Applied Math

Lesson 5

Lecturer: Dr. Mahdi Jalali
四
EXAM PAPERS PRACTICE

Vector functions

Some physical quantities are entirely defined by a numerical value and are called scalar quantities or scalars. Examples of scalars include time, mass, temperature, energy and volume. Other physical quantities are defined by both a numerical value and a direction in space and these are called vector quantities or vectors. Examples of vectors include force, velocity, moment and displacement.

Vector addition

A vector may be represented by a straight line, the length of line being directly proportional to the magnitude of the quantity and the direction of the line being in the same direction as the line of action of the quantity. An arrow is used to denote the sense of the vector, that is, for a horizontal vector, say, whether it acts from left to right or vice-versa. Figure 1 shows a velocity of $20 \mathrm{~m} / \mathrm{s}$ at an angle of 45° to the horizontal and may be depicted by $o a=20 \mathrm{~m} / \mathrm{s}$ at 45° to the horizontal.

Figure 1

(Obtained from J. O. Bird 2017)

To distinguish between vector and scalar quantities, various ways
(iii) letters with an arrow above, e.g \vec{a}, \vec{A}
(iv) $x i+j y$, where i and j are axes at right-angles to each other; for example, $3 i+4 j$ means 3 units in the i direction and 4 units in the j direction, as shown in Fig 2

Fig 2 (Obtained from J. O. Bird 2017)
(vii) a column matrix $\binom{a}{b}$; for example, the vector $\boldsymbol{O A}$ shown in Fig. 21.2 could be represented by $\binom{3}{4}$
Thus, in Fig. 2

$$
O A \equiv \overrightarrow{O A} \equiv \overrightarrow{O A} \equiv 3 i+4 j \equiv\binom{3}{4}
$$

The resultant of adding two vectors together, say V_{1} at an angle θ_{1} and $V 2$ at angle ($-\theta 2$), as shown in Fig. 3a, can be obtained by drawing oa to represent V_{1} and then drawing ar to represent V_{2}. The resultant of V_{1} $+V 2$ is given by or. This is shown in Fig. 3b, the vector equation being oa+ar=or. This is called the 'nose-to-tail' method of vector addition.

Fig 3. (Obtained from J. O. Bird 2017) Alternatively, by drawing lines parallel to V_{1} and V_{2} from the noses of V_{2} and V_{1}, respectively, and letting the point of intersection of these parallel lines be R, gives $O R$ as the magnitude and direction of the resultant of adding V_{1} and V_{2}, as shown in Fig.3c. This is called the 'parallelogram' method of vector addition.

EXAM PAPERS PRACTICE

Problem 1. A force of 4 N is inclined at an angle of 45° to a second force of 7 N , both forces acting at a point. Find the magnitude of the resultant of these two forces and the direction of the resultant with respect to the 7 N force by both the 'triangle' and the 'parallelogram' methods?

Solution:

(a)

(b)

Fig 4 (J. O. Bird 2017)

(c)

Using the 'nose-to-tail' method, a line 7 units long is drawn horizontally to give vector oa in Fig 4(b). To the nose of this vector ar is drawn 4 units long at an angle of $45 \circ$ to oa. The resultant of vector addition is or and by measurement is 10.2 units long and at an angle of $16 \cdot$ to the 7 N force. Fig 4c uses the 'parallelogram' method in which lines are drawn parallel to the 7 N and 4 N forces from the noses of the 4 N and 7 N forces, respectively. These intersect at R. Vector OR gives the magnitude and direction of the resultant of vector addition and as obtained by the 'nose-to-tail'method is 10.2 units long at an angle of $16 \cdot$ to the 7 N force.

Resolution of vectors

A vector can be resolved into two component parts such that the vector addition of the component parts is equal to the original vector. The two components usually taken are a horizontal component and a vertical component. For the vector shown as F in Fig. 5, the horizontal component is $F \cos \theta$ and the vertical component is $F \sin \theta$.

Fig 5 (Obtained from J. O. Bird 2017)

Having obtained H and V, the magnitude of the resultant vector R is given by $\sqrt{\left(\boldsymbol{H}^{2}+V^{2}\right)}$ and its angle to the horizontal is given by $\boldsymbol{\operatorname { t a n }}^{-\mathbf{1}}(\boldsymbol{V} / \boldsymbol{H})$.

Problem 2. Resolve the acceleration vector of $17 \mathrm{~m} / \mathrm{s} 2$ at an angle of 120° to the horizontal into a horizontal and a vertical component?

Solution:
Using Fig7, for a vector A at angle θ to the horizontal, the horizontal component is given by $A \cos \theta$ and the vertical component by $A \sin \theta$. Any convention of signs may be adopted, in this case horizontally from left to right is taken as positive and vertically upwards is taken as positive.
Horizontal component:
$H=17 \cos 120^{\circ}=-8.5 \mathrm{~m} / \mathrm{s} 2$, acting from left to right Vertical component: $V=17 \sin 120^{\circ}=14.72 \mathrm{~m} / \mathrm{s} 2$, acting vertically upwards.

Fig 7 (J. O. Bird 2017)

Problem 3. Calculate the resultant force of the two forces given in Problem 1?

LITE Regal

$$
H=7 \cos 0^{\circ}+4 \cos 45^{\circ}=7+2.828=\mathbf{9 . 8 2 8} \mathbf{N}
$$

Vertical component of force,

$$
V=7 \sin 0^{\circ}+4 \sin 45^{\circ}=0+2.828=\mathbf{2 . 8 2 8} \mathbf{N}
$$

The magnitude of the resultant of vector addition

$$
\begin{aligned}
& =\sqrt{\left(H^{2}+V^{2}\right)}=\sqrt{\left(9.828^{2}+2.828^{2}\right)} \\
& =\sqrt{(104.59)}=\mathbf{1 0 . 2 3} \mathbf{N}
\end{aligned}
$$

The direction of the resultant of vector addition

$$
=\tan ^{-1}\left(\frac{V}{H}\right)=\tan ^{-1}\left(\frac{2.828}{9.828}\right)=\mathbf{1 6 . 0 5}^{\circ}
$$

Thus, the resultant of the two forces is a single vector of 10.23 N at 16.05° to the 7 N vector.

Vector subtraction

In Fig. 21.11, a force vector F is represented by oa.
The vector (-oa) can be obtained by drawing a vector from o in the opposite sense to oa but having the same magnitude, shown as ob in Fig 8, i.e. ob=(-oa)

Fig 8

EXAM PAPERS PRACTICE For two vectors acting at a point, as shown in Fig 9a, the resultant of vector addition is os=oa+ob. Fig 9b shows vectors ob+(-oa), that is, ob-oa and the vector equation is ob-oa=od. Comparing od in Fig 9b with the broken line ab in Fig 9a shows that the second diagonal of the 'parallelogram' method of vector addition gives the magnitude and direction of vector subtraction of $\mathbf{o a}$ from $\mathbf{o b}$.

Fig 9

(a)

(b)

Problem 4. Accelerations of $\mathbf{a r}_{1}=1.5 \mathrm{~m} / \mathrm{s} 2$ at 90° and $\mathbf{a 2}=2.6 \mathrm{~m} / \mathrm{s} 2$ at 145° act at a point. Find $\mathbf{a 1 + a 2}$ and a1-a2 by (i) drawing a scale vector diagram and (ii) by calculation. Solution:
(i) The scale vector diagram is shown in Fig. (ii) Resolving horizontally and vertically gives:

By measurement,

$$
\begin{aligned}
& a_{1}+a_{2}=3.7 \mathrm{~m} / \mathrm{s}^{2} \text { at } 126^{\circ} \\
& a_{1}-a_{2}=2.1 \mathrm{~m} / \mathrm{s}^{2} \text { at } 0^{\circ}
\end{aligned}
$$

Horizontal component of $a_{1}+a_{2}$,
$\boldsymbol{H}=1.5 \cos 90^{\circ}+2.6 \cos 145^{\circ}=-2.13$
Vertical component of $\boldsymbol{a}_{1}+\boldsymbol{a}_{2}$,

$$
\boldsymbol{V}=1.5 \sin 90^{\circ}+2.6 \sin 145^{\circ}=2.99
$$

$$
\text { Magnitude of } a_{1}+a_{2}=\sqrt{\left(-2.13^{2}+2.99^{2}\right)}
$$

$$
=3.67 \mathrm{~m} / \mathrm{s}^{2}
$$

Direction of $\boldsymbol{a}_{\mathbf{1}}+\boldsymbol{a}_{\mathbf{2}}=\tan ^{-1}\left(\frac{2.99}{-2.13}\right)$
and must lie in the second quadrant since H is negative and V is positive.

$\operatorname{Tan}^{-1}\left(\frac{2.99}{-2.13}\right)=-54.53^{\circ}$, and for this to be
LITE Regal
in the second quadrant, the true angle is 180° displaced, i.e. $180^{\circ}-54.53^{\circ}$ or 125.47°.

Thus $a_{1}+a_{2}=3.67 \mathrm{~m} / \mathrm{s}^{2}$ at $\mathbf{1 2 5 . 4 7 ^ { \circ }}$.
Horizontal component of $\boldsymbol{a}_{\mathbf{1}}-\boldsymbol{a}_{\mathbf{2}}$, that is,

$$
\begin{aligned}
a_{1} & +\left(-a_{2}\right) \\
& =1.5 \cos 90^{\circ}+2.6 \cos \left(145^{\circ}-180^{\circ}\right) \\
& =2.6 \cos \left(-35^{\circ}\right)=2.13
\end{aligned}
$$

Vertical component of $\boldsymbol{a}_{\mathbf{1}}-\boldsymbol{a}_{\mathbf{2}}$, that is, $a_{1}+\left(-a_{2}\right)=1.5 \sin 90^{\circ}+2.6 \sin \left(-35^{\circ}\right)=0$

Magnitude of $a_{1}-a_{2}=\sqrt{\left(2.13^{2}+0^{2}\right)}$

$$
=2.13 \mathrm{~m} / \mathrm{s}^{2}
$$

Direction of $\boldsymbol{a}_{1}-\boldsymbol{a}_{2}=\tan ^{-1}\left(\frac{0}{2.13}\right)=0^{\circ}$
Thus $a_{1}-a_{2}=2.13 \mathrm{~m} / \mathrm{s}^{2}$ at 0°.

Problem 5. Calculate the resultant of (i) $\mathbf{v 1} \mathbf{- v 2 + v 3}$ and
(ii) $\mathbf{v 2} \mathbf{- v 1}-v \mathbf{3}$ when $\mathbf{v 1}=22$ units at $140^{\circ}, \boldsymbol{v 2}=40$ units at 190° and

LITE Regal
EDUCATION $v 3=15$ units at 290 .

The horizontal component of $\boldsymbol{v}_{\mathbf{1}} \boldsymbol{-} \boldsymbol{v}_{\mathbf{2}}+\boldsymbol{v}_{\mathbf{3}}$
$=\left(22 \cos 140^{\circ}\right)-\left(40 \cos 190^{\circ}\right)$

$$
+\left(15 \cos 290^{\circ}\right)
$$

$$
=(-16.85)-(-39.39)+(5.13)
$$

$$
=27.67 \text { units }
$$

The vertical component of $\boldsymbol{v}_{\mathbf{1}}-\boldsymbol{v}_{\mathbf{2}}+\boldsymbol{v}_{\mathbf{3}}$

$$
=\left(22 \sin 140^{\circ}\right)-\left(40 \sin 190^{\circ}\right)
$$

$$
+\left(15 \sin 290^{\circ}\right)
$$

$$
=(14.14)-(-6.95)+(-14.10)
$$

$=6.99$ units
The magnitude of the resultant, R, which can pe represented by the mathematical symbol for the modulus of' as $\left|v_{1}-v_{2}+v_{3}\right|$ is given by:

$$
|R|=\sqrt{\left(27.67^{2}+6.99^{2}\right)}=28.54 \text { units }
$$

The direction of the resultant, \boldsymbol{R}, which can be represented by the mathematical symbol for 'the argument of' as $\arg \left(v_{1}-v_{2}+v_{3}\right)$ is given by:

$$
\arg R=\tan ^{-1}\left(\frac{6.99}{27.67}\right)=14.18^{\circ}
$$

Thus $v_{1}-v_{2}+v_{3}=28.54$ units at 14.18°.
(ii) The horizontal component of $v_{2}-v_{1}-v_{3}$

$$
\begin{aligned}
& =\left(40 \cos 190^{\circ}\right)-\left(22 \cos 140^{\circ}\right) \\
& \quad-\left(15 \cos 290^{\circ}\right) \\
& =(-39.39)-(-16.85)-(5.13) \\
& =-\mathbf{2 7 . 6 7} \text { units }
\end{aligned}
$$

The vertical component of $\boldsymbol{v}_{\mathbf{2}}-\boldsymbol{v}_{\mathbf{1}}-\boldsymbol{v}_{\mathbf{3}}$

$$
\begin{aligned}
& =\left(40 \sin 190^{\circ}\right)-\left(22 \sin 140^{\circ}\right) \\
& \quad-\left(15 \sin 290^{\circ}\right) \\
& =(-6.95)-(14.14)-(-14.10) \\
& =-6.99 \text { units }
\end{aligned}
$$

Let $\boldsymbol{R}=v_{2}-v_{1}-v_{3}$
then $|R|=\sqrt{\left[(-27.67)^{2}+(-6.99)^{2}\right]}$

$$
=28.54 \text { units }
$$

and $\arg R=\tan ^{-1}\left(\frac{-6.99}{-27.67}\right)$
and must lie in the third quadrant since both H and V are negative quantities.
$\operatorname{Tan}^{-1}\left(\frac{-6.99}{-27.67}\right)=14.18^{\circ}$, hence the required angle is $180^{\circ}+14.18^{\circ}=194.18^{\circ}$.

Thus $v_{2}-v_{1}-v_{3}=28.54$ units at 194.18°.
This result is as expected, since

$$
v_{2}-v_{1}-v_{3}=-\left(v_{1}-v_{2}+v_{3}\right)
$$

and the vector 28.54 units at 194.18° is minus times the vector 28.54 units at 14.18°.

EXAM PAPERS PRACTICE

Application of vectors in Mechanics and physics

Concept of Equilibrium-Concurrent Force System:
For static equilibrium, the resultant of the force system must be a null vector.

$$
\begin{gather*}
\vec{R}=\overrightarrow{F_{1}}+\overrightarrow{F_{2}}+\overrightarrow{F_{3}}=\overrightarrow{0} \tag{1}\\
\sum_{i=1}^{3} F_{i, x}=F_{1, x}+F_{2, x}+F_{3, x}=0 \\
\sum_{i=1}^{3} F_{i, Y}=F_{1, Y}+F_{2, Y}+F_{3, Y}=0 \tag{2}
\end{gather*}
$$

(Connor and Faraji 2012)

$$
\sum_{i=1}^{3} F_{i, z}=F_{1, z}+F_{2, z}+F_{3, z}=0
$$

Application of vectors in Mechanics and physics

Concept of Equilibrium: Non-concurrent Force System

For static equilibrium, Here the forces tend to rotate the body as well as translate it. Static equilibrium requires the resultant force vector to vanish and, in addition, the resultant moment vector about an arbitrary point to vanish

$$
\begin{aligned}
& \vec{R}=\overrightarrow{F_{1}}+\overrightarrow{F_{2}}+\overrightarrow{F_{3}}=\overrightarrow{0} \\
& \overrightarrow{M_{0}}=\overrightarrow{0} \\
& \sum_{i=1}^{3} F_{i, x}=0 \\
& \sum_{i=1}^{3} F_{i, Y}=0 \\
& \sum M_{0}=0
\end{aligned}
$$

(Connor and Faraji 2012)

(Connor and Faraji 2012)

Application of vectors in Mechanics and physics

Example 1.2 Equilibrium equations

Given: The rigid body and force system shown in Fig. E1.2a. Forces A_{x}, A_{Y}, and B_{Y} are unknown.

Fig. E1.2a
Determine: The forces A_{x}, A_{Y}, and B_{Y}
(Connor and Faraji 2012)

Application of vectors in Mechanics and physics

Solution: We sum moments about A, and solve for B_{Y}

$$
\begin{gathered}
\sum M_{A}=-40(1.5)-200(2)+B_{Y}(5)=0 \\
B_{Y}=+92 \Rightarrow B_{Y}=92 \mathrm{kN} \uparrow
\end{gathered}
$$

Next, summing forces in the X and Y directions leads to (Fig. E1.2b)

$$
\begin{aligned}
& \sum F_{x} \rightarrow^{+}=A_{x}+200=0 \Rightarrow A_{x}=-200 \Rightarrow A_{x}=200 \mathrm{kN} \leftarrow \\
& \sum F_{y} \uparrow^{+}=A_{Y}+92-40=0 \Rightarrow A_{Y}=-52 \Rightarrow A_{Y}=52 \mathrm{kN} \downarrow
\end{aligned}
$$

(Connor and Faraji 2012)

In general, the unit vector for oa is, $\overline{\boldsymbol{a} a \mid}$ the oa being a vector and having both magnitude and direction and |oa| being the magnitude of the vector only

One method of completely specifying the direction of a vector in space relative to some reference point is to use three unit vectors, mutually at right angles to each other, as shown in Fig 12 Such a system is called a unit triad

Fig 12 (J. O. Bird 2017)

In Fig. 13, one way to get from o to r is to move x units along i to point a, then y units in direction j to get to b and finally z units in direction k to get to r. The vector or is specified as:

$$
\text { or }=x i+y j+z k
$$

Problem 6. With reference to three axes drawn mutually at right angles, depict the vectors (i) $\mathbf{o p}=4 i+3 j-2 k$ and (ii) or=5i-2j $+2 k$. Solution: The required vectors are depicted in Fig. 14, op being shown in Fig. 14a and or in Fig 14b.

(Obtained from J. O. Bird 2017)

The scalar product of two vectors

When vector $\boldsymbol{o} \boldsymbol{a}$ is multiplied by a scalar quantity, say k, the magnitude of the resultant vector will be k times the magnitude of $\boldsymbol{o a}$ and its direction will remain the same. Thus $2 \times\left(5 \mathrm{~N}\right.$ at $\left.20^{\circ}\right)$ results in a vector of magnitude 10 N at 20°.

One of the products of two vector quantities is called the scalar or dot product of two vectors and is defined as the product of their magnitudes multiplied by the cosine of the angle between them. The scalar product of $\boldsymbol{o a}$ and $\boldsymbol{o b}$ is shown as $\boldsymbol{o a} \cdot \boldsymbol{o b}$. For vectors $\boldsymbol{o} \boldsymbol{a}=o a$ at θ_{1}, and $\boldsymbol{o b}=o b$ at θ_{2} where $\theta_{2}>\theta_{1}$, the scalar product is:

$$
\boldsymbol{o a} \cdot \boldsymbol{o b}=o a o b \cos \left(\theta_{2}-\theta_{1}\right)
$$

For vectors $\boldsymbol{v} \mathbf{1}$ and $\boldsymbol{v} \mathbf{2}$ shown in Fig. 15, the scalar product is:

$$
\boldsymbol{v}_{\mathbf{1}} \cdot \boldsymbol{v}_{\mathbf{2}}=v_{1} v_{2} \cos \theta
$$

Fig 15

The angle between two vectors can be expressed in terms of the vector constants as follows: Because $\mathbf{a} \cdot \boldsymbol{b}=a b \cos \theta$,

$$
\begin{equation*}
\text { then } \cos \theta=\frac{a \cdot b}{a b} \tag{1}
\end{equation*}
$$

$$
\begin{aligned}
\text { Let } \quad \boldsymbol{a} & =a_{1} \boldsymbol{i}+a_{2} \boldsymbol{j}+a_{3} \boldsymbol{k} \\
\text { and } \quad \boldsymbol{b} & =b_{1} \boldsymbol{i}+b_{2} \boldsymbol{j}+b_{3} \boldsymbol{k} \\
\boldsymbol{a} \cdot \boldsymbol{b} & =\left(a_{1} \boldsymbol{i}+a_{2} \boldsymbol{j}+a_{3} \boldsymbol{k}\right) \cdot\left(b_{1} \boldsymbol{i}+b_{2} \boldsymbol{j}+b_{3} \boldsymbol{k}\right)
\end{aligned}
$$

Multiplying out the brackets gives:

$$
\begin{aligned}
\boldsymbol{a} \cdot \boldsymbol{b}= & a_{1} b_{1} \boldsymbol{i} \cdot \boldsymbol{i}+a_{1} b_{2} \boldsymbol{i} \cdot \boldsymbol{j}+a_{1} b_{3} \boldsymbol{i} \cdot \boldsymbol{k} \\
& +a_{2} b_{1} \boldsymbol{j} \cdot \boldsymbol{i}+a_{2} b_{2} \boldsymbol{j} \cdot \boldsymbol{j}+a_{2} b_{3} \boldsymbol{j} \cdot \boldsymbol{k} \\
& +a_{3} b_{1} \boldsymbol{k} \cdot \boldsymbol{i}+a_{3} b_{2} \boldsymbol{k} \cdot \boldsymbol{j}+a_{3} b_{3} \boldsymbol{k} \cdot \boldsymbol{k}
\end{aligned}
$$

However, the unit vectors $\boldsymbol{i}, \boldsymbol{j}$ and \boldsymbol{k} all have a magnitude of 1 and $\boldsymbol{i} \cdot \boldsymbol{i}=(1)(1) \cos 0^{\circ}=1, \boldsymbol{i} \cdot \boldsymbol{j}=$ (1) (1) $\cos 90^{\circ}=0, i \cdot \boldsymbol{k}=(1)(1) \cos 90^{\circ}=0$ and similarly $\boldsymbol{j} \cdot \boldsymbol{j}=1, \boldsymbol{j} \cdot \boldsymbol{k}=0$ and $\boldsymbol{k} \cdot \boldsymbol{k}=1$. Thus, only terms containing $\boldsymbol{i} \cdot \boldsymbol{i}, \boldsymbol{j} \cdot \boldsymbol{j}$ or $\boldsymbol{k} \cdot \boldsymbol{k}$ in the expansion above will not be zero.
Thus, the scalar product

$$
\begin{equation*}
\boldsymbol{a} \cdot \boldsymbol{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3} \tag{2}
\end{equation*}
$$

Both a and b in equation (1) can be expressed in terms of $a 1, b 1, a 2, b 2$, a3 and b3.

From the geometry of Fig. 16, the length of diagonal $O P$ in terms of side lengths a, b and c can be obtained from Pythagoras' theorem as follows:

Fig 16 (J. O. Bird 2017)

$$
\begin{aligned}
& O P^{2}=O B^{2}+B P^{2} \text { and } \\
& O B^{2}=O A^{2}+A B^{2}
\end{aligned}
$$

c Thus, $O P^{2}=O A^{2}+A B^{2}+B P^{2}$

$$
=a^{2}+b^{2}+c^{2}
$$

in terms of side lengths
Thus, the length or modulus or magnitude or norm of vector $O \boldsymbol{O}$ is given by:

$$
\begin{equation*}
O P=\sqrt{\left(a^{2}+b^{2}+c^{2}\right)} \tag{3}
\end{equation*}
$$

EXAM PAPERS PRACTICE

Relating this result to the two vectors $a_{1} \boldsymbol{i}+a_{2} \boldsymbol{j}+$ $a_{3} \boldsymbol{k}$ and $b_{1} \boldsymbol{i}+b_{2} \boldsymbol{j}+b_{3} \boldsymbol{k}$, gives:

$$
a=\sqrt{\left(a_{1}^{2}+a_{2}^{2}+a_{3}^{2}\right)}
$$

and $\quad b=\sqrt{\left(b_{1}^{2}+b_{2}^{2}+b_{3}^{2}\right)}$.
That is, from equation (1),

$$
\begin{equation*}
\cos \theta=\frac{a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}}{\sqrt{\left(a_{1}^{2}+a_{2}^{2}+a_{3}^{2}\right)} \sqrt{\left(b_{1}^{2}+b_{2}^{2}+b_{3}^{2}\right)}} \tag{4}
\end{equation*}
$$

(Obtained from J. O. Bird 2017)

EXAM PAPERS PRACTICE

Problem 7. Find vector a joining points P and

Q where point P has co-ordinates $(4,-1,3)$ and point Q has co-ordinates ($2,5,0$). Also, find |a|, the magnitude or norm of \boldsymbol{a} ? Solution:

Let O be the origin, i.e. its co-ordinates are $(0,0,0$,
The position vector of P and Q are given by:

$$
\boldsymbol{O P}=4 \boldsymbol{i}-\boldsymbol{j}+3 \boldsymbol{k} \text { and } \boldsymbol{O Q}=2 \boldsymbol{i}+5 \boldsymbol{j}
$$

By the addition law of vectors $\boldsymbol{O P}+\boldsymbol{P Q}=\boldsymbol{O Q}$.
Hence $\quad a=P Q=\boldsymbol{O Q}-\boldsymbol{O P}$
i.e. $\quad a=P Q=(2 i+5 j)-(4 i-j+3 k)$

$$
=-2 \boldsymbol{i}+6 \boldsymbol{j}-3 \boldsymbol{k}
$$

From equation (3), the magnitude or norm of \boldsymbol{a},

$$
\begin{aligned}
|a| & =\sqrt{\left(a^{2}+b^{2}+c^{2}\right)} \\
& =\sqrt{\left[(-2)^{2}+6^{2}+(-3)^{2}\right]}=\sqrt{49}=7
\end{aligned}
$$

Problem 8. If $p=2 i+j-k$ and $q=i-3 j+2 k$ determine:
(i) $\boldsymbol{p} \cdot \boldsymbol{q}$
(ii) $p+\boldsymbol{q}$
(iii) $|\boldsymbol{p}+\boldsymbol{q}|$
(iv) $|\boldsymbol{p}|+|\boldsymbol{q}|$

Solution:

(i) From equation (2),
if

$$
\boldsymbol{p}=a_{1} \boldsymbol{i}+a_{2} \boldsymbol{j}+a_{3} \boldsymbol{k}
$$

and

$$
\boldsymbol{q}=b_{1} \boldsymbol{i}+b_{2} \boldsymbol{j}+b_{3} \boldsymbol{k}
$$

then

$$
\boldsymbol{p} \cdot \boldsymbol{q}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}
$$

When

$$
\begin{aligned}
\boldsymbol{p} & =\mathbf{2} \boldsymbol{i}+\boldsymbol{j}-\boldsymbol{k} \\
a_{1} & =2, a_{2}=1 \text { and } a_{3}=-1
\end{aligned}
$$

and when $\boldsymbol{q}=\boldsymbol{i}-\mathbf{3 j} \mathbf{+ 2 \boldsymbol { k }}$,

$$
b_{1}=1, b_{2}=-3 \text { and } b_{3}=2
$$

Hence $\boldsymbol{p} \cdot \boldsymbol{q}=(2)(1)+(1)(-3)+(-1)(2)$
i.e. $\quad p \cdot q=-3$
(ii) $p+q=(2 \boldsymbol{i}+\boldsymbol{j}-\boldsymbol{k})+(\boldsymbol{i}-3 \boldsymbol{j}+2 \boldsymbol{k})$

$$
=3 i-2 j+k
$$

Solution:
(iii) $|\boldsymbol{p}+\boldsymbol{q}|=|3 i-2 j+k|$

From equation (3),

$$
|p+q|=\sqrt{\left[3^{2}+(-2)^{2}+1^{2}\right]}=\sqrt{\mathbf{1 4}}
$$

(iv) From equation (3),

$$
\begin{aligned}
|p| & =|2 i+j-k| \\
& =\sqrt{\left[2^{2}+1^{2}+(-1)^{2}\right]}=\sqrt{6}
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
|\boldsymbol{q}| & =|i-3 j+2 k| \\
& =\sqrt{\left[1^{2}+(-3)^{2}+2^{2}\right]}=\sqrt{14}
\end{aligned}
$$

Hence $|\boldsymbol{p}|+|\boldsymbol{q}|=\sqrt{6}+\sqrt{14}=\mathbf{6 . 1 9 1}$, correct to 3 decimal places.

Problem 9. Determine the angle between vectors oa and ob when

$$
o a=i+2 j-3 k
$$

Solution:

$$
\text { and } \quad \boldsymbol{o b}=2 \boldsymbol{i}-j+4 \boldsymbol{k} .
$$

An equation for $\cos \theta$ is given in equation (4)

$$
\cos \theta=\frac{a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}}{\sqrt{\left(a_{1}^{2}+a_{2}^{2}+a_{3}^{2}\right)} \sqrt{\left(b_{1}^{2}+b_{2}^{2}+b_{3}^{2}\right)}}
$$

Since $\boldsymbol{o} \boldsymbol{a}=\boldsymbol{i}+2 \boldsymbol{j}-3 \boldsymbol{k}$,

$$
a_{1}=1, a_{2}=2 \text { and } a_{3}=-3
$$

Since $\boldsymbol{o b}=2 \boldsymbol{i}-\boldsymbol{j}+4 \boldsymbol{k}$,

$$
b_{1}=2, b_{2}=-1 \text { and } b_{3}=4
$$

Thus,

$$
\begin{aligned}
\cos \theta & =\frac{(1 \times 2)+(2 \times-1)+(-3 \times 4)}{\sqrt{\left(1^{2}+2^{2}+(-3)^{2}\right)} \sqrt{\left(2^{2}+(-1)^{2}+4^{2}\right)}} \\
& =\frac{-12}{\sqrt{14} \sqrt{21}}=-0.6999 \\
\text { i.e. } \theta & =134.4^{\circ} \text { or } 225.6^{\circ} .
\end{aligned}
$$

Vector products

A second product of two vectors is called the vector or cross product and is defined in terms of its modulus and the magnitudes of the two vectors and the sine of the angle between them. The vector product of vectors $\mathbf{o a}$ and $\mathbf{o b}$ is written as $\mathbf{o a} \times \mathbf{o b}$ and is defined by:

$|\boldsymbol{o a} \times \boldsymbol{o b}|=\boldsymbol{o a} \boldsymbol{o b} \sin \theta$

where θ is the angle between the two vectors. The direction of $\boldsymbol{o a} \boldsymbol{x} \mathbf{o b}$ is perpendicular to both oa and ob, as shown in Fig 17

Fig 17
(J. O. Bird 2017)

(a)

(b)

The vector product of two vectors may be expressed in terms of the unit vectors. Let two vectors, a and b, be such that:

$$
\begin{aligned}
& \boldsymbol{a}=a_{1} \boldsymbol{i}+a_{2} \boldsymbol{j}+a_{3} \boldsymbol{k} \text { and } \\
& \boldsymbol{b}=b_{1} \boldsymbol{i}+b_{2} \boldsymbol{j}+b_{3} \boldsymbol{k}
\end{aligned}
$$

Then,

$$
\begin{aligned}
\boldsymbol{a} \times \boldsymbol{b}= & \left(a_{1} \boldsymbol{i}+a_{2} \boldsymbol{j}+a_{3} \boldsymbol{k}\right) \times\left(b_{1} \boldsymbol{i}+b_{2} \boldsymbol{j}+b_{3} \boldsymbol{k}\right) \\
= & a_{1} b_{1} \boldsymbol{i} \times \boldsymbol{i}+a_{1} b_{2} \boldsymbol{i} \times \boldsymbol{j} \\
& +a_{1} b_{3} \boldsymbol{i} \times \boldsymbol{k}+a_{2} b_{1} \boldsymbol{j} \times \boldsymbol{i}+a_{2} b_{2} \boldsymbol{j} \times \boldsymbol{j} \\
& +a_{2} b_{3} \boldsymbol{j} \times \boldsymbol{k}+a_{3} b_{1} \boldsymbol{k} \times \boldsymbol{i}+a_{3} b_{2} \boldsymbol{k} \times \boldsymbol{j} \\
& +a_{3} b_{3} \boldsymbol{k} \times \boldsymbol{k}
\end{aligned}
$$

But by the definition of a vector product,

$$
i \times j=k, j \times k=i \text { and } k \times i=j
$$

Also $\boldsymbol{i} \times \boldsymbol{i}=\boldsymbol{j} \times \boldsymbol{j}=\boldsymbol{k} \times \boldsymbol{k}=(1)(1) \sin 0^{\circ}=0$.
Remembering that $\boldsymbol{a} \times \boldsymbol{b}=-\boldsymbol{b} \times \boldsymbol{a}$ gives:

$$
\begin{aligned}
& \boldsymbol{a} \times \boldsymbol{b}=a_{1} b_{2} \boldsymbol{k}-a_{1} b_{3} \boldsymbol{j}-a_{2} b_{1} \boldsymbol{k}+a_{2} b_{3} \boldsymbol{i} \\
&+a_{3} b_{1} \boldsymbol{j}-a_{3} b_{2} \boldsymbol{i}
\end{aligned}
$$

Grouping the $\boldsymbol{i}, \boldsymbol{j}$ and \boldsymbol{k} terms together, gives:

$$
\begin{aligned}
\boldsymbol{a} \times \boldsymbol{b}=\left(a_{2} b_{3}-a_{3} b_{2}\right) \boldsymbol{i}+ & \left(a_{3} b_{1}-a_{1} b_{3}\right) \boldsymbol{j} \\
& +\left(a_{1} b_{2}-a_{2} b_{1}\right) \boldsymbol{k}
\end{aligned}
$$

The vector product can be written in determinant form as:

$$
\boldsymbol{a} \times \boldsymbol{b}=\left|\begin{array}{lll}
i & j & k \tag{5}\\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|
$$

The 3×3 determinant $\left|\begin{array}{lll}i & j & k \\ a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3}\end{array}\right|$ is evaluated as:

$$
\left.\boldsymbol{i}\left|\begin{array}{ll}
a_{2} & a_{3} \\
b_{2} & b_{3}
\end{array}\right|-\boldsymbol{j}\left|\begin{array}{ll}
a_{1} & a_{3} \\
b_{1} & b_{3}
\end{array}\right|+\boldsymbol{k} \right\rvert\, \begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}
$$

where

$$
\left.\begin{aligned}
& \left|\begin{array}{ll}
a_{2} & a_{3} \\
b_{2} & b_{3}
\end{array}\right|=a_{2} b_{3}-a_{3} b_{2}, \\
& \left|\begin{array}{ll}
a_{1} & a_{3} \\
b_{1} & b_{3}
\end{array}\right|=a_{1} b_{3}-a_{3} b_{1} \text { and } \quad \begin{array}{|c}
\\
|\boldsymbol{a} \times \boldsymbol{b}|=\sqrt{\left[(\boldsymbol{a} \cdot \boldsymbol{a})(\boldsymbol{b} \cdot \boldsymbol{b})-(\boldsymbol{a} \cdot \boldsymbol{b})^{2}\right]} \\
a_{1}
\end{array} a_{2} \\
& b_{1}
\end{aligned} b_{2} \right\rvert\,=a_{1} b_{2}-a_{2} b_{1} \quad \begin{aligned}
&
\end{aligned}
$$

Problem 10. Problem 7. For the vectors $a=i+4 j-2 k$ and $b=2 i-j+3 k$ find $\boldsymbol{a} \times \boldsymbol{b}$ and $|\boldsymbol{a} \times \boldsymbol{b}|$?
(i) From equation (5),

$$
\begin{aligned}
\boldsymbol{a} \times \boldsymbol{b} & =\left|\begin{array}{lll}
i & j & k \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right| \\
& =\boldsymbol{i}\left|\begin{array}{ll}
a_{2} & a_{3} \\
b_{2} & b_{3}
\end{array}\right|-\boldsymbol{j}\left|\begin{array}{ll}
a_{1} & a_{3} \\
b_{1} & b_{3}
\end{array}\right|+\boldsymbol{k}\left|\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right|
\end{aligned}
$$

Hence

$$
\begin{aligned}
\boldsymbol{a} \times \boldsymbol{b} & =\left|\begin{array}{rrr}
i & j & k \\
1 & 4 & -2 \\
2 & -1 & 3
\end{array}\right| \\
& =\boldsymbol{i}\left|\begin{array}{rr}
4 & -2 \\
-1 & 3
\end{array}\right|-\boldsymbol{j}\left|\begin{array}{rr}
1 & -2 \\
2 & 3
\end{array}\right| \\
& +\boldsymbol{k}\left|\begin{array}{rr}
1 & 4 \\
2 & -1
\end{array}\right| \\
& =\boldsymbol{i}(12-2)-\boldsymbol{j}(3+4)+\boldsymbol{k}(-1-8)(2 \boldsymbol{r} \\
& =\mathbf{1 0} \boldsymbol{i}-\mathbf{7} \boldsymbol{j}-\mathbf{9} \boldsymbol{k}
\end{aligned}
$$

(ii) From equation (7)

$$
|a \times b|=\sqrt{\left[(a \cdot a)(b \cdot b)-(a \cdot b)^{2}\right]}
$$

Now

$$
\begin{aligned}
\boldsymbol{a} \cdot \boldsymbol{a} & =(1)(1)+(4 \times 4)+(-2)(-2) \\
& =21
\end{aligned}
$$

$$
\boldsymbol{b} \cdot \boldsymbol{b}=(2)(2)+(-1)(-1)+(3)(3)
$$

$$
=14
$$

and

$$
\boldsymbol{a} \cdot \boldsymbol{b}=(1)(2)+(4)(-1)+(-2)(3)
$$

$$
=-8
$$

Thus $\quad|\boldsymbol{a} \times \boldsymbol{b}|=\sqrt{(21 \times 14-64)}$

$$
=\sqrt{230}=15.17
$$

Problem 11. Find the moment and the magnitude of the moment of a force of $(i+2 j-3 k)$ newtons about point B having co-ordinates $(0,1,1)$, when the force acts on a line through A whose co-ordinate are $(1,3,4)$?

The moment \boldsymbol{M} about point B of a force vector \boldsymbol{F} which has a position vector of \boldsymbol{r} from A is given by:

$$
M=r \times F
$$

Solution:
\boldsymbol{r} is the vector from B to A, i.e. $\boldsymbol{r}=\boldsymbol{B} \boldsymbol{A}$.
But $\boldsymbol{B A}=\boldsymbol{B} \boldsymbol{O}+\boldsymbol{O A}=\boldsymbol{O A}-\boldsymbol{O B}$ (see Problem 8,
Chapter 21), that is:

$$
\begin{aligned}
r & =(\boldsymbol{i}+3 \boldsymbol{j}+4 \boldsymbol{k})-(\boldsymbol{j}+\boldsymbol{k}) \\
& =\boldsymbol{i}+2 \boldsymbol{j}+3 \boldsymbol{k}
\end{aligned}
$$

Moment,

$$
\begin{aligned}
\boldsymbol{M}=\boldsymbol{r} \times \boldsymbol{F} & =(\boldsymbol{i}+2 \boldsymbol{j}+3 \boldsymbol{k}) \times(\boldsymbol{i}+2 \boldsymbol{j}-3 \boldsymbol{k}) \\
& =\left|\begin{array}{rrr}
i & j & k \\
1 & 2 & 3 \\
1 & 2 & -3
\end{array}\right| \\
& =\boldsymbol{i}(-6-6)-\boldsymbol{j}(-3-3) \\
& =-\mathbf{1 2 i}+\mathbf{6 j} \mathbf{N m}
\end{aligned}
$$

The magnitude of \boldsymbol{M},

$$
\begin{aligned}
|\boldsymbol{M}| & =|\boldsymbol{r} \times \boldsymbol{F}| \\
& =\sqrt{\left[(\boldsymbol{r} \cdot \boldsymbol{r})(\boldsymbol{F} \cdot \boldsymbol{F})-(\boldsymbol{r} \cdot \boldsymbol{F})^{\mathbf{2}}\right]} \\
\boldsymbol{r} \cdot \boldsymbol{r} & =(1)(1)+(2)(2)+(3)(3)=14 \\
\boldsymbol{F} \cdot \boldsymbol{F} & =(1)(1)+(2)(2)+(-3)(-3)=14 \\
\boldsymbol{r} \cdot \boldsymbol{F} & =(1)(1)+(2)(2)+(3)(-3)=-4 \\
|\boldsymbol{M}| & =\sqrt{\left[14 \times 14-(-4)^{2}\right]} \\
& =\sqrt{180} \mathrm{Nm}=\mathbf{1 3 . 4 2} \mathbf{~ N m}
\end{aligned}
$$

Vector equation of a line

In fig 18 If $r=a+A P$ and $A P=\lambda b$, where λ is a scalar quantity Hence

If, say, $\boldsymbol{r}=x \boldsymbol{i}+y \boldsymbol{j}+z \boldsymbol{k}, \boldsymbol{a}=a_{1} \boldsymbol{i}+a_{2} \boldsymbol{j}+a_{3} \boldsymbol{k}$ and $\boldsymbol{b}=b_{1} \boldsymbol{i}+b_{2} \boldsymbol{j}+b_{3} \boldsymbol{k}$, then from equation (8),

$$
x \boldsymbol{i}+y \boldsymbol{j}+z \boldsymbol{k}=\left(a_{1} \boldsymbol{i}+a_{2} \boldsymbol{j}+a_{3} \boldsymbol{k}\right)
$$

$$
+\lambda\left(b_{1} \boldsymbol{i}+b_{2} \boldsymbol{j}+b_{3} \boldsymbol{k}\right)
$$

Hence $x=a_{1}+\lambda b_{1}, y=a_{2}+\lambda b_{2}$ and $z=a_{3}+\lambda b_{3}$. Solving for λ gives:

$$
\begin{equation*}
\frac{x-a_{1}}{b_{1}}=\frac{y-a_{2}}{b_{2}}=\frac{z-a_{3}}{b_{3}}=\lambda \tag{9}
\end{equation*}
$$

Equation (9) is the standard Cartesian form for the vector equation of a straight line.

Problem 11. (a) Determine the vector equation of the line through the point with position vector $2 \boldsymbol{i}+3 \boldsymbol{j}-\boldsymbol{k}$ which is parallel to the vector $\boldsymbol{i}-2 \boldsymbol{i}+3 \boldsymbol{k}$.
(a) From equation (8),

$$
r=a+\lambda b
$$

i.e. $r=(2 i+3 j-k)+\lambda(i-2 j+3 k)$
or $\quad r=(2+\lambda) i+(3-2 \lambda) j+(3 \lambda-1) k$
which is the vector equation of the line.
(b) When $\lambda=3, \quad r=5 i-3 j+8 \boldsymbol{k}$.
(c) From equation (9),
$\frac{x-a_{1}}{b_{1}}=\frac{y-a_{2}}{b_{2}}=\frac{z-a_{3}}{b_{3}}=\lambda$
Since $\quad a=2 i+3 j-k$, then $a_{1}=2$,

$$
\begin{aligned}
a_{2} & =3 \text { and } a_{3}=-1 \text { and } \\
b & =i-2 j+3 k, \text { then } \\
b_{1} & =1, b_{2}=-2 \text { and } b_{3}=3
\end{aligned}
$$

Hence, the Cartesian equations are:

$$
\begin{aligned}
& \quad \frac{x-2}{1}=\frac{y-3}{-2}=\frac{z-(-1)}{3}=\lambda \\
& \text { i.e. } \quad x-2=\frac{3-y}{2}=\frac{z+1}{3}=\lambda
\end{aligned}
$$

(b) Find the point on the line corresponding to $\lambda=3$ in the resulting equation of part (a).
(c) Express the vector equation of the line in standard Cartesian form.

References:

1. J. O. Bird (2017), Higher engineering mathematics Eighth ed.
2. K. A. Stroud (1995), Engineering mathematics Fourth ed.
3. Fundamentals of Structural Engineering. Jerome J. Connor , Susan Faraji. Springer New York Heidelberg Dordrecht London. (2012).
