

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme

Suitable for all boards

Designed to test your ability and thoroughly prepare you

Time allowed **44 Minutes**

Score

/37

%

CHEMISTRY

AQA AS & A LEVEL

Mark Scheme

3.1 Physical chemistry

www.exampaperspractice.co.uk

				M 1	
			(ii)	Mol of $ZnCO_3 = 0.0234$ Mark consequentially on Q6	
				Do not penalise precision of answer but must have a minimum of 2 significant figures.	1
				n = 0.0234 mol	
				Correct answer with no working scores one mark only.	1
				$100\ 000 \times 570 \times 10^{-6} = n \times 8.31 \times 293$	
				This mark can be gained in a correctly substituted equation.	1
	(b)	(i)	Using pV = nRT	
					1
			(ii)	Any value in the range 91 to 105 s Allow a range of times within this but not if 90 quoted.	
					1
				Make some allowance for the difficulties of drawing a curve but do not allow very thick or doubled lines.	
				pass through or close to all points (± one small square).	
				Smooth curve from 0 seconds to at least 135 seconds – the line must	-
				Allow ± one small square.	1
				All points plotted correctly	
				Lose this mark if volume is plotted on the <u>x</u> -axis	1
				Lose this mark if the graph plot goes off the squared paper	
				Lose this mark if the plotted points do not cover half of the paper.	
1	(a)	(i)	U	Jses sensible scales.	

Mass of ZnCO₃ = M1 × 125.4 = 2.9(3) or 2.9(4) g

If 0.0225 used then mass = 2.8(2) g

		() 3		
			M2	1
	(iii) Diffe	rence = (15.00 / 5) - Ans to b		
		If 2.87 g used then percentage is 4.3		
			M1	1
	Perc	entage = (M1 / 3.00) × 100		
		Ignore precision beyond 2 significant figures in tanswer	the final	
		If 2.82 g used from (ii) then percentage = 6.0		
			M2	1
(c)	A reaction	vessel which is clearly airtight round the bung		1
	Gas collec	tion over water or in a syringe		
		Collection vessel must be graduated by label or	markings	
		Ignore any numbered volume markings.		1 [13]

 $ZnCO_3 \rightarrow ZnO + CO_2$

Ignore state symbols.

If equation incorrect, allow one mark only for correct atom economy method.

1

Percentage atom economy =

Mark consequentially for incorrect formula mass(es)

1

$$\frac{81.4}{125.4} \times 100 = 64.9$$

Accept answer to at least 2 significant figures

1

[3]

(a) M1 550 ×

= 579 g would be 100% mass

Allow alternative methods.

There are 4 process marks:

100

M2 So
$$\overline{65}$$
 = 8.91 moles NaN₃

or

M1
65
 = 8.46 moles NaN₃ (this is 95%)

100

M2 So 100% would be 8.46 ×
$$\frac{95}{9}$$
 = 8.91 moles NaN₃

1: mass ÷ 65

2: mass or moles x 100 / 95 or x 1.05

3: moles NaN₃ x 2

4: moles NaNH₂ x 39

1

1

Then M3 Moles NaNH₂ = 8.91 \times 2 = (17.8(2) moles)

1

M4 mass NaNH₂ = 17.8(2)
$$\times$$
 39

1

M5 693 or 694 or 695 (g)

If 693, 694 or 695 seen to 3 sig figs award 5 marks

1

(b) M1 308 K and 150 000 Pa

1

M2 n =
$$\frac{PV}{RT}$$
 or $\frac{150\ 000 \times 7.5 \times 10^{-2}}{8.31 \times 308}$

1

M3 = 4.4(0) or 4.395 moles N_2

Allow only this answer but allow to more than 3 sig figs

1

M4 Moles NaN₃ = 4.395
$$\times \frac{2}{3}$$
 (= 2.93)
M4 is for M3 $\times \frac{2}{3}$

1

M5 Mass NaN₃ = (2.93) \times 65

1

M5 is for moles $M4 \times 65$

M6 = 191 g

Allow 190 to 191 g allow answers to 2 sig figs or more

1

(c) (i) 150 / 65 = 2.31 moles NaN₃ or 2.31 moles nitrous acid

1

Conc =
$$2.31 \times \frac{1000}{500}$$

M2 is for $M1 \times 1000 / 500$

1

1

(ii)
$$3HNO_2 \longrightarrow HNO_3 + 2NO + H_2O$$

Can allow multiples

1

(d)	Ionic					
	If not ionic then $CE = 0/3$					
	Oppositely charged <u>ions</u> / Na ⁺ and N ₃ ⁻ ions Penalise incorrect ions here but can allow M3		1			
	Strong <u>attraction</u> between (oppositely charged) ions / lots of energy needed to overcome (strong) <u>attractions</u> (between ions) M3 dependent on M2		1			
(e)	(i) $N \equiv N \longrightarrow N^{-}$ Only		1			
(ii)	CO ₂ / N ₂ O / BeF ₂ / HN ₃ Allow other correct molecules	1				
(iii)	MgN ₆ Only	1	[21]			