EXAM PAPERS PRACTICE

# Applied Math 

## Lesson 2

## Lecturer: Dr. Mahdi Jalali



EXAM PAPERS PRACTICE

## 1- The gradient of a curve

If a tangent is drawn at a point $P$ on a curve, then the gradient of this tangent is said to be the gradient of the curve at $P$. In next figure, the gradient of the curve at $P$ is equal to the gradient of the tangent $P Q$.


Figure 1

For the curve shown in next figure let the points $A$ and $B$ have co-ordinates ( $x_{1}, y_{1}$ ) and $\left(x_{2}, y_{2}\right)$, respectively. In functional notation, $y_{1}=f\left(x_{1}\right)$ and $y_{2}=f\left(x_{2}\right)$ as shown.


Figure 2

The gradient of the chord $A B$

$$
=\frac{B C}{A C}=\frac{B D-C D}{E D}=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{\left(x_{2}-x_{1}\right)}
$$

For the curve $f(x)=x^{2}$ shown in the following figure


Figure 3
(Obtained from J. O. Bird 2017)
(i) the gradient of chord $A B$

$$
=\frac{f(3)-f(1)}{3-1}=\frac{9-1}{2}=\mathbf{4}
$$

(ii) the gradient of chord $A C$

$$
=\frac{f(2)-f(1)}{2-1}=\frac{4-1}{1}=3
$$

iii) the gradient of chord $A D$

$$
=\frac{f(1.5)-f(1)}{1.5-1}=\frac{2.25-1}{0.5}=\mathbf{2 . 5}
$$

(iv) if $E$ is the point on the curve $(1.1, f(1.1))$ then the gradient of chord $A E$

$$
=\frac{f(1.1)-f(1)}{1.1-1}=\frac{1.21-1}{0.1}=\mathbf{2 . 1}
$$

$(v)$ if $F$ is the point on the curve $(1.01, f(1.01))$ then the gradient of chord $A F$

$$
=\frac{f(1.01)-f(1)}{1.01-1}=\frac{1.0201-1}{0.01}=\mathbf{2 . 0 1}
$$

Thus as point $B$ moves closer and closer to point $A$ the gradient of the chord approaches nearer and nearer to the value 2. This is called the limiting value of the gradient of the chord $A B$ and when $B$ coincides with $A$ the chord becomes the tangent to the curve.

## Differentiation from first principles

In following Figure, $A$ and $B$ are two points very close together on a curve, $\delta x$ (delta $x$ ) and $\delta y$ (delta $y$ ) representing small increments in the $x$ and $y$ directions, respectively.
(Obtained from J. O. Bird 2017)


Figure 4

Gradient of chord $A B=\frac{\delta y}{\delta x}$; however,
$\delta y=f(x+\delta x)-f(x)$.
Hence $\frac{\delta y}{\delta x}=\frac{f(x+\delta x)-f(x)}{\delta x}$.
As $\delta x$ approaches zero, $\frac{\delta y}{\delta x}$ approaches a limiting value and the gradient of the chord approaches the gradient of the tangent at $A$.
When determining the gradient of a tangent to a curve there are two notations used. The gradient of the curve at $A$ in Figure 4 can either be written as

$$
f^{\prime}(x)=\operatorname{limit}_{\delta x \rightarrow 0}\left\{\frac{f(x+\delta x)-f(x)}{\delta x}\right\}
$$

$\frac{\mathrm{d} y}{\mathrm{~d} x}$ is the same as $f^{\prime}(x)$ and is called the differential coefficient or the derivative. The process of finding the differential coefficient is called differentiation.


Problem 1. Differentiate from first principle $f(x)=x^{2}$ and determine the value of the gradient of the curve at $x=2$.
To 'differentiate from first principles' means 'to find $f^{\prime}(x)$ ' by using the expression

$$
\begin{aligned}
f^{\prime}(x) & =\operatorname{limit}_{\delta x \rightarrow 0}\left\{\frac{f(x+\delta x)-f(x)}{\delta x}\right\} \\
f(x) & =x^{2}
\end{aligned}
$$

Substituting $(x+\delta x)$ for $x$ gives
$f(x+\delta x)=(x+\delta x)^{2}=x^{2}+2 x \delta x+\delta x^{2}$, hence

$$
\begin{aligned}
f^{\prime}(x) & =\operatorname{limit}_{\delta x \rightarrow 0}\left\{\frac{\left(x^{2}+2 x \delta x+\delta x^{2}\right)-\left(x^{2}\right)}{\delta x}\right\} \\
& =\operatorname{limit}_{\delta x \rightarrow 0}\left\{\frac{\left(2 x \delta x+\delta x^{2}\right)}{\delta x}\right\} \\
& =\operatorname{limit}_{\delta x \rightarrow 0}[2 x+\delta x]
\end{aligned}
$$



EXAM PAPERS PRACTICE

As $\delta x \rightarrow 0,[2 x+\delta x] \rightarrow[2 x+0]$. Thus $\boldsymbol{f}^{\prime}(\boldsymbol{x})=\mathbf{2 x}$, (Obtained from J. O. Bird 2017) i.e. the differential coefficient of $x^{2}$ is $2 x$. At $x=2$, the gradient of the curve, $f^{\prime}(x)=2(2)=4$.

## Differentiation of common functions

From differentiation by first principles of a numhor $\cap f$ oxamples such as in Problem 1 above, a general rule for differentiating $y=a x^{n}$ emerges, where $a$ and $n$ are constants. The rule is:

$$
\text { if } y=a x^{n} \text { then } \frac{\mathrm{d} y}{\mathrm{~d} x}=a n x^{n-1}
$$

(or, if $f(x)=\boldsymbol{a} x^{\boldsymbol{n}}$ then $f^{\prime}(\boldsymbol{x})=\boldsymbol{a n} \boldsymbol{x}^{\boldsymbol{n - 1}}$ ) and is true for all real values of $a$ and $n$.

For example, if $y=4 x^{3}$ then $a=4$ and $n=3$, and

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=a n x^{n-1}=(4)(3) x^{3-1}=12 x^{2}
$$

$$
\begin{aligned}
& \text { If } y=a x^{n} \text { and } n=0 \text { then } y=a x^{0} \text { and } \\
& \frac{\mathrm{d} y}{\mathrm{~d} x}=(a)(0) x^{0-1}=0,
\end{aligned}
$$



Figure 5(a) shows a graph of $y=\sin x$. The gradient is continually changing as the curve moves from 0 to A to B to C to D . The gradient, given. $\underline{\mathrm{d} y}$, may be plotted in a corresponding position below $\mathrm{y}=\sin \mathrm{x}$, as shown in Fig 5(b). $\quad \frac{\mathrm{d} x}{}$
(i) At 0 , the gradient is positive and is at its steepest. Hence $0^{\prime}$ is a maximum positive value.


Figure 5
(ii) Between 0 and $A$ the gradient is positive but is decreasing in value until at $A$ the gradient is zero, shown as $A^{\prime}$.
(iii) Between $A$ and $B$ the gradient is negative but is increasing in value until at $B$ the gradient is at its steepest negative value. Hence $B^{\prime}$ is a maximum negative value.
(iv) If the gradient of $y=\sin x$ is further investigated between $B$ and $D$ then the resulting graph of $\frac{d y}{d x}$ is seen to be a cosine wave. Hence the rate of change of $\sin x$ is $\cos x$,
i.e. if $y=\sin x$ then $\frac{d y}{d x}=\cos x$
if $y=\sin a x$ then $\frac{d y}{d x}=a \cos a x$

If graphs of $y=\cos x, y=e X$ and $y=\ln x$ are plotted and their gradients investigated, their differential coefficients may be determined in a similar manner to that shown for $y=\sin x$. The rate of change of a function is a measure of the derivative. The standard derivatives summarised below may be proved theoretically and are true for all real values of $x$

| $y$ or $f(x)$ | $\frac{\mathrm{d} y}{\mathrm{~d} x}$ or $f^{\prime}(x)$ |
| :--- | :--- |
| $a x^{n}$ | $a n x^{n-1}$ |
| $\sin a x$ | $a \cos a x$ |
| $\cos a x$ | $-a \sin a x$ |
| $\mathrm{e}^{a x}$ | $a \mathrm{e}^{a x}$ |
| $\ln a x$ | $\frac{1}{x}$ |

## Note:

The differential coefficient of a sum or difference is the sum or difference of the differential coefficients of the separate terms.

Thus, if $f(x)=p(x)+q(x)-r(x)$,
(where $f, p, q$ and $r$ are functions),
then

$$
f^{\prime}(x)=p^{\prime}(x)+q^{\prime}(x)-r^{\prime}(x)
$$

Problem 2. Find the differential coefficients of
(a) $y=12 x^{3}$ (b) $y=\frac{12}{x^{3}}$.

If $y=a x^{n}$ then $\frac{\mathrm{d} y}{\mathrm{~d} x}=a n x^{n-1}$
(a) Since $y=12 x^{3}, \quad a=12$ and $n=3$ thus $\frac{\mathrm{d} y}{\mathrm{~d} x}=(12)(3) x^{3-1}=\mathbf{3 6} \boldsymbol{x}^{\mathbf{2}}$
(b) $y=\frac{12}{x^{3}}$ is rewritten in the standard $a x^{n}$ form as $y=12 x^{-3}$ and in the general rule $a=12$ and $n=-3$.

Thus $\frac{\mathrm{d} y}{\mathrm{~d} x}=(12)(-3) x^{-3-1}=-36 x^{-4}=-\frac{\mathbf{3 6}}{\boldsymbol{x}^{4}}$

Problem 3. Find the derivatives of Solution:
(a) $y=3 \sqrt{x}$
(b) $y=\frac{5}{\sqrt[3]{x^{4}}}$.
(a) $y=3 \sqrt{x}$ is rewritten in the standard differential
form as $y=3 x^{\frac{1}{2}}$.
In the general rule, $a=3$ and $n=\frac{1}{2}$
Thus $\frac{\mathrm{d} y}{\mathrm{~d} x}=(3)\left(\frac{1}{2}\right) x^{\frac{1}{2}-1}=\frac{3}{2} x^{-\frac{1}{2}}$

$$
=\frac{3}{2 x^{\frac{1}{2}}}=\frac{\mathbf{3}}{\mathbf{2} \sqrt{x}}
$$

(b) $y=\frac{5}{\sqrt[3]{x^{4}}}=\frac{5}{x^{\frac{4}{3}}}=5 x^{-\frac{4}{3}}$ in the standard differen-
tial form.
In the general rule, $a=5$ and $n=-\frac{4}{3} \quad$ Thus $\frac{\mathrm{d} y}{\mathrm{~d} x}=(5)\left(-\frac{4}{3}\right) x^{-\frac{4}{3}-1}=\frac{-20}{3} x^{-\frac{7}{3}}$

$$
=\frac{-20}{3 x^{\frac{7}{3}}}=\frac{\mathbf{- 2 0}}{\mathbf{3} \sqrt[3]{\boldsymbol{x}^{7}}}
$$

Problem 4. Differentiate, with respect to $x$,

$$
\begin{gathered}
y=5 x^{4}+4 x-\frac{1}{2 x^{2}}+\frac{1}{\sqrt{x}}-3 . \quad \text { Solution: } \\
y=5 x^{4}+4 x-\frac{1}{2 x^{2}}+\frac{1}{\sqrt{x}}-3 \text { is rewritten as } \\
y=5 x^{4}+4 x-\frac{1}{2} x^{-2}+x^{-\frac{1}{2}}-3
\end{gathered}
$$

When differentiating a sum, each term is differentiated in turn.
Thus $\frac{\mathrm{d} y}{\mathrm{~d} x}=(5)(4) x^{4-1}+(4)(1) x^{1-1}-\frac{1}{2}(-2) x^{-2-1}$ $+(1)\left(-\frac{1}{2}\right) x^{-\frac{1}{2}-1}-0$ $=20 x^{3}+4+x^{-3}-\frac{1}{2} x^{-\frac{3}{2}}$
i.e. $\frac{d y}{d x}=20 x^{3}+4+\frac{1}{x^{3}}-\frac{1}{2 \sqrt{x^{3}}}$
(Obtained from J. O. Bird 2017)

Problem 5. Find the differential coefficients of (a) $y=3 \sin 4 x$
(b) $f(t)=2 \cos 3 t$ with respect to the variable. Solution:
(a) When $\begin{aligned} y=3 \sin 4 x \text { then } \frac{\mathrm{d} y}{\mathrm{~d} x} & =(3)(4 \cos 4 x) \\ & =\mathbf{1 2} \cos \mathbf{4 x}\end{aligned}$
(b) When $f(t)=2 \cos 3 t$ then

$$
f^{\prime}(t)=(2)(-3 \sin 3 t)=-6 \sin 3 t
$$

Problem 6. Determine the derivatives of (a) $y=3 \mathrm{e}^{5 x}$ (b) $f(\theta)=\frac{2}{\mathrm{e}^{3 \theta}}$ (c) $y=6 \ln 2 x$.
. Solution:
(a) When $y=3 \mathrm{e}^{5 x}$ then $\frac{\mathrm{d} y}{\mathrm{~d} x}=(3)(5) \mathrm{e}^{5 x}=\mathbf{1 5} \mathrm{e}^{\mathbf{5 x}}$
(b) $f(\theta)=\frac{2}{\mathrm{e}^{3 \theta}}=2 \mathrm{e}^{-3 \theta}$, thus

$$
f^{\prime}(\theta)=(2)(-3) \mathrm{e}^{-30}=-6 \mathrm{e}^{-3 \theta}=\frac{-6}{\mathbf{e}^{3 \boldsymbol{\theta}}}
$$

(c) When $y=6 \ln 2 x$ then $\frac{\mathrm{d} y}{\mathrm{~d} x}=6\left(\frac{1}{x}\right)=\frac{6}{\boldsymbol{x}}$

Problem 7. Determine the co-ordinates of the point on the graph $\mathrm{y}=3 \mathrm{x} 2-7 \mathrm{x}+2$ where the gradient is -1 . Solution:

The gradient of the curve is given by the derivative. When $y=3 x^{2}-7 x+2$ then $\frac{\mathrm{d} y}{\mathrm{~d} x}=6 x-7$
Since the gradient is -1 then $6 x-7=-1$, from which, $x=1$

When $x=1, y=3(1)^{2}-7(1)+2=-2$
Hence the gradient is $\mathbf{- 1}$ at the point $(1,-2)$.


EXAM PAPERS PRACTICE

Differentiation of a product
When $y=u v$, and $u$ and $v$ are both functions of $x$, then

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=u \frac{\mathrm{~d} v}{\mathrm{~d} x}+v \frac{\mathrm{~d} u}{\mathrm{~d} x}
$$

This is known as the product rule.
Problem 8. Find the differential coefficient of $y=3 x^{2} \sin 2 x$
$3 x^{2} \sin 2 x$ is a product of two terms $3 x^{2}$ and $\sin 2 x$
Let $u=3 x^{2}$ and $v=\sin 2 x$
Using the product rule:

$$
\begin{array}{rlccc}
\frac{\mathrm{d} y}{\mathrm{~d} x} & =u \frac{\mathrm{~d} v}{\mathrm{~d} x}+ & v & \frac{\mathrm{~d} u}{\mathrm{~d} x} \\
\text { gives: } \quad & & \downarrow & \downarrow & \downarrow \\
\frac{\mathrm{d} y}{\mathrm{~d} x} & =\left(3 x^{2}\right)(2 \cos 2 x)+(\sin 2 x)(6 x) \\
\text { i.e. } \quad & \quad \frac{\mathrm{d} y}{\mathrm{~d} x} & =6 x^{2} \cos 2 x+6 x \sin 2 x \\
& =\mathbf{6 x}(x \cos 2 x+\sin 2 \boldsymbol{x})
\end{array}
$$

Problem 9. Find the rate of change of $y$ with respect to $x$ given $y=3 \sqrt{ } x \ln 2 x$.
Solution: The rate of change of $y$ with respect to $x$ is given by $\frac{\mathrm{d} y}{\mathrm{~d} x}$
$y=3 \sqrt{x} \ln 2 x=3 x^{\frac{1}{2}} \ln 2 x$, which is a product.
Let $u=3 x^{\frac{1}{2}}$ and $v=\ln 2 x$
Then $\frac{\mathrm{d} y}{\mathrm{~d} x}=u \quad \frac{\mathrm{~d} v}{\mathrm{~d} x}+v \quad \frac{\mathrm{~d} u}{\mathrm{~d} x}$ $=\left(3 x^{\downarrow} \begin{array}{c}\downarrow \\ \frac{1}{2}\end{array}\right)\left(\frac{1}{x}\right)+(\ln 2 x)\left[3\left(\frac{1}{2}\right)^{\downarrow} x^{\frac{1}{2}-1}\right]$ $=3 x^{\frac{1}{2}-1}+(\ln 2 x)\left(\frac{3}{2}\right) x^{-\frac{1}{2}}$ $=3 x^{-\frac{1}{2}}\left(1+\frac{1}{2} \ln 2 x\right)$
i.e. $\quad \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{3}{\sqrt{x}}\left(1+\frac{1}{2} \ln 2 x\right)$

Problem 10. Differentiate $y=x^{3} \cos 3 x \ln x$. Solution:

Let $u=x^{3} \cos 3 x$ (i.e. a product) and $v=\ln x$
Then $\frac{\mathrm{d} y}{\mathrm{~d} x}=u \frac{\mathrm{~d} v}{\mathrm{~d} x}+v \frac{\mathrm{~d} u}{\mathrm{~d} x}$
where $\frac{\mathrm{d} u}{\mathrm{~d} x}=\left(x^{3}\right)(-3 \sin 3 x)+(\cos 3 x)\left(3 x^{2}\right)$
and $\frac{\mathrm{d} v}{\mathrm{~d} x}=\frac{1}{x}$
Hence $\frac{\mathrm{d} y}{\mathrm{~d} x}=\left(x^{3} \cos 3 x\right)\left(\frac{1}{x}\right)+(\ln x)\left[-3 x^{3} \sin 3 x\right.$
EXAM PAPERS PRACTICE $\left.=x^{2} \cos 3 x+3 x^{2} \cos 3 x\right]$
i.e. $\quad \frac{\mathrm{d} y}{\mathrm{~d} x}=x^{2}\{\cos 3 x+3 \ln x(\cos 3 x-x \sin 3 x)\}$

Differentiation of a quotient
When $y=\frac{u}{v}$, and $u$ and $v$ are both functions of $x$
then $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{v \frac{\mathrm{~d} u}{\mathrm{~d} x}-u \frac{\mathrm{~d} v}{\mathrm{~d} x}}{v^{2}}$
This is known as the quotient rule.
Problem 11 Find the differential coefficient of $y=\frac{4 \sin 5 x}{5 x^{4}}$
$\frac{4 \sin 5 x}{5 x^{4}}$ is a quotient. Let $u=4 \sin 5 x$ and $v=5 x^{4}$

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{v \frac{\mathrm{~d} u}{\mathrm{~d} x}-u \frac{\mathrm{~d} v}{\mathrm{~d} x}}{v^{2}}
$$

where $\frac{\mathrm{d} u}{\mathrm{~d} x}=(4)(5) \cos 5 x=20 \cos 5 x$
and $\quad \frac{\mathrm{d} v}{\mathrm{~d} x}=(5)(4) x^{3}=20 x^{3}$
Hence

$$
\begin{aligned}
\frac{\mathrm{d} y}{\mathrm{~d} x} & =\frac{\left(5 x^{4}\right)(20 \cos 5 x)-(4 \sin 5 x)\left(20 x^{3}\right)}{\left(5 x^{4}\right)^{2}} \\
& =\frac{100 x^{4} \cos 5 x-80 x^{3} \sin 5 x}{25 x^{8}} \\
& =\frac{20 x^{3}[5 x \cos 5 x-4 \sin 5 x]}{25 x^{8}}
\end{aligned}
$$

$$
\text { i.e. } \quad \frac{d y}{d x}=\frac{4}{5 x^{5}}(5 x \cos 5 x-4 \sin 5 x)
$$

Problem 12. Determine the differential coefficient of $y=\tan a x$ Solution:
$y=\tan a x=\frac{\sin a x}{\cos a x}$. Differentiation of $\tan a x$ is thus treated as a quotient with $u=\sin a x$ and $v=\cos a x$

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{v \frac{\mathrm{~d} u}{\mathrm{~d} x}-u \frac{\mathrm{~d} v}{\mathrm{~d} x}}{v^{2}}
$$

$$
=\frac{(\cos a x)(a \cos a x)-(\sin a x)(-a \sin a x)}{(\cos a x)^{2}}
$$

$$
=\frac{a \cos ^{2} a x+a \sin ^{2} a x}{(\cos a x)^{2}}=\frac{a\left(\cos ^{2} a x+\sin ^{2} a x\right)}{\cos ^{2} a x}
$$

$$
=\frac{a}{\cos ^{2} a x}, \text { since } \cos ^{2} a x+\sin ^{2} a x=1
$$

Hence $\frac{\mathrm{d} y}{\mathrm{~d} x}=a \sec ^{2} a x \quad$ since $\quad \sec ^{2} a x=\frac{1}{\cos ^{2} a x}$

Problem 13. Find the derivative of $y=\sec a x$ Solution:

$$
\begin{aligned}
& \begin{aligned}
& y=\sec a x=\frac{1}{\cos a x} \text { (i.e. a quotient). Let } u=1 \text { and } \\
& v=\cos a x
\end{aligned} \\
& \qquad \begin{aligned}
\frac{\mathrm{d} y}{\mathrm{~d} x} & =\frac{v \frac{\mathrm{~d} u}{\mathrm{~d} x}-u \frac{\mathrm{~d} v}{\mathrm{~d} x}}{v^{2}} \\
& =\frac{(\cos a x)(0)-(1)(-a \sin a x)}{(\cos a x)^{2}} \\
& =\frac{a \sin a x}{\cos ^{2} a x}=a\left(\frac{1}{\cos a x}\right)\left(\frac{\sin a x}{\cos a x}\right)
\end{aligned} \\
& \text { i.e. } \frac{\mathbf{d} y}{\mathbf{d} x}=a \sec a x \tan a x
\end{aligned}
$$



Problem 14. Differentiate $y=\frac{t \mathrm{e}^{2 t}}{2 \cos t}$
Solution:
The function $\frac{t \mathrm{e}^{2 t}}{2 \cos t}$ is a quotient, whose numerator is a product.
Let $u=t \mathrm{e}^{2 t}$ and $v=2 \cos t$ then $\frac{\mathrm{d} u}{\mathrm{~d} t}=(t)\left(2 \mathrm{e}^{2 t}\right)+\left(\mathrm{e}^{2 t}\right)(1)$ and $\frac{\mathrm{d} v}{\mathrm{~d} t}=-2 \sin t$

Hence $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{v \frac{\mathrm{~d} u}{\mathrm{~d} x}-u \frac{\mathrm{~d} v}{\mathrm{~d} x}}{v^{2}}$

$$
\begin{aligned}
& =\frac{(2 \cos t)\left[2 t \mathrm{e}^{2 t}+\mathrm{e}^{2 t}\right]-\left(t \mathrm{e}^{2 t}\right)(-2 \sin t)}{(2 \cos t)^{2}} \\
& =\frac{4 t \mathrm{e}^{2 t} \cos t+2 \mathrm{e}^{2 t} \cos t+2 t \mathrm{e}^{2 t} \sin t}{4 \cos ^{2} t} \\
& =\frac{2 \mathrm{e}^{2 t}[2 t \cos t+\cos t+t \sin t]}{4 \cos ^{2} t}
\end{aligned}
$$

i.e. $\quad \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{e}^{2 t}}{2 \cos ^{2} t}(2 t \cos t+\cos t+t \sin t)$

Problem 15. Determine the gradient of the curve
$y=\frac{5 x}{2 x^{2}+4}$ at the point $\left(\sqrt{3}, \frac{\sqrt{3}}{2}\right)$
Solution: Let $y=5 x$ and $v=2 x^{2}+4$

$$
\begin{aligned}
\frac{\mathrm{d} y}{\mathrm{~d} x} & =\frac{v \frac{\mathrm{~d} u}{\mathrm{~d} x}-u \frac{\mathrm{~d} v}{\mathrm{~d} x}}{v^{2}}=\frac{\left(2 x^{2}+4\right)(5)-(5 x)(4 x)}{\left(2 x^{2}+4\right)^{2}} \\
& =\frac{10 x^{2}+20-20 x^{2}}{\left(2 x^{2}+4\right)^{2}}=\frac{20-10 x^{2}}{\left(2 x^{2}+4\right)^{2}}
\end{aligned}
$$

At the point $\left(\sqrt{3}, \frac{\sqrt{3}}{2}\right), x=\sqrt{3}$,

$$
\begin{aligned}
\text { hence the gradient } & =\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{20-10(\sqrt{3})^{2}}{\left[2(\sqrt{3})^{2}+4\right]^{2}} \\
& =\frac{20-30}{100}=-\frac{\mathbf{1}}{\mathbf{1 0}}
\end{aligned}
$$

## Function of a function

It is often easier to make a substitution before differentiating. If $y$ is a function of $x$ then

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} u} \times \frac{\mathrm{d} u}{\mathrm{~d} x}
$$

This is known as the 'function of a function' rule (or sometimes the chain rule).
For example, if $y=(3 x-1)^{9}$ then, by making the substitution $u=(3 x-1), y=u^{9}$, which is of the 'standard' form.

Hence $\frac{\mathrm{d} y}{\mathrm{~d} u}=9 u^{8}$ and $\frac{\mathrm{d} u}{\mathrm{~d} x}=3$
Then $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} u} \times \frac{\mathrm{d} u}{\mathrm{~d} x}=\left(9 u^{8}\right)(3)=27 u^{8}$
Rewriting $u$ as $(3 x-1)$ gives: $\frac{\mathbf{d} \boldsymbol{y}}{\mathbf{d} \boldsymbol{x}}=\mathbf{2 7}(\mathbf{3 x}-\mathbf{1})^{\mathbf{8}}$
Since $y$ is a function of $u$, and $u$ is a function of $x$,
 then $y$ is a function of a function of $x$.

Problem 16. Differentiate $y=3 \cos \left(5 x^{2}+2\right)$ Solution: Let $u=5 x^{2}+2$ then $y=3 \cos u$

Hence $\frac{\mathrm{d} u}{\mathrm{~d} x}=10 x$ and $\frac{\mathrm{d} y}{\mathrm{~d} u}=-3 \sin u$.
Using the function of a function rule,

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} u} \times \frac{\mathrm{d} u}{\mathrm{~d} x}=(-3 \sin u)(10 x)=-30 x \sin u
$$

Rewriting $u$ as $5 x^{2}+2$ gives:

$$
\frac{d y}{d x}=-30 x \sin \left(5 x^{2}+2\right)
$$



Problem 17. Find the derivative of $y=\left(4 t^{3}-3 t\right)^{6}$
Solution: Let $u=4 t^{3}-3 t$, then $y=u^{6}$
Hence $\frac{\mathrm{d} u}{\mathrm{~d} t}=12 t^{2}-3$ and $\frac{\mathrm{d} y}{\mathrm{~d} u}=6 u^{5}$
Using the function of a function rule,

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} u} \times \frac{\mathrm{d} u}{\mathrm{~d} x}=\left(6 u^{5}\right)\left(12 t^{2}-3\right)
$$

Rewriting $u$ as $\left(4 t^{3}-3 t\right)$ gives:

$$
\begin{aligned}
\frac{\mathbf{d} \boldsymbol{y}}{\mathbf{d} t} & =6\left(4 t^{3}-3 t\right)^{5}\left(12 t^{2}-3\right) \\
& =\mathbf{1 8}\left(\mathbf{4} t^{2}-\mathbf{1}\right)\left(\mathbf{4} t^{3}-\mathbf{3 t}\right)^{\mathbf{5}}
\end{aligned}
$$

Problem 18. Determine the differential coefficient of

Solution:

$$
y=\sqrt{\left(3 x^{2}+4 x-1\right)}
$$

$y=\sqrt{\left(3 x^{2}+4 x-1\right)}=\left(3 x^{2}+4 x-1\right)^{\frac{1}{2}}$
Let $u=3 x^{2}+4 x-1$ then $y=u^{\frac{1}{2}}$
Hence $\frac{\mathrm{d} u}{\mathrm{~d} x}=6 x+4$ and $\frac{\mathrm{d} y}{\mathrm{~d} u}=\frac{1}{2} u^{-\frac{1}{2}}=\frac{1}{2 \sqrt{u}}$
Using the function of a function rule,

$$
\begin{aligned}
\frac{\mathrm{d} y}{\mathrm{~d} x} & =\frac{\mathrm{d} y}{\mathrm{~d} u} \times \frac{\mathrm{d} u}{\mathrm{~d} x}=\left(\frac{1}{2 \sqrt{u}}\right)(6 x+4)=\frac{3 x+2}{\sqrt{u}} \\
\text { i.e. } \frac{\mathbf{d} \boldsymbol{y}}{\mathbf{d} \boldsymbol{x}} & =\frac{\mathbf{3 x + 2}}{\sqrt{\left(\mathbf{3} \boldsymbol{x}^{2}+\mathbf{4 x - 1}\right)}}
\end{aligned}
$$

Problem 19. Differentiate $y=3 \tan ^{4} 3 x$ Solution:

Let $u=\tan 3 x$ then $y=3 u^{4}$
Hence $\frac{\mathrm{d} u}{\mathrm{~d} x}=3 \sec ^{2} 3 x$, (from Problem 12 and

$$
\frac{\mathrm{d} y}{\mathrm{~d} u}=12 u^{3}
$$

Then $\quad \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} u} \times \frac{\mathrm{d} u}{\mathrm{~d} x}=\left(12 u^{3}\right)\left(3 \sec ^{2} 3 x\right)$
$=12(\tan 3 x)^{3}\left(3 \sec ^{2} 3 x\right)$
i.e. $\frac{d y}{d x}=36 \tan ^{3} 3 x \sec ^{2} 3 x$

> Problem 20. Find the differential coefficient of $y=\frac{2}{\left(2 t^{3}-5\right)^{4}}$ Solution:
$y=\frac{2}{\left(2 t^{3}-5\right)^{4}}=2\left(2 t^{3}-5\right)^{-4}$. Let $u=\left(2 t^{3}-5\right)$,
then $y=2 u^{-4}$
Hence $\quad \frac{\mathrm{d} u}{\mathrm{~d} t}=6 t^{2}$ and $\frac{\mathrm{d} y}{\mathrm{~d} u}=-8 u^{-5}=\frac{-8}{u^{5}}$
Then $\quad \frac{\mathrm{d} y}{\mathrm{~d} t}=\frac{\mathrm{d} y}{\mathrm{~d} u} \times \frac{\mathrm{d} u}{\mathrm{~d} t}=\left(\frac{-8}{u^{5}}\right)\left(6 t^{2}\right)$

$$
=\frac{-48 t^{2}}{\left(2 t^{3}-5\right)^{5}}
$$

## References:

1. J. O. Bird (2017), Higher engineering mathematics Eighth ed.
2. K. A. Stroud (1995) , Engineering mathematics Fourth ed.

