

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme

Suitable for all boards

Designed to test your ability and thoroughly prepare you

Time allowed **71 Minutes**

2002

CHEMISTRY

OCR AS & A LEVEL

Mark Scheme

Module 5: Physical chemistry and transiton elements

Percentage

%

www.exampaperspractice.co.uk

Score

/59

Question		ion	er	Mark	Guidance
1	(a)	(i)	proton donor 🗸	1	ALLOW H ⁺ donor
		(ii)	(the proportion of) dissociation ✓		ALLOW a weak acid partly dissociates ALLOW a strong acid totally dissociates ALLOW ionisation for dissociation ALLOW the ability to donate a proton
			Correct equation for any of the four acids: $C_6H_5COOH \Rightarrow H^+ + C_6H_5COO^-$ OR $CH_3COOH \Rightarrow H^+ + CH_3COO^-$ OR $CH_3COCOOH \Rightarrow H^+ + CH_3COCOO^-$ OR $CH_3CHOHCOOH \Rightarrow H^+ + CH_3CHOHCOO^- \checkmark$	rrect equation for any of the four acids: $H_5COOH \Rightarrow H^+ + C_6H_5COO^-$ $CH_3COOH \Rightarrow H^+ + CH_3COO^-$ $CH_3COCOOH \Rightarrow H^+ + CH_3COCOO^-$ $CH_3CHOHCOOH \Rightarrow H^+ + CH_3CHOHCOO^- \checkmark$ 2	Equilibrium sign required ALLOW equilibria involving H ₂ O and H ₃ O ⁺ e.g. C ₆ H ₅ COOH + H ₂ O \Rightarrow H ₃ O ⁺ + C ₆ H ₅ COO ⁻ , etc DO NOT ALLOW HA \Rightarrow H ⁺ + A ⁻
		(iii)	weakest: CH_3COOH acetic acid C_6H_5COOH benzoic acid $CH_3CHOHCOOH$ lactic acidstrongest: $CH_3COCOOH \checkmark$ pyruvic acid	1	ALLOW correct order using any identifier from the table, <i>ie</i> , common name, systematic name, structural formula OR p <i>K</i> _a value
		(iv)	C ₆ H₅COOH ₂ ⁺ + CH ₃ CHOHCOO ⁻ ✓	1	BOTH products AND correct charges required for mark Mark ECF from incorrect order in (iii) See response from (iii) below response to (iv)

Question	er	Mark	Guidance
(b) (i)	$2CH_3COCOOH + Ca(OH)_2 \rightarrow (CH_3COCOO)_2Ca + 2H_2O\checkmark$ Note: pyruvic acid must have been used here and formula of pyruvic acid and pyruvate must be correct	1	All species AND balancing required for the mark ALLOW $(CH_3COCOO^-)_2Ca^{2+}$ ALLOW equation showing $2CH_3COCOO^- + Ca^{2+}$ IF charges shown, charges must balance, e.g. DO NOT ALLOW $(CH_3COCOO^-)_2Ca$ IGNORE state symbols if shown ALLOW multiples ALLOW equilibrium sign
(ii)	$H^+ + OH^- \longrightarrow H_2O$	1	ALLOW multiples but not same species on both sides ALLOW equilibrium sign IGNORE state symbols if shown ALLOW $H_3O^+ + OH^- \longrightarrow 2H_2O$ ALLOW $CH_3COCOOH + OH^- \longrightarrow CH_3COCOO^- + H_2O$
(c)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 2.11, award 4 marks $\mathcal{K}_{a} = 10^{-pKa}$ $= 10^{-2.39} \text{ OR } 0.00407 \checkmark$ $\mathcal{K}_{a} = \frac{[H^{+}][CH_{3}COCOO^{-}]}{[CH_{3}COCOOH]} \text{ (ALLOW use of HA,H^{+} and A^{-})}$ $OR [H^{+}] = \sqrt{(\mathcal{K}_{a} \times [HA])}$ $OR [H^{+}] = \sqrt{0.00407 \times 0.0150} \checkmark$ $(subsumes 1st marking point)$ $[H^{+}] = 0.00782 \text{ (mol dm}^{-3}) \checkmark$ $pH = -\log 0.00782 = 2.11 \checkmark$	4	 IF there is an alternative answer, check to see if there is any ECF credit possible using working below IF ECF, ANNOTATE WITH TICKS AND CROSSES, etc ALLOW 0.0041 to calculator value: 0.004073802 IF the pKa of a different weak acid has been used use ECF from 2nd marking point ALLOW 0.0078 to calculator value (depending on previous rounding) ALLOW ONLY 2.11 (This is to take into account poor previous rounding) IF candidate has used 0.0150 mol dm⁻³ (<i>ie</i> assumes strong acid) ALLOW final mark ONLY by ECF for a pH of 1.82 IF no square root used, pH = 4.21 3 marks

Question	er	Mark	Guidance
(e)	Chemicals (1 mark) lactic acid / CH ₃ CHOHCOOH AND (sodium) lactate / CH ₃ CHOHCOO ⁻ (Na ⁺) ✓		ANNOTATE WITH TICKS AND CROSSES, etc ALLOW any lactate salt ALLOW lactic acid AND NaOH OR lactic acid AND OH ⁻
	Concentrations (4 marks)		FOR ALTERNATIVE using Henderson–Hasselbalch equation, SEE PAGE 11
			If another weak acid has been selected and salt has been selected, allow ECF for remainder of question SEE PAGE 12
	EITHER $[H^{+}(aq)] = 10^{-3.55}$ OR 2.8 x 10^{-4} OR 2.82 x 10^{-4} (mol dm ⁻³) \checkmark separate marking point		ALLOW 2.8 x 10^{-4} up to calculator value of 2.81838 x 10^{-4} ALLOW 0.00028, etc
	$K_{\rm a} = 10^{-3.86}$ OR 1.4 x 10 ⁻⁴ OR 1.38 x 10 ⁻⁴ (mol dm ⁻³)		ALLOW 1.4 x 10^{-4} up to calculator value of 1.38038 x 10^{-4} ALLOW 0.00014, etc
	separate marking point $\frac{[HA]}{[A^-]} = \frac{[H^+]}{K_a} OR \frac{[A^-]}{[HA]} = \frac{K_a}{[H^+]} \checkmark$		ALLOW use of CH ₃ CHOHCOOH AND CH ₃ CHOHCOO ⁻ (Na ⁺) ALLOW use of acid AND salt ALLOW value from $\frac{\text{calculated value of } [\text{H}^+]}{\text{calculated value of } K_a}$
	$\frac{[\text{HA}]}{[\text{A}^-]} = \frac{2.8 \times 10^{-4}}{1.4 \times 10^{-4}} \text{ OR } \frac{2}{1} \text{ OR } 2 \text{ OR } \frac{[\text{A}^-]}{[\text{HA}]} = \frac{0.5}{1} \text{ OR}$		ALLOW 2SF up to calculator value of 2.041742129 correctly rounded but ALLOW 2 if 2.8×10^{-4} and 1.4×10^{-4} used ALLOW 2 mol dm ⁻³ HA AND 1 mol dm ⁻³ A ⁻ OR any concentration ratio of 2(acid) : 1(salt)
	This marking point subsumes previous marking point ONLY		ALLOW 2SF up to calculator value of 0.489778819 correctly rounded but ALLOW 0.5 if 2.8 x 10^{-4} and 1.4 x 10^{-4} used
	Comment (1 mark) Magic tang/taste could come from other chemicals/substances in the sweet OR The buffer would have the same taste/tang as the	6	
	magic tang ✓		

Question	er	Mark	Guidance
	ALTERNATIVE approach for concentrations using Henderson–Hasselbalch equation (4 marks) $pH = pK_a + \log \frac{[A^-]}{[HA]}$ OR $-\log K_a + \log \frac{[A^-]}{[HA]}$ \checkmark		ALLOW use of CH ₃ CHOHCOOH AND CH ₃ CHOHCOO ⁻ (Na ⁺) ALLOW use of acid AND salt ALLOW pH = $pK_a - log \frac{[HA]}{[A^-]}$ OR $-log K_a - log \frac{[HA]}{[A^-]}$
	$\log \frac{[A^-]}{[HA]} = 3.55 - 3.86 \checkmark \text{ (subsumes previous mark)}$ $\log \frac{[A^-]}{[HA]} = -0.31 \checkmark \text{ (subsumes previous mark)}$		ALLOW $\log \frac{[HA]}{[A^-]} = 3.86 - 3.55$ (subsumes previous mark) ALLOW $\log \frac{[HA]}{[A^-]} = 0.31$ (subsumes previous mark)
	$\frac{[A^-]}{[HA]} = 10^{-0.31} = \frac{0.490}{1} \text{ OR } 0.490 \checkmark$		ALLOW $\frac{[HA]}{[A^-]} = 10^{0.31} = \frac{2.04}{1}$ OR $\frac{2}{1}$ OR 2 For $\frac{[A^-]}{[HA]}$, ALLOW 2 SF up to calculator value of 0.48978819 For $\frac{[HA]}{[A^-]}$, ALLOW 2 SF up to calculator value of 2.041737945 but ALLOW 2 if $10^{-0.31}$ used

Question	er		Mark Guidan	ce			
(e)	SUMMARY OF 4(e) MARKING POINTS FOR EACH POSSIBLE ACID CHOSEN FIRST, CHECK THE ANSWER ON ANSWER LINE: IF answer is correct for weak acid chosen, award MP2–MP5 IF there is an alternative answer, check to see if there is any ECF credit possible using working below						
		lactic	yruvic	acetic	benzoic		
	р <i>К</i> а	3.86			4.19		
	MP1	lactic AND lactate OR lactic acid AND OH⁻	No mark	No mark	No mark		
	MP2: [H ⁺]		10 ^{-3.55} OR 2.82 x 10	⁻⁴ (calc : 2.81838 x 10 ⁻⁴)			
	MP3: <i>K</i> a	10 ^{-3.86} OR 1.38 x 10 ⁻⁴	10 ^{-2.39} OR 4.07 x 10 ⁻³	10 ^{-4.76} OR 1.74 x 10 ⁻⁵	10 ^{-4.19} OR 6.46 x 10 ⁻⁵		
	calc:	1.380384265 x 10 ⁻⁴	4.073802778 x 10 ⁻³	1.737800829 x 10 ⁻⁵	6.45654229 x 10 ⁻⁵		
	MP4: ratio expression	$\frac{[HA]}{[A^-]} = \frac{[H^+]}{K_a} \qquad OR \qquad \frac{[A^-]}{[HA]} = \frac{K_a}{[H^+]}$					
	MP5: [HA] [A ⁻]	$\frac{2.82 \times 10^{-4}}{1.38 \times 10^{-4}} \text{ OR } 2.04$	$\frac{2.82 \times 10^{-4}}{4.07 \times 10^{-3}} \text{ OR } 0.0693$	$\frac{2.82 \times 10^{-4}}{1.74 \times 10^{-5}} \text{ OR } 16.2$	$\frac{2.82 \times 10^{-4}}{6.46 \times 10^{-5}} \text{ OR } 4.37$		
	calc:	2.041737945	calc: 0.069183097	calc: 16.21810097	calc: 4.365158322		
	OR $\frac{[A^-]}{[HA]}$	$\frac{1.38 \times 10^{-4}}{2.82 \times 10^{-4}} \text{ OR } 0.489$	$\frac{4.07 \times 10^{-3}}{2.82 \times 10^{-4}} \text{ OR } 14.4$	$\frac{1.74 \times 10^{-5}}{2.82 \times 10^{-4}} \text{ OR } 0.0617$	$\frac{6.46 \times 10^{-5}}{2.82 \times 10^{-4}} \text{ OR } 0.229$		
	calc:	0.489778819		0.0616595	0.229086765		
	TAKE CARE: Calc values are completely unrounded and may differ between brands of calculator Use actual candidate values at each stage using rounding to 2 or more SF. MP5: calculated using 3 SF from MP2 and MP3 calc values for MP5 are completely unrounded (using calculator values from MP2 and MP3) Be slightly flexible as candidates may have written down rounded values but carried on with calculator values						
	- This appr ach is A	ACCEPTABLE					
			Total 20				

Qu	esti	on	Expected Answers	Marks	Additional Guidance
2	а			4	ALLOW C ₂ H ₅ throughout question
			measured pH > 1 OR [H ⁺] < 0.1 (mol dm ⁻³) ✓		ALLOW $[H^+] < [CH_3CH_2COOH]$ OR $[H^+] < [HA]$ ALLOW measured pH is higher than expected ALLOW measured pH is not as acidic as expected ALLOW a quoted pH value or range > 1 and < 7 OR between 1 and 7
			$[H^+] = 10^{-pH} \checkmark$		ALLOW [H ⁺] = antilog –pH OR [H ⁺] = inverse log –pH
			$K_{a} = \frac{[H^{+}][CH_{3}CH_{2}COO^{-}]}{[CH_{3}CH_{2}COOH]} \mathbf{OR} \frac{[H^{+}]^{2}}{[CH_{3}CH_{2}COOH]} \mathbf{V}$		ALLOW $[H^+][A^-]$ OR $[H^+]^2$ [HA] [HA]
			Calculate K_{a} from $\frac{[H^+]^2}{0.100}$ \checkmark		IF K_a is NOT given and $K_a = \frac{[H^+]^2}{0.100}$ is shown, award mark for K_a also
					(i.e. $K_a = \frac{[H^+]^2}{0.100}$ is automatically awarded the last 2 marks)
	b		Marks are for correctly calculated values. Working shows how values have been derived.	2	ALLOW 3.467368505 × 10^{-14} and correct rounding to 3.5 × 10^{-14}
			$[H^+] = 10^{-13.46} = 3.47 \times 10^{-14} \text{ (mol dm}^{-3}) \checkmark$		ALLOW 0.28840315 and correct rounding to 0.29, i.e. ALLOW 0.288
			$[OH^{-}] = \frac{1.0 \times 10^{-14}}{3.47 \times 10^{-14}} = 0.29 \text{ (mol dm}^{-3}) \checkmark$		ALLOW alternative approach using pOH:
					$pOH = 14 - 13.46 = 0.54 \checkmark$ $[OH^{-}] = 10^{-0.54} = 0.29 \text{ (mol dm}^{-3}) \checkmark$
					Correct answer gets BOTH marks

Question	Expected Answers	Marks	Additional Guidance
C	Propanoic acid reacts with sodium hydroxide forming propanoate ions/sodium propanoate OR $CH_3CH_2COOH + NaOH \rightarrow CH_3CH_2COONa + H_2O \checkmark$	7	ANNOTATIONS MUST BE USED ALLOW C ₂ H ₅ throughout question ALLOW Adding NaOH forms propanoate ions/sodium propanoate (imples that the NaOH is added to the propanoic acid)
	Some propanoic acid remains OR propanoic acid AND propanoate (ions) / sodium propanoate present ✓		ALLOW: weak acid AND its conjugate base/salt present Throughout, do not penalise comments that imply that pH is constant in
	equilibrium: $CH_3CH_2COOH \Rightarrow H^+ + CH_3CH_2COO^-\checkmark$		presence of buffer DO NOT ALLOW HA and A ⁻ in this equilibrium expression For description of action of buffer below, ALLOW HA for CH_3CH_2COOH ; ALLOW A ⁻ for $CH_3CH_2COO^-$
	Added alkali CH_3CH_2COOH reacts with added alkali $OR CH_3CH_2COOH + OH^- \rightarrow$ OR added alkali reacts with H ⁺ $OR H^+ + OH^- \rightarrow \checkmark$		Equilibrium responses must refer back to a written equilibrium. IF no equilibrium shown, use the equilibrium as written in expected answers (which is also written on page 6 of the paper) ALLOW weak acid reacts with added alkali
	→ $CH_3CH_2COO^-$ OR Equilibrium → right \checkmark Added acid $CH_3CH_2COO^-$ reacts with added acid OR [H ⁺] increases \checkmark → CH_3CH_2COOH OR Equilibrium → left \checkmark		ALLOW conjugate base reacts with added acid DO NOT ALLOW salt reacts with added acid
		5	

Question	Expected Answers	Marks	Additional Guidance
d	$HNO_3 + CH_3CH_2COOH \Rightarrow CH_3CH_2COOH_2^+ + NO_3^- \checkmark$ acid 1 base 2 acid 2 base 1 \checkmark	2	State symbols NOT required ALLOW 1 AND 2 labels the other way around. ALLOW 'just acid' and 'base' labels throughout if linked by lines so that it is clear what the acid–base pairs are. IF proton transfer is wrong way around then ALLOW 2nd mark for idea of acid–base pairs, i.e. $HNO_3 + CH_3CH_2COOH \Rightarrow CH_3CH_2COO^- + H_2NO_3^+ \times$ base 2 acid 1 base 1 acid 2 \checkmark
e i	2CH ₃ CH ₂ COOH + Mg → (CH ₃ CH ₂ COO) ₂ Mg + H ₂ \checkmark	1	IGNORE state symbols ALLOW ionic equation: $2H^+ + Mg \rightarrow Mg^{2+} + H_2$ IGNORE any random charges in formula of $(CH_3CH_2COO)_2Mg$ as long as the charges are correct (charges are treated as working) i.e. $(CH_3COO^-)_2Mg$ OR $(CH_3COO)_2^-Mg$ should not be penalised However, Mg^{2+} instead of Mg on the left side of equation is obviously wrong
ii	$2H^{+} + CO_{3}^{2-} \longrightarrow H_{2}O + CO_{2}$ OR $2H^{+} + CO_{3}^{2-} \longrightarrow H_{2}CO_{3}$ OR $H^{+} + CO_{3}^{2-} \longrightarrow HCO_{3}^{-} \checkmark$	1	State symbols NOT required
	Total	17	

Question		on	Expected answers	Marks	Additional guidance	
3	а		A strong acid completely dissociates AND a weak acid partially dissociates ✓	1	ALLOW ionises for dissociates	
		ii	$(\mathcal{K}_{a} =) \frac{[H^{+}][NO_{2}^{-}]}{[HNO_{2}]} \checkmark$	1	DO NOT ALLOW $\frac{[H^+]^2}{[HNO_2]}$ Square brackets are required	
		iii	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 1.89 award 2 marks IF answer = 1.9 award 1 mark		IF there is an alternative answer to more decimal places, check calculator value	
			pH = −log 0.0129 = 1.89 ✓ ✓ OR pH = −log 0.0129 = 1.9 ✓ <i>not two decimal places</i>	2	Working to get to 0.0129 (mol dm ⁻³) Not required and no credit $[H^+] = \sqrt{K_a \times [HNO_2]} = \sqrt{4.43 \times 10^{-4} \times 0.375}$ ALLOW 1 mark for an answer with more than 2 decimal places that rounds back to 1.89	
		iv	HNO ₃ + HNO ₂ \Rightarrow NO ₃ ⁻ + H ₂ NO ₂ ⁺ \checkmark Acid 1 Base 2 Base 1 Acid 2 \checkmark	2	State symbols NOT required ALLOW 1 AND 2 labels the other way around. ALLOW 'just acid' and 'base' labels if linked by lines so that it is clear what the acid–base pairs are IF proton transfer is wrong way around ALLOW 2nd mark for idea of acid–base pairs, <i>i.e.</i> HNO ₃ + HNO ₂ \Rightarrow H ₂ NO ₃ ⁺ + NO ₂ ⁻ × Base 2 Acid 1 Acid 2 Base 1 \checkmark NOTE For the 2nd marking point (acid–base pairs), this is the ONLY acceptable ECF	

Qu	Question		Expected answers	Marks	Additional guidance		
					i.e., NO ECF from impossible chemistry		
	b		Proton acceptor ✓	1	ALLOW H ⁺ acceptor		
		ii	Marks are for correctly calculated values. Working shows how values have been derived. $[OH^{-}] = 2 \times 0.04(00) = 0.08(00) \text{ (mol dm}^{-3}) \checkmark$ $[H^{+}] = \frac{1.00 \times 10^{-14}}{0.08(00)} \text{ OR } 1.25 \times 10^{-13} \text{ (mol dm}^{-3}) \checkmark$ $pH = -\log 1.25 \times 10^{-13} = 12.90 \checkmark$ $pH = -\log 1.25 \times 10^{-13} = 12.90 \checkmark$ $pOH \text{ variation (also worth 3 marks)}$ $[OH^{-}] = 2 \times 0.04(00) = 0.08(00) \text{ (mol dm}^{-3}) \checkmark$ $pOH -\log 0.08(00) = 1.10 \checkmark$ $pH = 14.00 - 1.10 = 12.90 \checkmark$	3	ALLOW by ECF $\frac{1.00 \times 10^{-14}}{\text{calculated value of [OH-]}}$ DO NOT ALLOW 12.9 <i>not two decimal places</i> $\frac{12.60 \sqrt[4]{7} \text{ no } \times 2 \text{ for [OH-]}}{12.6 \sqrt[4]{7} \text{ no } \times 2 \text{ for [OH-]}}$ 12.30 $\frac{\sqrt{7} 2[OH-]}{12.3 \sqrt{7} 2[OH-]}$ 12.4 NO marks		
	С		Ca(OH) ₂ + 2HNO ₂ → Ca(NO ₂) ₂ + 2H ₂ O \checkmark H ⁺ + OH ⁻ \longrightarrow H ₂ O \checkmark	2	ALLOW : $2H^+ + 2OH^- \rightarrow 2H_2O$		

Question	Expected answers	Marks	Additional guidance
d	Equilibrium $H_2CO_3 \Rightarrow H^+ + HCO_3^- \checkmark$		ANNOTATIONS MUST BE USED Equilibrium sign is required IGNORE $HA \Rightarrow H^+ + A^-$ DO NOT ALLOW $H_2CO_3 \Rightarrow 2H^+ + CO_3^{2-}$ DO NOT ALLOW NaHCO ₃ \Rightarrow Na ⁺ + HCO ₃ ⁻ IGNORE $H_2O + CO_2 \Rightarrow H_2CO_3$
	Action of buffer Added alkali H_2CO_3 reacts with added alkali $OR H_2CO_3 + OH^- \rightarrow$ OR added alkali reacts with H ⁺ $OR H^+ + OH^- \rightarrow \checkmark$ Equilibrium \rightarrow right OR equilibrium shifts forming H ⁺ $OR HCO_3^- \checkmark$		IF $HA \Rightarrow H^+ + A^- \text{ OR } H_2CO_3 \Rightarrow 2H^+ + CO_3^{2-}$ have been used above: ALLOW all marks that meet marking alternatives as written NOTE The 1st 'added acid' mark cannot then be accessed Equilibrium responses must refer back to a written equilibrium BUT IF $H_2CO_3 \rightarrow H^+ + HCO_3^-$ shown above, assume that any equilibrium comments apply to the correct equilibrium IF more than one equilibrium shown, it must be clear which equilibrium is being referred to ALLOW added alkali reacts with weak acid <i>Quality of Written Communication</i> Mark is for linking the action of the buffer in controlling added alkali and hence pH

Ques	tion	Expected answers	Marks	Additional guidance
		Added acid HCO_3^- reacts with added acid \checkmark Equilibrium \rightarrow left OR equilibrium shifts forming $H_2CO_3 \checkmark$	5	HCO ₃ ⁻ is required for this mark BUT ALLOW added acid reacts with conjugate base ONLY if HCO ₃ ⁻ is present in equilibrium with H ₂ CO ₃ DO NOT ALLOW salt reacts with added acid
C	l ii	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 6.6 : 1 OR 1 : 0.15 CHECK ratio is HCO - : H CO and award 5 marks		IF there is an alternative answer, check to see if there is any ECF credit possible using working below
		CHECK ratio is HCO_3^- : H_2CO_3 and award 5 marks . IF answer = 0.15 : 1 , CHECK ratio is H_2CO_3 : HCO_3^- and award 4 marks		ANNOTATIONS MUST BE USED FOR ALTERNATIVE using Henderson–Hasselbalch equation below
		In blood at pH 7.40, $[H^+] = 10^{-pH} = 10^{-7.40} = 3.98 \times 10^{-8} \pmod{\text{dm}^{-3}} \checkmark$ $\mathcal{K}_a = \frac{[H^+] [HCO_3^-]}{[H_2CO_3]} = \frac{3.98 \times 10^{-8} \times 10.5}{1}$ OR $\mathcal{K}_a = 4.18 \times 10^{-7} \pmod{\text{dm}^{-3}} \checkmark$	5	ALLOW 3.98×10^{-8} up to calculator value of 3.981071706 × 10^{-8} correctly rounded
		In blood at pH 7.20, $[H^+] = 10^{-pH} = 10^{-7.20} = 6.31 \times 10^{-8} \text{ (mol dm}^{-3}) \checkmark$		ALLOW 6.31 × 10^{-8} up to calculator value of 6.309573445 × 10^{-8} correctly rounded
		$\frac{[\text{HCO}_3]}{[\text{H}_2\text{CO}_3]} = \frac{K_a}{[\text{H}^+]} \text{ OR } \frac{4.18 \times 10^{-7}}{6.31 \times 10^{-8}} \checkmark$ $= \frac{6.6}{1} \text{ OR } 6.6 : 1 \checkmark \text{ (up to calc. value, see below)}$ $\text{ALLOW any answer with > 1 decimal place that}$ rounds back to 6.62 OR 6.63		Common errors $0.15:1 \checkmark \checkmark \checkmark \checkmark \checkmark Inverse ratio of H_2CO_3 : HCO_3^-$ $16.6:1 \text{ OR } 0.06:1 \checkmark \checkmark \checkmark \checkmark \checkmark 10.5/1 \text{ swapped over in 2nd}$ mark giving K_a value of 3.79×10^{-9} ALLOW answer with > 1 decimal place that rounds back to 16.64 OR 16.65
	ALTERNATIVE approach for concentrations using Henderson–Hasselbalch equation (5 marks)			
		$pH = pK_a + \log \frac{[HCO_3^-]}{[H_2CO_3^-]} OR -\log K_a + \log \frac{[HCO_3^-]}{[H_2CO_3^-]} \checkmark$		
		$pK_{a} = pH - \log \frac{[HCO_{3}^{-}]}{[H_{2}CO_{3}]} = 7.40 - \log \frac{10.5}{1} = 6.38 \checkmark (s)$	subsumes	previous mark) Calculator: 6.378810701

Question			Expected answers	Marks	Additional guidance
			At pH = 7.20, $\log \frac{[HCO_3^-]}{[H_2CO_3^-]} = pH - pK_a = 7.20 - 6.38 = 0.82 \checkmark$ (subsumes previous mark)		
			$\frac{[\text{HCO}_{3}^{-}]}{[\text{H}_{2}\text{CO}_{3}]} = 10^{0.82} \checkmark \qquad = \frac{6.6}{1} \text{ OR } 6.6 : 1 \checkmark$		
			Total	22	