

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme

Suitable for all boards

Designed to test your ability and thoroughly prepare you

Time allowed **38 Minutes**

2002

CHEMISTRY

OCR AS & A LEVEL

Mark Scheme

Module 5: Physical chemistry and transiton elements

Percentage

%

www.exampaperspractice.co.uk

Score

/32

Qı	uestion	er	Mark	Guidance
1	(a)	$\begin{array}{ll} \mbox{process} & \mbox{increase decrease} \\ C_2H_5OH(I) \rightarrow C_2H_5OH(g) & \checkmark \end{array}$		
		$C_{2}H_{2}(g) + 2H_{2}(g) \rightarrow C_{2}H_{6}(g) \qquad \checkmark$ $NH_{4}CI(s) + aq \rightarrow NH_{4}CI(aq) \qquad \checkmark$		
		$4Na(s) + O_2(g) \rightarrow 2Na_2O(s) \qquad \checkmark$		
		$2CH_3OH(I) + 3O_2(g) \rightarrow 2CO_2(g) + 4H_2O(I) \qquad \checkmark$	2	
		All 5 correct \longrightarrow 2 marks 4 correct \longrightarrow 1 mark		
	(b)	ΔH : + AND bonds broken \checkmark ΔS : + AND more random/more disorder/more ways of arranging energy \checkmark	2	Sign and reason required for each mark ALLOW forces of attraction/hydrogen bonds are overcome DO NOT ALLOW response in terms of bonds breaking AND bond making (for melting bonds are just broken) DO NOT ALLOW responses implying that bonds within H ₂ O molecules are broken IGNORE comments related to ΔG IGNORE comments related to ΔG
	(c) (i)	$\Delta S = (3 \times 131 + 198) - (186 + 189) \checkmark$ $\Delta S = (+)216 (J \text{ K}^{-1} \text{ mol}^{-1}) \checkmark$	2	ALLOW 1 mark for –216 (wrong sign) ALLOW 1 mark for –46 (131 instead of 3 x 131) ALLOW 1 mark for 594 (sign of 189)

Question	er	Mark	Guidance
(c)	 Two from points below: 1. fuel OR fuel cells 2. manufacture of margarine OR hydrogenation of alkenes/unsaturated fats 3. manufacture of ammonia OR 'Haber process' ✓ 4. manufacture of HCl/hydrochloric acid 5. reduction of metal ores/metal oxides 	1	2 uses for one mark IGNORE hydrogenation of margarine
(d)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = -109, award first 3 marks for calculation		IF there is an alternative answer, check to see if there is any ECF credit possible using working below
	At 298 K, 91.2 = $176 - T\Delta S \checkmark$		ANNOTATE WITH TICKS AND CROSSES, etc
	$\Delta S (= \frac{176 - 91.2}{298}) = 0.285 \text{ (kJ K}^{-1} \text{ mol}^{-1})$ $OR \ \Delta S (= \frac{176000 - 91200}{298}) = 285 \text{ (J K}^{-1} \text{ mol}^{-1}) \checkmark$ subsumes 1st marking point		ALLOW 0.285 (3 SF) up to calculator value of 0.284563758 ALLOW 285 (3 SF) up to calculator value of 284.563758
	At 1000 K, $\Delta G = 176 - 1000 \times 0.285$ = -109 (kJ mol ⁻¹) \checkmark		ALLOW –109 up to calculator value correctly rounded, i.e. 108.6, –108.56, etc
			ALLOW ECF from incorrect ΔS , <i>ie</i> calculated value of ΔG from $\Delta G = 176 - 1000$ x calculated value of ΔS
	Reaction does take place (spontaneously) because $\Delta G < 0$ OR ΔG is -ve \checkmark Note : If no value of ΔG , this mark cannot be awarded.	4	Answer and reason BOTH needed for mark ALLOW reaction is feasible for 'reaction does take place' Note : If candidate has a + ΔG value, mark ECF , ie reaction does not take place because $\Delta G > 0$ OR ΔG is +ve
	Total	11	

Qu	estior	Expected answers	Marks	Additional guidance
2	а	$\Delta G = \Delta H - T \Delta S \checkmark$	1	
	b	process sign		
		$2CO(g) + O_2(g) \longrightarrow 2CO_2(g)$ -		
		$NaCI(s) + (aq) \longrightarrow NaCI(aq) \qquad \clubsuit$		
		$H_2O(I) \longrightarrow H_2O(s)$ -		
		$Mg(s) + H_2SO_4(aq) \longrightarrow MgSO_4(aq) + H_2(g) \qquad \clubsuit$		
		$CuSO_4(s) + 5H_2O(l) \longrightarrow CuSO_4 \bullet 5H_2O(s)$ -		
		All 5 correct \longrightarrow 2 marks $\sqrt[4]{}$ 4 correct \longrightarrow 1 mark $$	2	
	С	$\Delta S = (4 \times 211 + 6 \times 189) - (4 \times 192 + 5 \times 205) \checkmark$		
		$\Delta S = (+)185 (J K^{-1} mol^{-1}) \checkmark$	2	ALLOW ECF from working line above from a single error
				COMMON ERRORS $(+)3$ (J K ⁻¹ mol ⁻¹) \checkmark (211 + 189) - (192 + 205) $- 185$ (J $^{-1}$ mol ⁻¹) \checkmark incorrect sign
	d	With increasing temperature		ANNOTATIONS MUST BE USED
		$T\Delta S$ is more negative OR $T\Delta S$ decreases OR $-T\Delta S$ increases OR $ T\Delta S $ increases		
		OR magnitude of $T\Delta S$ increases \checkmark		DO NOT ALLOW just $T \Delta S$ increases
		At high temperature $T\Delta S$ is more negative that ΔH OR		DO NOT ALLOW At high T , ' $-T\Delta S$ is greater (than ΔH)'
		at high T, $T\Delta S$ outweighs/is more significant than ΔH		APPROACH BASED ON TOTAL ENTROPY:
		OR		With increasing temperature
		At low temperature $\Delta H - T\Delta S < 0$ OR	2	$\Delta H/T$ is less negative OR $\Delta H/T$ increases OR $-\Delta H/T$ decreases OR $ \Delta H/T $ decreases
		At high temperature $\Delta H - T\Delta S > 0$ \checkmark	2	OR magnitude of $\Delta H/T$ decreases \checkmark
		At high temperature $\Delta T = I\Delta 3 > 0$		ALLOW at high temperatures
				$\Delta S - \Delta H/T < 0$

For more help please visit our website www.exampaperspractice.co.uk

Question	Expected answers	Marks	Additional guidance
			OR ΔS is more negative than $\Delta H/T$ OR ΔS outweighs/ is more significant than $\Delta H/T$
e	(For feasibility,) $\Delta G < 0$ OR $\Delta G = 0$ OR $0 < \Delta H - T\Delta S$ OR $0 = \Delta H - T\Delta S$ OR $0 = 493 - T \times 543/1000 \checkmark$ $T = \frac{\Delta H}{\Delta S} = 493 \times 1000/543 \checkmark$ = 908 K \checkmark Units of temperature are required	3	ALLOW total entropy statement: $\Delta S(\text{total}) = 0 \text{ OR } \Delta S(\text{total}) > 0$ ALLOW $0 = 493 - T \times 543 \checkmark$ <i>i.e.</i> This mark focuses on $\Delta G \text{ OR } \Delta H - T\Delta S \text{ being } = 0$ and NOT on conversion of ΔS value into $kJ \ K^{-1} \ mol^{-1}$ Mark temperature given on answer line ALLOW 3 SF up to calculator value 907.9189687 correctly rounded, e.g. 907.9, 907.92 ALLOW temperature in °C: i.e. ALLOW by subtraction of 273: 635, 634.9, 634.91 °C ALLOW by subtraction of 273.15: 635, 634.8, 634.77 °C up to calculator value correctly rounded ALLOW C for °C; °K for K IF ΔS has not been converted to kJ, DO NOT ALLOW 2nd mark BUT ALLOW calculated answer = 493/543 = 0.91 K (calculator: 0.907918968)
			ALLOW 2 marks only for absence of one of the statements required for 1st marking point
	Total	10	

Question	Answer	Mark	Guidance	
3 (a)	 A: forms fewer moles/molecules of gas ✓ B: forms gas from a liquid ✓ C: forms liquid from gases ✓ D: forms more moles/molecules of gas ✓ 	4	Note: Responses must imply the key difference between the sides of the equationIGNORE comments about C(s)	
(b)	$\Delta S = \Sigma S(\text{products}) - \Sigma S(\text{reactants})$ $= 40 + 214 - 89 = 165 (J \text{ K}^{-1} \text{ mol}^{-1})$ $= 0.165 (\text{kJ K}^{-1} \text{ mol}^{-1}) \checkmark$ At 25 °C, $\Delta G = +178 - 298 \times 0.165 \checkmark$ $= (+)129 \checkmark \qquad \text{units: kJ mol}^{-1} \checkmark$ OR (+)129,000 \checkmark units: J mol}^{-1} \checkmark OR (+)129,000 \checkmark units: J mol}^{-1} \checkmark As $\Delta G > 0$, reaction is not feasible OR as $\Delta G > 0$, CaCO ₃ is stable \checkmark Minimum temperature for feasibility when $0 = \Delta H - T\Delta S \text{ OR } \Delta H = T\Delta S \text{ OR } T = \frac{\Delta H}{\Delta S} \checkmark$	1	ANNOTATE WITH TICKS AND CROSSES, etc Mark is for the working line: 40 + 214 - 89 = 165 UNITS have a separate mark ALLOW 129 to calculator value of 128.83 DO NOT ALLOW 128 (incorrect rounding) IF 25 °C used rather than 298 K, credit by ECF, calculated ΔG = 174 to calculator value of 173.875 ENTROPY APPROACH ALLOW At 25 °C, $\Delta S_{total} = 0.165 - \frac{178}{298} \checkmark$ = -0.432 \checkmark kJ K ⁻¹ mol ⁻¹ \checkmark OR -432 \checkmark J K ⁻¹ mol ⁻¹ \checkmark As $\Delta S < 0$, reaction is not feasible \checkmark ENTROPY APPROACH	
	$= \frac{178}{0.165} = 1079 \text{ K OR } 806 \text{ °C } \checkmark$ The units must be with the stated temperature	2	ALLOW 1080 K up to calculator value of 1078.787879, correctly rounded, eg 1078.79 is correct value to 6SF DO NOT ALLOW 1078 (incorrect rounding) IF 1079 K is given and additional temperature in °C is incorrect IGNORE °C temperature (and vice versa)	
	Тс	otal 11		