}\right) = 0 \Rightarrow d + 4 = 0 \Rightarrow d = -4$	M1A1	2	AG (convincingly obtained) SC Written explanation with $g\left(\frac{3}{2}\right) = 0$ not seen/clear E2,1,0
(c)	a=-2, $b=-3$	B1, B1	2	Inspection expected By division: M1 – complete method A1 CAO Multiply out and compare coefficients: M1 – evidence of use A1 – both a and b correct
	Total		6	

4(a)(i)	3x-5 4			By division:
	$\frac{3x-5}{x-3} = 3 + \frac{4}{x-3}$	B1, B1	2	B1 for 3, B1 for $\frac{4}{x-3}$ or $B=4$
				By partial fractions: M1 multiply by $x - 3$ and using 2 values of x , A1 both correct
(ii)	$\int 3 + \frac{4}{x-3} dx = 3x + 4\ln(x-3)(+c)$	M1A1F	2	$M1 \int 3 + \frac{4}{x-3} dx$ and attempt at integrals
				ft on A and B ; condone omission of brackets around $x - 3$
	Alternative: By substitution $u = x - 3$			
	$\int \frac{3x - 5}{x - 3} \mathrm{d}x = \int \frac{3u + 4}{u} \mathrm{d}u$	(M1)		Integral in terms of u
	$=3(x-3)+4\ln(x-3)$	(A1)		Correct, in x
(b)(i)	6x - 5 = P(2x - 5) + Q(2x + 5)	M1		Clear evidence of use of cover-up rule M2
	$x = \frac{5}{2}$ $x = -\frac{5}{2}$	m1		
	10 = 10Q $-20 = -10P$			
	Q = 1 P = 2	A1	3	
(ii)	$\int \frac{2}{2x+5} + \frac{1}{2x-5} \mathrm{d}x$	M1		Aireless Network Connection is now connected cted to: OVA-STAFF
1	$\ln(2x+5) + \frac{1}{2}\ln(2x-5)(+c)$	M1 A1F	3	ft on P and Q ; must have brackets

1(a)	$2\left(-\frac{1}{2}\right)^2 + \left(-\frac{1}{2}\right) - 3 = -3$	M1A1	2	use of $\pm \frac{1}{2}$ SC NMS -3 1/2
	Alt algebraic division:			No ISW, so subsequent answer "3" AO
	$2x+1)2x^{2}+x-3$ $\frac{2x^{2}+x}{-3}$	(M1)		complete division with integer remainder
		(A1)	(2)	remainder = -3 stated, or -3 highlighted
	$\frac{x(2x+1)-3}{2x+1}$	(M1)		attempt to rearrange numerator with $(2x+1)$ as a factor
		(A1)	(2)	remainder = -3 stated, or -3 highlighted
	$\frac{(2x+3)(x-1)}{(x+1)(x-1)}$ $= \frac{2x+3}{x+1}$	B1 B1	3	numerator denominator not necessarily in fraction CAO in this form. Not $\frac{2x+3}{x+1}$
	Alternative $\frac{2x^2 - 2 + x - 1}{x^2 - 1}$			
	$= 2 + \frac{x-1}{x^2 - 1}$	(M1)		
	$= 2 + \frac{x-1}{(x-1)(x+1)}$	(B1)		
	$=2+\frac{1}{x+1}$	(A1)	(3)	
-	Total		5	

(b)
$$\frac{1+4x}{(1+x)(1+3x)} = \frac{A}{1+x} + \frac{B}{1+3x}$$

$$1+4x = A(1+3x) + B(1+x)$$

$$x = -1, x = -\frac{1}{3}$$

$$A = \frac{3}{2}, B = -\frac{1}{2}$$
Alt:
$$\frac{1+4x}{(1+x)(1+3x)} = \frac{A}{1+x} + \frac{B}{1+3x}$$

$$1+4x = A(1+3x) + B(1+x)$$

$$A = \frac{1}{3}, B = \frac{A}{1+x} + \frac{B}{1+3x}$$

$$1+4x = A(1+3x) + B(1+x)$$

$$A+B=1, 3A+B=4$$

$$A = \frac{3}{2}, B=-\frac{1}{2}$$
(M1) Set up and solve
$$A = \frac{3}{2}, B=-\frac{1}{2}$$
(M1) (3) A and B both correct