

Internal Energy And Energy Transfers

These practice questions can be used by students and teachers and is

Suitable for GCSE AQA Physics Topic Question 8463

Level: GSCE AQA 8463

Subject: Physics

Exam Board: GCSE AQA

Topic: Internal Energy And Energy Transfers

Q1.

The diagram below shows a cyclist riding along a flat road.

(a) Complete the sentence.

Choose answers from the box.

	chemical	elastic potential	gravitational potential	kinetic		
	As the cyclist a	ccelerates, the _		energy st	ore in	
	the cyclist's boo	dy decreases and	the	en	ergy of	
	the cyclist incre	ases.			(2	
(b)	The mass of the	e cyclist is 80 kg.	The speed of the cy	clist is 12 m/s.	ι	
	Calculate the k	inetic energy of th	ne cyclist.			
	Use the equation	on:				
		kinetic energ	gy = 0.5 × mass × (sj	peed) ²		
			Kinetic energy	/ =	J J (2	
(c)	When the cyclist uses the brakes, the bicycle slows down.					
	This causes the temperature of the brake pads to increase by 50 °C. The mass of the brake pads is 0.040 kg. The specific heat capacity of the material of the brake pads is 480 J/kg °C.					
	Calculate the c	hange in thermal	energy of the brake	pads.		
	For					

Use the equation	on:
change in therm	nal energy = mass × specific heat capacity × temperature change
	Change in thermal energy –
How is the interr temperature?	nal energy of the particles in the brake pads affected by the increase
Tick one box.	
Decreased	
Decreased Increased	

(1) (Total 7 marks)

Q2.

The figure below shows a balloon filled with helium gas.

(a) Describe the movement of the particles of helium gas inside the balloon.

(b) What name is given to the total kinetic energy and potential energy of all the particles of helium gas in the balloon?

Tick one box.	
External energy	
Internal energy	
Movement energy	

(1)

(c) Write down the equation which links density, mass and volume.

(1)

(d) The helium in the balloon has a mass of 0.00254 kg.

The balloon has a volume of 0.0141 m³.

Calculate the density of helium. Choose the correct unit from the box.

(Total 7 marks)

Q3.

(a) The figure below shows a fridge with a freezer compartment.

The temperature of the air inside the freezer compartment is -5 °C.

	F	reezer compartment
0		

Use the correct answer from the box to complete each sentence.

Each answer may be used once, more than once or not at all.

decreased unchanged increased

When the air near the freezer compartment is cooled, the energy of the

air particles is ______.

The spaces between the air particles are _____.

The density of the air is ______.

(b) The table below shows some information about three fridges, **A**, **B** and **C**.

The efficiency of each fridge is the same.

Fridge	Volume in litres	Energy used in one year in kWh
А	232	292
В	382	409
С	622	524

(i) Which fridge, **A**, **B** or **C**, would cost the least to use for 1 year?

Give **one** reason for your answer.

(ii) A householder looks at the data in the table above.

For more help, please visit exampaperspractice.co.uk

(3)

What should she conclude about the pattern linking the volume of the fridge and
the energy it uses in one year?

(1)

(iii) The householder could not be certain that her conclusion is correct for all fridges.

Suggest one reason why not.

(2)

Q4.

A student used the apparatus in **Figure 1** to compare the energy needed to heat blocks of different materials.

Each block had the same mass.

Each block had holes for the thermometer and the immersion heater.

Each block had a starting temperature of 20 °C.

The student measured the time taken to increase the temperature of each material by 5 °C.

(a) (i) State **two** variables the student controlled.

 1.

 2.

Figure 2 shows the student's results.

Figure 2

- (ii) Why was a bar chart drawn rather than a line graph?
- (iii) Which material was supplied with the most energy?

Give the reason for your answer.

(iv) The iron block had a mass of 2 kg.

Calculate the energy transferred by the heater to increase the temperature of the iron block by 5 °C.

The specific heat capacity of iron is 450 J / kg °C.

Energy transferred = ____

For more help, please visit exampaperspractice.co.uk

(1)

(2)

J

(2)

(b) The student used the same apparatus to heat a 1 kg block of aluminium.

He recorded the temperature of the block as it was heated from room temperature.

The results are shown in Figure 3.

Figure 3

Q5.

Figure 1 shows one way that biscuit manufacturers cook large quantities of biscuits.

The uncooked biscuits are placed on a moving metal grid.

The biscuits pass between two hot electrical heating elements inside an oven.

The biscuits turn brown as they cook.

The oven has two control knobs, as shown in Figure 2.

(3) (Total 6 marks)

Q6.

In this question you will be assessed on using good English, organising information clearly and using specialist terms where appropriate.

The information in the box is about the properties of solids and gases.

Solids:	
•	have a fixed shape
•	are difficult to compress (to squash)
Cocce	
Gases.	
•	will spread and fill the entire container
•	are easy to compress (to squash).

Use your knowledge of kinetic theory to explain the information given in the box.

You should consider:

- the spacing between the particles
- the movement of individual particles
- the forces between the particles.

Extra space ____

(Total 6 marks)

Q7.

(a) The figure below shows a fridge with a freezer compartment.

The temperature of the air inside the freezer compartment is -5 °C.

The air inside the fridge forms a convection current when the fridge door is closed. Explain why.

Fridge	Volume in litres	Energy used in one year in kWh
А	250	300
В	375	480
С	500	630
D	750	750

A householder concludes that the energy used in one year is directly proportional to the volume of the fridge.

Explain why her conclusion is **not** correct.

Use data from the table in your answer.

(c) New fridges are more efficient than fridges made twenty years ago.

Give **one** advantage and **one** disadvantage of replacing an old fridge with a new fridge.

Ignore the cost of buying a new fridge.

Advantage _____

Disadvantage _____

For more help, please visit exampaperspractice.co.uk

(4)

Q8.

A student used the apparatus in **Figure 1** to obtain the data needed to calculate the specific heat capacity of copper.

The initial temperature of the copper block was measured.

The power supply was switched on.

The energy transferred by the heater to the block was measured using the joulemeter.

The temperature of the block was recorded every minute.

The temperature increase was calculated.

Figure 2 shows the student's results.

Figure 2

For more help, please visit exampaperspractice.co.uk

(a) Energy is transferred through the copper block.

What is the name of the process by which the energy is transferred?

Tick (✔) one box.	
Conduction	
Convection	
Radiation	

(b) Use Figure 2 to determine how much energy was needed to increase the temperature of the copper block by 35 °C.

_____ joules

(1)

(1)

(c) The copper block has a mass of 2 kg.

Use your answer to part (b) to calculate the value given by this experiment for the specific heat capacity of copper. Give the unit.

Specific heat capacity = _____

- (3)
- (d) This experiment does **not** give the correct value for the specific heat of copper.

Suggest one reason why.

(1) (Total 6 marks)

Q9.

The diagram shows three cups **A**, **B** and **C**.

Energy is transferred from hot water in the cups to the surroundings.

(a) Some students investigated how the rate of cooling of water in a cup depends on the surface area of the water in contact with the air.

They used cups **A**, **B** and **C**. They poured the same volume of hot water into each cup and recorded the temperature of the water at regular time intervals.

The results are shown on the graph.

(i) What was the starting temperature of the water for each cup?

(ii) Calculate the temperature fall of the water in cup ${f B}$ in the first 9 minutes.

	Temperature fall = °C					
(iii)	Which cup, A , B or C , has the greatest rate of cooling?					
(iv)	The investigation was repeated using the bowl shown in the diagram.					
	The same starting temperature and volume of water were used.					
	Draw on the graph in part (b) another line to show the expected result.					
(v)	After 4 hours, the temperature of the water in each of the cups and the bowl was 20°C.					
	Suggest why the temperature does not fall below 20°C.					
(i)	The mass of water in each cup is 200 g.					
	Calculate the energy, in joules, transferred from the water in a cup when temperature of the water falls by 8°C.					
	Specific heat capacity of water = 4200 J / kg°C.					
	Energy transferred -					
	For more help, please visit exampaperspractice.co.uk					

(ii) Explain, in terms of particles, how evaporation causes the cooling of water.

Q10.

(a) A student used the apparatus drawn below to investigate the heating effect of an electric heater.

(i) Before starting the experiment, the student drew **Graph A**.

Graph A shows how the student expected the temperature of the metal block to change after the heater was switched on.

Describe the pattern shown in Graph A.

(2)

(1)

J

(2)

(ii) The student measured the room temperature. He then switched the heater on and measured the temperature of the metal block every 50 seconds.

The student calculated the increase in temperature of the metal block and plotted **Graph B**.

After 300 seconds, **Graph B** shows the increase in temperature of the metal block is lower than the increase in temperature expected from **Graph A**.

Suggest one reason why.

(iii) The power of the electric heater is 50 watts.

Calculate the energy transferred to the heater from the electricity supply in 300 seconds.

Energy transferred = ___

(b) The student uses the same heater to heat blocks of different metals. Each time the For more help, please visit exampaperspractice.co.uk

heater is switched on for 300 seconds.

Each block of metal has the same mass but a different specific heat capacity.

Metal	Specific heat capacity in J/kg°C
Aluminium	900
Iron	450
Lead	130

Which one of the metals will heat up the most?

Draw a ring around the correct answer.

aluminium	iron	lead
-----------	------	------

Give, in terms of the amount of energy needed to heat the metal blocks, a reason for your answer.

(2) (Total 7 marks)

Q11.

The picture shows a person taking a hot shower.

(a) When a person uses the shower the mirror gets misty.

Why?

(b)	The homeowner installs an electrically heated mirror into the shower room.
(~)	····· ································

When a person has a shower, the heated mirror does **not** become misty but stays clear.

Why does the mirror stay clear?

(2) (Total 5 marks)

Q12.

(a) In this question you will be assessed on using good English, organising information clearly and using specialist terms where appropriate.

The diagram shows the structure of a vacuum flask.

(3)

A vacuum flask is designed to reduce the rate of energy transfer by heating processes.

Describe how the design of a vacuum flask keeps the liquid inside hot.

(b) Arctic foxes live in a very cold environment.

© Purestock/Thinkstock

Arctic foxes have small ears.

How does the size of the ears help to keep the fox warm in a cold environment?

Q13.

An electric immersion heater is used to heat the water in a domestic hot water tank. When the immersion heater is switched on the water at the bottom of the tank gets hot.

(a) Complete the following sentence.

The main way the energy is transferred through the copper wall of the water tank is

by the process of _____

(b) The immersion heater has a thermostat to control the water temperature.

When the temperature of the water inside the tank reaches 58°C the thermostat switches the heater off. The thermostat switches the heater back on when the temperature of the water falls to 50°C.

Graph A shows how the temperature of the water inside a hot water tank changes with time. The tank is **not** insulated.

Time in hours

(i) The temperature of the water falls at the fastest rate just after the heater switches off.

Explain why.

(ii) To heat the water in the tank from 50°C to 58°C the immersion heater transfers 4032 kJ of energy to the water.

Calculate the mass of water in the tank.

Specific heat capacity of water = 4200 J/kg°C

(2)

(1)

Ma	ass =	kg	

(iii) An insulating jacket is fitted to the hot water tank.

Graph B shows how the temperature of the water inside the insulated hot water tank changes with time.

An insulating jacket only costs £12.

By comparing **Graph A** with **Graph B**, explain why fitting an insulating jacket to a hot water tank saves money.

(3) (Total 9 marks)

(3)

Q14.

(a) The diagrams, **X**, **Y** and **Z**, show how the particles are arranged in the three states of matter.

(i) Which **one** of the diagrams, **X**, **Y** or **Z**, shows the arrangement of particles in a liquid?

Write the correct answer in the box.

(ii) Which **one** of the diagrams, **X**, **Y** or **Z**, shows the arrangement of particles in a gas?

Write the correct answer in the box.

- (b) Draw a ring around the correct answer in each box to complete each sentence.
 - (i) In a gas, the particles are vibrating in fixed positions. moving randomly. not moving.
 (ii) In a solid, the forces between the particles are equal to weaker than

forces between the particles in a liquid.

(1)

(c) The picture shows a puddle of water in a road, after a rain shower.

(1)

(1)

(1)

(i) During the day, the puddle of water dries up and disappears. This happens because the water particles move from the puddle into the air.

evaporation

What process causes water particles to move from the puddle into the air?

Draw a ring around the correct answer.

condensation

radiation

(1)

(ii) Describe **one** change in the weather which would cause the puddle of water to dry up faster.

(1) (Total 6 marks)

Q15.

Diagram 1 shows the energy transferred per second from a badly insulated house on a cold day in winter.

Diagram 1

	Through the roof
	1.7 kJ/s Through the walls 1.1 kJ/s Through draughts 0.8 kJ/s Through the floor 0.7 kJ/s
(i)	 When the inside of the house is at a constant temperature, the energy transferred from the heating system to the inside of the house equals the energy transferred from the house to the outside. Calculate, in kilowatts, the power of the heating system used to keep the inside of the house in Diagram 1 at a constant temperature. 1 kilowatt (kW) = 1 kilojoule per second (kJ/s)
	Power of the heating system = kW
(ii)	In the winter, the heating system is switched on for a total of 7 hours each day.
	Calculate, in kilowatt-hours, the energy transferred each day from the heating system to the inside of the house.
	Energy transferred each day = kWh
(iii)	Energy costs 15 p per kilowatt-hour.
	Calculate the cost of heating the house for one day.

(a)

Cost = _____

(1)

(2)

(1)

(iv) The heating system is switched off at midnight.

The graph shows how the temperature inside the house changes after the heating system has been switched off.

Draw a ring around the correct answer in the box to complete the sentence.

Between midnight and 6 am the rate of energy transfer from

decreases. the house decreases then stays constant. increases.

Give the reason for your answer.

(2)

(b) Diagram 2 shows how the walls of the house are constructed. Diagram 3 shows how the insulation of the house could be improved by filling the air gap between the two brick walls with plastic foam.

The plastic foam reduces energy transfer by convection.

Explain why.

(2) (Total 8 marks)

Q16.

The diagram shows the design of a solar cooker. The cooker heats water using infrared radiation from the Sun.

- (a) Why is the inside of the large curved dish covered with shiny metal foil?
- (b) Which would be the best colour to paint the outside of the metal cooking pot?Draw a ring around the correct answer.

For more help, please visit exampaperspractice.co.uk

(1)

black	silver	white
Give a reason for your answer.		
Why does the cooking pot have	a lid?	
Calculate how much energy is n 80 °C.	eeded to increase t	he temperature of 2 kg of water by
Calculate how much energy is n 80 °C. The specific heat capacity of wa	eeded to increase t ter = 4200 J/kg °C.	he temperature of 2 kg of water by
Calculate how much energy is n 80 °C. The specific heat capacity of wa	eeded to increase t ter = 4200 J/kg °C.	he temperature of 2 kg of water by
Calculate how much energy is n 80 °C. The specific heat capacity of wa	eeded to increase t ter = 4200 J/kg °C.	he temperature of 2 kg of water by
Calculate how much energy is n 80 °C. The specific heat capacity of wa	eeded to increase t ter = 4200 J/kg °C.	he temperature of 2 kg of water by
Calculate how much energy is n 80 °C. The specific heat capacity of wa	eeded to increase t ter = 4200 J/kg °C.	he temperature of 2 kg of water by

Q17.

The diagram shows a car radiator. The radiator is part of the engine cooling system.

Liquid coolant, heated by the car engine, enters the radiator. As the coolant passes through the radiator, the radiator transfers energy to the surroundings and the temperature of the coolant falls.

(a) Why is the radiator painted black?

(2) (b) Different radiators have different numbers of cooling fins along the length of the radiator. The sketch graph shows how the number of cooling fins affects the rate of energy transfer from the radiator. Rate of energy transfer from the radiator in kJ/s

Number of cooling fins

The number of cooling fins affects the rate of energy transfer from the radiator.

Explain how.

When the car engine is working normally, 2 kg of coolant passes through the radiaton each second. The temperature of the coolant falls from 112 °C to 97 °C.		
Calculate the energy transferred each second from the coolant.		
Specific heat capacity of the coolant = 3800 J/kg °C.		
Energy transferred each second =J		
On cold days, some of the energy transferred from a hot car engine is used to warm the air inside the car. This is a useful energy transfer.		
What effect, if any, does this energy transfer have on the overall efficiency of the car engine?		
Draw a ring around the correct answer.		
decreases the does not change the increases the efficiency efficiency efficiency		
Give a reason for your answer.		

Q18.

According to kinetic theory, all matter is made up of small particles. The particles are constantly moving.

Diagram 1 shows how the particles may be arranged in a solid.

(a) One kilogram of a gas has a much larger volume than one kilogram of a solid.

Use kinetic theory to explain why.

(4)

(b) **Diagram 2** shows the particles in a liquid. The liquid is evaporating.

(i) How can you tell from **Diagram 2** that the liquid is evaporating?

(ii) The temperature of the liquid in the container decreases as the liquid evaporates.

Use kinetic theory to explain why.

(3) (Total 8 marks)

Q19.

Heat exchangers are devices used to transfer heat from one place to another.

The diagram shows a pipe being used as a simple heat exchanger by a student in an investigation.

Heat is transferred from the hot water inside the pipe to the cold water outside the pipe.

(a) Complete the following sentence by drawing a ring around the correct word in the box.Heat is transferred from the hot water inside the pipe

to the cold water outside the pipe by

conduction.

radiation.

(b) The student wanted to find out if the efficiency of a heat exchanger depends on the material used to make the pipe. The student tested three different materials. For each material, the rate of flow of hot water through the pipe was kept the same.

Temperature of the cold Temperature of the cold Material water at the start in °C water after 10 minutes in °C 20 36 Copper 20 23 Glass Plastic 20 21

The student's results are recorded in the table.

(i) The rate of flow of hot water through the pipe was one of the control variables in the investigation.

Give one other control variable in the investigation.

(ii) Which one of the three materials made the best heat exchanger?

Give a reason for your answer.

The student finds a picture of a heat exchanger used in an industrial laundry. (c) The heat exchanger uses hot, dirty water to heat cold, clean water.

For more help, please visit exampaperspractice.co.uk

(1)

(2)

This heat exchanger transfers heat faster than the heat exchanger the student used in the investigation.

Explain why.

Q20.

(a) The diagrams show the arrangement of the particles in a solid and in a gas.

Each circle represents one particle.

(i) Complete the diagram below to show the arrangement of the particles in a liquid.

Liquid

(ii) Explain, in terms of the particles, why gases are easy to compress.

(b) The diagram below shows the model that a science teacher used to show her students that there is a link between the temperature of a gas and the speed of the gas particles.

The ball-bearings represent the gas particles. Switching the motor on makes the ball-bearings move around in all directions.

For more help, please visit exampaperspractice.co.uk

(2)

- (i) How is the motion of the ball-bearings similar to the motion of the gas particles?
- (ii) The faster the motor runs, the faster the ball-bearings move. Increasing the speed of the motor is like increasing the temperature of a gas.

Use the model to predict what happens to the speed of the gas particles when the temperature of a gas is increased.

(1) (Total 6 marks)

(1)

Q21.

The diagram shows two thermometers. The bulb of each thermometer is covered with a piece of wet cotton wool. One of the thermometers is placed in the draught from a fan.

The graph shows how the temperature of each thermometer changes with time.

(a) Which of the graph lines, **A** or **B**, shows the temperature of the thermometer placed in the draught?

Write the correct answer in the box.

Explain, in terms of evaporation, the reason for your answer.

(3)

(b) A wet towel spread out and hung outside on a day without wind dries faster than an identical wet towel left rolled up in a plastic bag.

Explain why.

Q22.

The diagram shows how one type of electric storage heater is constructed. The heater has ceramic bricks inside. The electric elements heat the ceramic bricks during the night. Later, during the daytime, the ceramic bricks transfer the stored energy to the room.

(a) In winter, the electricity supply to a 2.6 kW storage heater is switched on each day between midnight and 7 am. Between these hours, electricity costs 5 p per kilowatt-hour.

Calculate the daily cost of using the storage heater.

Show clearly how you work out your answer.

Cost = _____ p

- (3)
- (b) Homes with electric storage heaters have a separate meter to measure the electricity supplied between midnight and 7 am. Another meter measures the electricity supplied at other times. This electricity supplied at other times costs 15 p per kilowatt-hour.

Electricity companies encourage people to use electricity between midnight and 7 am by selling the electricity at a lower cost.

Suggest why.

(c)	By 7 am, the temperature at the centre of the ceramic bricks is about 800 °C.
	The temperature of the outside metal casing is about 80 °C.

The ceramic bricks are surrounded by 'super-efficient' insulation.

Explain why.

starts to f During th	all. The temperature of the bricks falls by 100 °C over the next four hours. s time, 9 000 000 J of energy are transferred from the bricks.
Calculate	the total mass of ceramic bricks inside the heater.
Specific h	eat capacity of the ceramic bricks = 750 J/kg °C.
Show cle	arly how you work out your answer.

(Total 8 marks)

(1)

Q23.

The diagram shows the direction of heat transfer through a single-glazed window.

- (a) (i) Name the process by which heat is transferred **through** the glass.
 - (ii) Explain how heat is transferred **through** the glass.

(b) The rate of heat transfer through a window depends on the difference between the inside and outside temperatures.

The graph shows the rate of heat transfer through a 1 m² single-glazed window for a range of temperature differences.

(2)

(1)

- What is the range of temperature differences shown in the graph?
 From ______ to ______ to ______
- (ii) A student looks at the graph and concludes:

'Doubling the temperature difference doubles the rate of heat transfer.'

Use data from the graph to justify the student's conclusion.

(iii) A house has single-glazed windows. The total area of the windows in the house is 15 m^2 .

On one particular day, the difference between the inside and outside temperatures is 20 °C.

Use the graph to calculate the total rate of heat transfer through all of the windows on this particular day.

Show clearly how you work out your answer.

For more help, please visit exampaperspractice.co.uk

(2)

(1)

(c) A homeowner plans to replace the single-glazed windows in his home with double-glazed windows. He knows that double-glazed windows will reduce his annual energy bills.

The table gives information about the double glazing to be installed by the homeowner.

Cost to buy and install	Estimated yearly savings on energy bills	Estimated lifetime of the double-glazed windows
£5280	£160	30 years

Explain, in terms of energy savings, why replacing the single-glazed windows with these double-glazed windows is not cost effective.

To gain full marks you must complete a calculation.

(2) (Total 10 marks)

(2)

Q24.

A wood burning stove is used to heat a room.

Photograph supplied by iStockphoto/Thinkstock

The fire in the stove uses wood as a fuel. The fire heats the matt black metal case of the stove.

(a) The air next to the stove is warmed by infrared radiation.

How does the design of the stove help to improve the rate of energy transfer by infrared radiation?

(b) Burning 1 kg of wood transfers 15 MJ of energy to the stove. The stove then transfers 13.5 MJ of energy to the room.

Calculate the efficiency of the stove.

Show clearly how you work out your answer.

For more help, please visit exampaperspractice.co.uk

(2)

(c) Some of the energy from the burning wood is wasted as the hot gases leave the chimney and warm the air outside the house.

Name **one** other way energy is wasted by the stove.

(d) Some people heat their homes using electric heaters. Other people heat their homes using a wood burning stove.

Give **two** environmental advantages of using a wood burning stove to heat a home rather than heaters that use electricity generated from fossil fuels.

1				
2.				

(e) The metal case of the stove gets hot when the fire is lit.

Here is some information about the stove.

Mass of metal case	100 kg
Starting temperature of metal case	20 °C
Final temperature of metal case	70 °C
Specific heat capacity of metal case	510 J/kg °C

Calculate the energy required to raise the temperature of the metal case to 70 °C. Show clearly how you work out your answer and give the unit.

Energy required = _____

For more help, please visit exampaperspractice.co.uk

(2)

(2)

(1)

(Total 10 marks)

Q25.

The diagram shows a metal pan being used to heat water.

Energy from the gas flame is transferred through the metal pan by conduction.

Explain the process of conduction through metals.

Q26.

The diagram shows how the metal chimney from a log-burning stove passes through the inside of a house.

(a) Explain how heat is transferred by the process of convection from the inside of the stove to the top of the chimney.

- (b) Although the outside of the chimney becomes very hot, there is no insulating material around the chimney.
 - (i) Explain, in terms of the particles in a metal, how heat is transferred by conduction from the inside to the outside of the metal chimney.

For more help, please visit exampaperspractice.co.uk

(2)

(ii) Suggest **one** advantage of having no insulation around the chimney.

(1) (Total 5 marks)

Q27.

(a) The diagram shows a ski jacket that has been designed to keep a skier warm. The jacket is made from layers of different materials.

(i) The inner layer is shiny to reduce heat transfer.

Which process of heat transfer will it reduce?

(ii) Why is the layer of fleece good at reducing the transfer of heat from a skier's body?

(1)

(1)

(b) A student tested four different types of fleece, J, K, L and M, to find which would make the warmest jacket. Each type of fleece was wrapped around a can which was then filled with hot water. The temperature of the water was taken every two minutes for 20 minutes.

The graph shows the student's results.

- (i) In each test, the water cooled faster during the first five minutes than during the last five minutes. Why?
- (ii) To be able to compare the results, it was important to use the same volume of water in each test.

Give **one** other quantity that was the same in each test.

(iii) Look at the graph line for fleece **K**.

For more help, please visit exampaperspractice.co.uk

(1)

(1)

Estimate what the temperature of the water in the can wrapped in fleece ${\bf K}$ would be after 40 minutes.

(iv) Which type of fleece, **J**, **K**, **L** or **M**, should the student recommend to be used in the ski jacket?

live a reason for your answer.	

Q28.

Heat exchangers are devices that are used to transfer heat from one place to another.

The diagram shows a simple heat exchanger used by a student in an investigation. Heat is transferred from the hot water inside the pipe to the cold water outside the pipe.

- (a) By which process is heat transferred from the hot water inside the pipe to the cold water outside the pipe?
- (b) The student wanted to find out if the efficiency of a heat exchanger depends on the material used to make the pipe. The student tested three different materials. For each material, the rate of flow of hot water through the pipe was kept the same.

The results obtained by the student are recorded in the table and displayed in the bar

For more help, please visit exampaperspractice.co.uk

(1)

(1)

chart.

Material	Temperature of the cold water at the start in °C	Temperature of the cold water after 10 minutes in °C
Copper	20	36
Glass	20	23
Plastic	20	21

(i) The rate of flow of hot water through the pipe was one of the control variables in the investigation.

Give one other control variable in the investigation.

(ii) Why did the student draw a bar chart rather than a line graph?

(1)

(1)

(iii) Which one of the three materials made the best heat exchanger?

Give a reason for your answer.

(c) The student finds a picture of a heat exchanger used in an industrial laundry. The heat exchanger uses hot, dirty water to warm cold, clean water.

Why does this heat exchanger transfer heat faster than the heat exchanger used by the student in the investigation?

(2)

Q29.

(a) The diagram shows two switches on a room heater. The heater has three power settings. The power produced by two of the settings is given in the table.

High

(i) When both switches are on, the heater works at the high power setting.

What is the power of the heater, in kilowatts, when it is switched to the **high** power setting?

Power =	kilowatts

(1)

(ii) The heater is used on the high power setting. It is switched on for 1½ hours.Calculate the energy transferred from the mains to the heater in 1½ hours.

Show clearly how you work out your answer and give the unit.

Energy transferred = _____

(iii) This type of heater is a very efficient device.

What is meant by a device being very efficient?

(1)

(3)

(b) The graph shows how the temperature of a room changes during the 1½ hours that the heater is used.

After 1 hour, the temperature of the room has become constant, even though the heater is still switched on.

Explain why.

Q30.

A vacuum flask is designed to reduce the rate of heat transfer.

(a) (i) Complete the table to show which methods of heat transfer are reduced by each of the features labelled in the diagram.

The first row has been done for you.

Feature	Conduction	Convection	Radiation
vacuum	×	×	
silveredsurfaces			
plastic cap			

(2)

(2)

(ii) Explain why the vacuum between the glass walls of the flask reduces heat transfer by conduction and convection.

(b) The diagram shows a gas flame patio heater.

(i) Explain why the top surface of the reflecting hood should be a light, shiny surface rather than a dark, matt surface.

(2)

(ii) Most of the chemical energy in the gas is transformed into heat. A **small** amount of chemical energy is transformed into light.

Draw and label a Sankey diagram for the patio heater.

- (2)
- (iii) State why the total energy supplied to the patio heater must always equal the total energy transferred by the patio heater.
 - (1) (Total 9 marks)

Q31.

(a) The graph compares how quickly hot water cooled down in two glass beakers with different surface areas.

The volume of water in each beaker was the same.

Describe how the surface area of the water affected how fast the water cooled down.

(b) Some foxes live in a hot desert environment.

For more help, please visit exampaperspractice.co.uk

(1)

This type of fox has very large ears.

Explain how the size of the fox's ears help it to keep cool in a hot desert.

Use the words in the box to complete the following sentences.

conduction	convection	radiation

- (i) The white colour of a polar bear's fur helps to keep the polar bear warm by reducing the heat lost by ______.
- (ii) The hairs of a reindeer are hollow. The air trapped inside the hairs reduces

the heat lost by _____.

(1) (Total 5 marks)

(1)

Q32.

The diagram shows a fridge-freezer.

For more help, please visit exampaperspractice.co.uk

(2)

(a) By which method is heat transferred through the walls of the fridge-freezer?

	(*
The inside of the fridge is at 4 °C. The inside of the freezer is at -18 °C.	
Into which part of the fridge-freezer will the rate of heat transfer be greater?	
Draw a ring around your answer.	
the fridge the freezer	
Give a reason for your answer.	
The outside surface of the fridge-freezer is white and shiny.	
Give two reasons why this type of surface is suitable for a fridge-freezer.	
1	
2	
2	
	(
(Tot	al 4 mark

Q33.

- (a) In winter, energy is transferred from the warm air inside a house to the air outside.
 - (i) What effect will the energy transferred from the house have on the air outside?

(1)

(ii) What would happen to the energy transfer if the temperature inside the house were reduced? Assume the temperature outside the house does not change.

(1)

(b) To increase energy efficiency, a householder installs a heat exchanger to an outside wall of the house. The heat exchanger uses heat from the air outside to warm the inside of the house. The diagram shows the idea of the heat exchanger.

Physics Through Applications edited by J Jardine et el (OUP, 1989), copyright © Oxford University Press, reprinted by permission of Oxford University Press.

- (i) Why does the heat exchanger cost money to run?
- (ii) The heat exchanger is cost effective in reducing energy consumption. Explain why.

(2) (Total 5 marks)

(1)

Q34.

(a) The graph shows the temperature inside a flat between 5 pm and 9 pm. The central heating was on at 5 pm.

(i) What time did the central heating switch off?

(ii) Closing the curtains reduces heat loss from the flat.

What time do you think the curtains were closed?

Give a reason for your answer.

(b) Less heat is lost through double-glazed windows than through single-glazed windows.

(1)

(2)

Complete the following sentences by choosing the correct words from the box. Each word may be used once or not at all.

conduction	conductor	convection	evaporation	insulator	radiation
Air is a	a good	W	hen trapped betw	een two sheets	of
glass i	t reduces heat los	s by	and		
					(3)

(c) The table gives information about three types of house insulation.

Type of insulation	Cost to install	Money save each year on heating bills	Payback time
Double glazing	£4000	£200	20 years
Loft insulation	£300	£100	3 years
Cavity wallinsulation	£600	£150	

- (i) Use the information in the table to calculate the payback time for cavity wall insulation.
- (1)
- (ii) Explain why people often install loft insulation before installing double glazing or cavity wall insulation.

(2) (Total 9 marks)

Q35.

A student had read about a glacier that had been covered in insulating material. The idea was to slow down the rate at which the glacier melts in the summer.

She investigated this idea using the apparatus shown in the diagram.

(a) These are the steps taken by the student.

- Measure 30 cm³ of cold water into a boiling tube.
- Place the boiling tube 25 cm from an infra red lamp.
- Record the temperature of the water.
- Switch on the infra red lamp.
- Record the temperature of the water every minute for 5 minutes.
- Repeat with boiling tubes covered in different insulating materials.
- (i) Why did she use an infra red lamp?
- (ii) Name **one** control variable in this investigation.

(1)

(1)

(iii) Give **one** advantage of using a temperature sensor and data logger instead of a glass thermometer to measure temperature.

(b) The results of the investigation are shown in the graph.

For more help, please visit exampaperspractice.co.uk

(1)

(1)

(c) Explain, in terms of particles, how heat is transferred through the glass wall of a boiling tube.

(2) (Total 9 marks)

Mark schemes

Q	1	-

(a)	chemical	1	
	kinetic	1	
	in this order only	-	
(b)	$E_k = 0.5 \times 80 \times 12^2$	1	
	E _k = 5760 (J)		
	an answer of 5760 (J) scores 2 marks	1	
(c)	$E = 0.040 \times 480 \times 50$	1	
	E = 960 (J)		
	an answer of 960 (J) scores 2 marks	1	
(d)	increased	1	[7]
02			
(a)	range of speeds	1	
	moving in different directions accept random motion	1	
(b)	internal energy	1	
(c)	density = mass / volume	1	
(d)	0.00254 / 0.0141	1	
	0.18	1	
	accept 0.18 with no working shown for the 2 calculation marks	-	
	kg / m³	1	[7]

Q3.

	correct order only	1
decr	eased	1
incre	ased	1
(i)	A reason only scores if A chosen	1
	uses least / less energy (in 1 year) a comparison is required accept uses least power accept uses least kWh	1
(ii)	greater the volume the greater the energy it uses (in 1 year)	1
(iii)	a very small number sampled accept only tested 3 accept insufficient evidence / data allow not all fridges have the same efficiency or a correct description implying different efficiencies only tested each fridge once is insufficient there are lots of different makes is insufficient	1
	decra incre (i) (ii) (iii)	 correct order only decreased increased (i) A reason only scores if A chosen uses least / less energy (in 1 year) a comparison is required accept uses least power accept uses least kWh (ii) greater the volume the greater the energy it uses (in 1 year) (iii) a very small number sampled accept only tested 3 accept insufficient evidence / data allow not all fridges have the same efficiency or a correct description implying different efficiencies only tested each fridge once is insufficient there are lots of different makes is insufficient

[7]

2

Q4.

- (a) (i) any **two** from:
 - mass (of block)
 accept weight for mass
 - starting temperature
 - final / increase in temperature temperature is insufficient
 - voltage / p.d.
 same power supply insufficient
 - power (supplied to each block)
 type / thickness of insulation
 - type / thickness of insulation same insulation insufficient
 - (ii) one of variables is categoric **or**

			(type of) material is categoric accept the data is categoric	
			accept a description of categoric	
			do not accept temp rise is categoric	1
		(iii)	concrete	
				1
			(heater on for) longest / longer time	
			a long time or quoting a time is insufficient	
			do not accept it is the highest bar	1
		(iv)	4500 (J)	
			allow 1 mark for correct substitution ie	
			$2 \times 450 \times 5$ provided no subsequent step shown	2
	(b)	(i)	point at 10 minutes identified	1
		(ii)	line through all points except anomalous	
			line must go from at least first to last point	
				1
		(iii)	20 (°C)	
			if 20°C is given, award the mark.	
			If an answer other than 20°C is given, look at the graph. If the graph shows a correct extrapolation of the candidate's best-fit line and the intercept value has been correctly stated, allow 1 mark	
			man.	1
		(iv)	2 (minutes)	
		(10)		1 [11]
Q5.	-			
	(a)	infra	ared / IR	
			correct answer only	1
	(b)	any	two from:	
		•	increase the power / watts	
			allow increase the temperature of the oven or make the oven hotter	
		•	decrease the speed	
		•	allow leave the biscuits in for longer put biscuits through again	

increase radiation is insufficient ignore changes to the design of the oven

(c)	(inside) surface is a (good) reflector or poor absorber (of IR) Ignore bounce for reflect surface is a (good) reflector of light does not score	
	surface is a (good) reflector of light and infrared / heat does score	
		1
	(and) outside surface is poor emitter (of IR)	1
	(so) increases the energy reaching the biscuits	
	allow reduces energy loss or makes oven more efficient	
	do not accept no energy losses	
	keeps oven hotter is insufficient	1

2

[6]

Q6.

Marks awarded for this answer will be determined by the Quality of Written Communication (QWC) as well as the standard of the scientific response. Examiners should also apply a 'best-fit' approach to the marking.

0 marks No relevant content.

Level 1 (1-2 marks)

Considers either solid or gas and describes at least one aspect of the particles.

or

Considers both solids and gases and describes an aspect of each.

Level 2 (3–4 marks)

Considers both solids and gases and describes aspects of the particles.

or

Considers one state and describes aspects of the particles and explains at least one of the properties.

or

Considers both states and describes an aspect of the particles for both and explains a property for solids or gases.

Level 3 (5–6 marks)

Considers both states of matter and describes the spacing and movement / forces between the particles. Explains a property of both solids and gases.

examples of the points made in the response extra information

Solids

- (particles) close together
- (so) no room for particles to move closer (so hard to compress)
- vibrate about fixed point
- strong forces of attraction (at a distance)
- the forces become repulsive if the particles get closer
- particles strongly held together / not free to move around (shape is fixed) any explanation of a property must match with the given aspect(s) of the particles.

Gases

- (particles) far apart
- space between particles (so easy to compress)
- move randomly
- negligible / no forces of attraction
- spread out in all directions (to fill the container)

Q7.

(a)	air near freezer compartment is cooled or loses energy accept air at the top is cold
	cool air is (more) dense or particles close(r) together (than warmer air) do not allow the particles get smaller / condense
	so (cooler) air falls
	air (at bottom) is displaced / moves upwards / rises do not allow heat rises accept warm air (at the bottom) rises
(b)	if volume is doubled, energy use is not doubled or volume ÷ energy not a constant ratio
	correct reference to data, eg 500 is 2×250 but 630 not 2×300
(c)	accept suitable examples, eg
	advantage:
	reduces emissions into atmosphere
	For more help, please visit exampaperspractice.co.uk

1

1

1

1

1

1

 lower input power or uses less energy or wastes less 	energy
--	--------

costs less to run

cost of buying or installing new fridge is insufficient ignore reference to size of fridge

disadvantage:

- energy waste in production
- cost or difficulty of disposal
- transport costs

Q8.

(a)	conduction	1
(b)	35 000	1
(c)	500	

their (b) = $2 \times c \times 35$ correctly calculated scores **2** marks allow **1** mark for correct substitution, ie $35000 = 2 \times c \times 35$ or their (b) = $2 \times c \times 35$

J / kg°C

(d) energy lost to surroundings

 or
 energy needed to warm heater
 accept there is no insulation (on the copper block)
 do not accept answers in terms of human error or poor results or defective equipment

[6]

1

1

1

1

2

1

[8]

Q9.

(a) (i) 70

accept ± half a square (69.8 to 70.2)

(ii) 15

accept 14.6 to 15.4 for **2** marks allow for **1** mark 70 – 55

		ecf from (b)(i) \pm half a square	2
	(iii)	C	1
		biggest drop in temperature during a given time accept it has the steepest gradient this is a dependent	1
	(iv)	starting at 70 °C and below graph for C must be a curve up to at least 8 minutes	1
	(v)	because 20 °C is room temperature accept same temperature as surroundings	1
(b)	(i)	6720 correct answer with or without working gains 3 marks 6 720 000 gains 2 marks correct substitution of $E = 0.2 \times 4200 \times 8$ gains 2 marks correct substitution of $E = 200 \times 4200 \times 8$ gains 1 mark	3
	(ii)	the fastest particles have enough energy accept molecules for particles	1
		to escape from the surface of the water	1
		therefore the mean energy of the remaining particles decreases accept speed for energy	1
		the lower the mean energy of particles the lower the temperature (of the water) accept speed for energy	1 [14]

Q10.

 (a) (i) temperature (increase) and time switched on are <u>directly proportional</u> accept the idea of equal increases in time giving equal increases in temperature answers such as:

- as time increases, temperature increases
- positive correlation
- linear relationship
- temperature and time are proportional

score 1 mark

			2
	(ii)	any one from: <i>"it" refers to the metal block</i>	
		 energy transfer (from the block) to the surroundings accept lost for transfer accept air for surroundings 	
		• (some) energy used to warm the heater / thermometer (itself) accept takes time for heater to warm up	
		(metal) block is not insulated	1
	(iii)	15 000 allow 1 mark for correct substitution, ie 50 × 300 provided no subsequent step shown	2
(b)	lear	1	
(6)	loue	reason only scores if lead is chosen	1
	need	ds least energy to raise temperature by 1°C	
		accept needs less energy to heat it (by the same amount) lowest specific heat capacity is insufficient	1
Q11.			
(a)	any t	wo from:	
	•	water evaporates accept steam / water vapour for water molecules accept water turns to steam	
	•	water molecules / particles go into the air	
	•	mirror (surface) is cooler than (damp) air accept the mirror / surface / glass is cold	
	•	water molecules / particles that hit the mirror lose energy accept water molecules / particles that hit the mirror cool down	
	•	cooler air cannot hold as many water molecules / particles	2
	(cau	ses) condensation (on the mirror) accept steam changes back to water (on the mirror)	

[7]

	or particles move closer together	1
(b)	mirror (surface) is warm	
	mirror is heated is insufficient	1
	(rate of) condensation reduced	
	accept no condensation (happens)	1 [5]

Q12.

(a) Marks awarded for this answer will be determined by the Quality of Written Communication (QWC) as well as the standard of the scientific response. Examiners should also refer to the information in the <u>Marking guidance</u>.

0 marks

No relevant content.

Level 1(1-2 marks)

There is a basic explanation of **one** feature **or** a simple statement relating reduction in energy transfer to **one** feature.

Level 2(3-4 marks)

There is a clear explanation of **one** feature **or**

a simple statement relating reduction in energy transfer to two features.

Level 3(5-6 marks)

There is a detailed explanation of at least two features

or

a simple statement relating reduction in energy transfer to all **four** features.

Examples of the points made in response

extra information accept throughout: heat for energy loss for transfer

plastic cap:

plastic is a poor conductor

accept insulator for poor conductor

- stops convection currents forming at the top of the flask so stopping energy transfer by convection
- molecules / particles evaporating from the (hot) liquid cannot move into the (surrounding) air so stops energy transfer by evaporation

 plastic cap reduces / stops energy transfer by conduction / convection / evaporation

glass container:

- glass is a poor conductor so reducing energy transfer by conduction
- glass reduces / stops energy transfer by conduction

vacuum:

- both conduction and convection require a medium / particles
- so stops energy transfer between the two walls by conduction and convection
- vacuum stops energy transfer by conduction / convection

silvered surfaces:

- silvered surfaces reflect infrared radiation
 accept heat for infrared
- silvered surfaces are poor emitters of infrared radiation
- infrared radiation (partly) reflected back (towards hot liquid)
- silvered surfaces reduce / stop energy transfer by radiation

6

1

1

[8]

(b) (the ears have a) small <u>surface area</u> ears are small is insufficient

so reducing energy radiated / transferred (from the fox) accept heat lost for energy radiated do **not** accept stops heat loss

Q13.

(a)	conduction	1
(b)	(i) there is a bigger temperature difference between the water and the surrounding air <i>accept the water is hottest / hotter</i>	1
	so the transfer of energy (from hot water) is faster accept heat for energy ignore temperature falls the fastest	1

(ii)	120 allow 1 mark for converting k I to I correctly in 4.032.000		
	or		
	correctly calculating temperature fall as 8°C		
	or		
	allow 2 marks for correct substitution. ie $4\ 0.32\ 0.00 = m \times 4200 \times 8$		
	answers of 0.12, 19.2 or 16.6 gain 2 marks		
	answers of 0.019 or 0.017 gain 1 mark		
		3	
(iii)	water stays hot for longer	1	
	so heater is on for less time		
	accept so less energy needed to heat water	1	
	so cost of the jacket is soon recovered from) lower energy costs / bills		
	accept short payback time	1	
			[9]

(a)	(i)	Z	1
	(ii)	X	1
(b)	(i)	moving randomly	1
	(ii)	stronger than	1
(c)	(i)	evaporation	1
	(ii)	any one from:	
		becomes windy	
		• temperature increases accept (becomes) sunny "the sun" alone is insufficient	
		less humid	1
		For more help, please visit exampaperspractice.co.uk	

[6]

Q15.

(a)	(i)	5(.0)	1
	(ii)	35 or their (a)(i) × 7 correctly calculated allow 1 mark for correct substitution, ie 5 or their (a)(i) × 7 provided no subsequent step shown	2
	(iii)	525(p) or (£) 5.25 or their (a)(ii) × 15 correctly calculated <i>if unit p or £ given they must be consistent with the numerical</i> <i>answer</i>	1
	(iv)	decreases	1
		temperature difference (between inside and outside) decreases accept gradient (of line) decreases do not accept temperature (inside) decreases do not accept graph goes down	1
(b)	air ((bubbles are) trapped (in the foam) do not accept air traps heat foam has air pockets is insufficient	1
	(and	so the) air cannot circulate / move / form convection current air is a good insulator is insufficient no convection current is insufficient answers in terms of warm air from the room being trapped are incorrect and score no marks	1
Q16. (a)	to re	flect (the infrared) accept (shiny surfaces) are good reflectors ignore reference to incorrect type of wave	1
(b)	blac	ck	1
	best	absorber (of infrared) answer should be comparative black absorbs (infrared) is insufficient	I
		For more help, please visit exampaperspractice.co.uk	

[8]

	accept good absorber (of infrared)	
	ignore reference to emitter	
	ignore attracts heat	
	ignore reference to conduction	1
		-
(c)	to reduce energy loss	
	accept to stop energy loss	
	accept heat for energy accept to stop / reduce convection	
	or	
	so temperature of water increases faster	
	accept to heat water faster	
	or	
	reduces loss of water (by evaporation)	1
		1
(d)	672 000	
	allow 1 mark for correct substitution, ie 2 × 4200 × 80 provided	
	no subsequent step shown	2
		2
0.47		
Q17.		
(a)	(matt) black is a good <u>emitter</u> of infrared / radiation	
	accept heat for infrared / radiation	
	attracts heat negates this marking point	
		1
	to give maximum (rate of) energy transfer (to surroundings)	
	accent temperature (of coolant) falls fast/er)	
	accept black emits more radiation for 1 mark	
	black emits most radiation / black is the best emitter of	
	radiation for 2 marks	
		1
(b)	the fins increase the surface area	
(b)	the fins increase the surface area	
(b)	the fins increase the surface area accept heat for energy	1
(b)	the fins increase the surface area accept heat for energy	1

so more fins greater (rate of) energy transfer

1

[6]

(c) 114 000

allow **1** mark for correct temperature change, ie 15 (°C) **or**

	allow 2 marks for correct substitution, ie 2 × 3 800 × 15 answers of 851 200 or 737 200 gain 2 marks or	
	substitution 2 × 3800 × 112 or 2 × 3800 × 97 gains 1 mark an answer of 114 kJ gains 3 marks	2
(d)	increases the efficiency	3
	less (input) energy is wasted accept some of the energy that would have been wasted is (usefully) used	
	or	
	more (input) energy is usefully used accept heat for energy	1 [9]
Q18. (a)	there are strong forces (of attraction) between the particles in a solid accept molecules / atoms for particles throughout accept bonds for forces	1
	(holding) the particles close together <i>particles in a solid are less spread out is insufficient</i>	1
	or	
	(holding) the particles in a fixed pattern / positions	
	but in a gas the forces between the particles are negligible accept very small / zero for negligible accept bonds for forces	
	so the particles spread out (to fill their container) accept particles are not close together gas particles are not in a fixed position is insufficient	1
(b)	 (i) particles are (shown) leaving (the liquid / container) accept molecules / atoms for particles throughout accept particles are escaping particles are getting further apart is insufficient 	-
	(ii) accept molecules / atoms for particles throughout	×
	For more help, please visit exampaperspractice.co.uk	

accept speed / velocity for energy throughout

particles with most energy leave the (surface of the) liquid accept fastest particles leave the liquid	
	1
so the mean / average energy of the remaining particles goes down	1
and the lower the average energy (of the particles) the lower the temperature (of the liquid)	1
	[8]

1

1

1

1

1

Q19.

- (a) conduction
- (b) (i) any **one** from:
 - starting temperature (of cold water) temperature is insufficient
 - pipe length
 accept size of pipe
 - pipe diameter
 - pipe (wall) thickness
 - volume of cold water accept amount for volume
 - temperature of hot water (in)
 - time
 - (ii) copper

greatest temperature change only scores if copper chosen accept heat for temperature accept heated water the fastest accept it was hottest (after 10 minutes) accept it is the best / a good conductor

(c) the pipe has a larger (surface) area accept pipe is longer

(so) hot / dirty water (inside pipe) is in contact with cold / clean water (outside pipe) for longer

[6]

1

Q20.

(a)	(i)	random distribution of circles in the box with at least 50 $\%$ of circles to	uching 1
		random distribution of circles occupies more than 50 % of the space <i>judged by eye</i>	1
			1
	(ii)	(large) gaps between particles	
		accept particles do not touch	
		accept particles are spread out	1
		(so) easy to push particles closer (together) or	
		forces between particles are negligible / none	
		an answer in terms of number of particles is insufficient	1
(b)	(i)	(both are) random	
		accept a correct description of random eg unpredictable or move around freely or in all directions	
		they take up all the space is insufficient	
		they are spread out is insufficient	
		they move in straight lines is insufficient	1
	(ii)	(speed also) increases	1
Q21.	-		
(a)	в	no moule for D moules are for the surplemention	
		no mark for \mathbf{B} - marks are for the explanation	
		TIRST TWO MARK POINTS CAN SCORE EVEN IT A IS Chosen	

draught increases (the rate of) evaporation

accept more evaporation happens accept draught removes (evaporated) particles faster do **not** accept answers in terms of particles gaining energy from the fan / draught

evaporation has a cooling effect accept (average) <u>kinetic</u> energy of (remaining) particles

For more help, please visit exampaperspractice.co.uk

[6]

decreases

		1
	so temperature will fall faster / further	
		1
(b)	larger surface area	
		1
	increasing the (rate of) evaporation	
	accept more / faster evaporation	
	accept easier for particles to evaporate	
	or	
	for water to evaporate from	
	accept more particles can evaporate	
	accept water / particles which have evaporated are trapped	
	(III life bay)	
	answers in terms of exposure to the Sun are insufficient	1
Q22.		
(a)	$E = P \times t$	
	91 (p)	
	an answer £0.91 gains 3 marks	
	an answer 0.91 gains 2 marks	
	allow 2 marks for energy transferred = 18.2 (kWh)	
	or substitution into 2 constitues combined in 2 C + 7 - 5	
	substitution into 2 equations combined, le 2.6 × 7 × 5	
	allow 1 mark for correct substitution into $E = P \times t$, ie $E = 2.6 \times 7$	
	or	
	allow 1 mark for multiplying and correctly calculating an	
	incorrect energy transfer value by 5	3
		5
(b)	answers should be in terms of supply exceeding demand	
	accept there is a surplus / excess of electricity (at night)	
		1
(c)	reduce (rate of) energy transfer (from ceramic bricks)	
	accept heat for energy	
	do not accept no energy / heat escapes	
	do not accept answers in terms of lost / losing heat if this	
	implies heat is wasted energy	1
		1

[5]

so keeping the (ceramic) bricks hot for longer

accept increase time that energy is transferred to the room accept keep room warm for longer

1

2

[8]

or

- to stop the casing getting too hot accept so you do not get burnt (on the casing)
- (d) $E = m \times c \times \theta$
 - 120

allow **1** mark for correct substitution ie 9 000 000 = $m \times 750 \times 100$

Q23.

(a)	(i)	conduction	1
	(ii)	atoms gain (kinetic) energy accept particles / molecules for atoms do not accept electrons for atoms or	
		accept vibrate faster / more	
		or atoms collide with neighbouring atoms	1
		transferring energy to (neighbouring / other) atoms	
		or making these other atoms vibrate with a bigger amplitude accept faster / more for bigger amplitude mention of (free) electrons moving and passing on energy negates this mark	
			1
(b)	(i)	5 (°C) to 25 (°C) either order	1
	(ii)	a correct example of doubling temperature difference doubling heat tr	ansfer
		eg going from 5 to 10 (°C) difference doubles heat transfer from 30 to accept for heat transfer number of joules / it allow 1 mark for correctly reading 1 set of data eg at 5 °C the heat transfer is 30	60 (J/s)
		For more help, please visit exampaperspractice.co.uk	

		or for every 5°C increase in temperature difference heat transfer increases by 30 (J/s) no credit for stating they are directly proportional	2
	(iii) 1800	allow 1 mark for obtaining heat transfer value = 120	2
(c)	payback ti	me calculated as 33 years calculations must be correct to score the first mark point explanations must relate to it not being cost effective	1
	this is grea or total savin this is less or	ater than lifetime of windows gs (over 30 years) = £4800 (1) than cost of windows (1)	
	$\frac{5280}{30} = 1$ this is mor	76 (1) e than the yearly savings (1)	1
A			

Q24.

- (a) any **two** from:
 - black is a good emitter of (infrared radiation) accept heat for radiation ignore reference to absorbing radiation
 - large surface (area)
 - matt surfaces are better emitters (than shiny surfaces)
 accept matt surfaces are good emitters
 ignore reference to good conductor

2

(b) 90% or 0.9(0)

 $efficiency = \frac{useful \ energy \ out}{total \ energy \ in} (\times 100\%)$

13.5

allow 1 mark for correct substitution, ie ¹⁵ provided no subsequent step shown an answer of 90 scores **1** mark

For more help, please visit exampaperspractice.co.uk

[10]

EXAM PAPERS PRACTICE
an answer of 90 / 0.90 with a unit scores 1 mark
(producing) light allow (producing) sound
any two from:
 wood is renewable accept wood grows again / quickly accept wood can be replanted
(using wood) conserves fossil fuels accept doesn't use fossil fuels
 wood is carbon neutral accept a description cheaper / saves money is insufficient
$E = m \times c \times \theta$
2 550 000 allow 1 mark for correct substitution ie $100 \times 510 \times 50$ provided no subsequent step shown answers of 1 020 000, 3 570 000 gain 1 mark
joules /J
accept kJ / MJ do not accept i

[10]

2

1

2

2

1

Q25.

(C)

(d)

(e)

accept atoms / particles for ions throughout

consistent

for full credit the unit and numerical answer must be

(a metal has) free <u>electrons</u>	
accept mobile for free	1
	1
(kinetic) energy of (free) electrons increases	
accept energy of ions increases	
accept ions vibrate with a bigger amplitude	
accept ions vibrate more	

do not accept electrons vibrate more

				1
	(free) <u>elect</u>	rons move faster	1
	or			I
	elect	rons n	nove through metal accept electrons collide with other electrons / ions	
	(so) (electro	ons transfer energy to other electrons / ions accept ions transfer energy to neighbouring ions	1
Q2	6.	any t	we from	
	(a)		(cir) particles / malesyles / stores asis energy	
		•	(air) particles / molecules / atoms gain energy	
		•	 (air) particles / molecules / atoms move faster do not accept move more do not accept move with a bigger amplitude / vibrate more 	
		•	(air) particles / molecules / atoms move apart	
		•	air expands ignore particles expand	
		•	air becomes less dense ignore particles become less dense	
		•	warm / hot air / gases / particles rise do not accept heat rises answers in terms of heat particles negates any of the mark points that includes particles	2
	(b)	(i)	any two from	
			 free / mobile electrons gain (kinetic) energy accept free / mobile electrons move faster accept vibrate faster for gain energy 	
			• free electrons collide with other (free) electrons / ions / atoms / part	icles
			• atoms / ions / particles collide with other atoms / ions / particles answers in terms of heat particles negates this mark point	2
		(ii)	(faster) energy / heat transfer to room(s) / house accept room(s) / house gets warm(er) accept lounge / bedroom / loft for rooms	

[4]

Q27.

(a)	(i)	radiation	1
	(ii)	traps (small pockets of) air do not accept it's an insulator do not accept reduces conduction and / or convection do not allow it doesn't allow heat to escape	1
(b)	(i)	bigger temperature difference (between the water and surroundings) at the start (than at the end) do not accept water is hotter	1
	(ii)	starting temperature (of the water) accept thickness of fleece do not accept same amount of fleece do not accept thermometer / can do not accept time is the same	1
	(iii)	18 (°C) correct answer only	1
	(iv)	Μ	1
		smallest temperature drop (after 20 mins) cannot score if M is not chosen accept it's the best insulator accept smallest loss in heat accept keeps heat / warmth in for longer	1
Q28. (a)	cond	duction	1

- starting temperature (of cold water) temperature is insufficient
- pipe length

any one from:

(b) (i)

For more help, please visit exampaperspractice.co.uk

[5]

[7]

accept size of pipe

- pipe diameter
- pipe (wall) thickness
- volume of cold water accept amount for volume
- temperature of hot water (in)
- time
- (ii) (type of) material is categoric accept one variable is categoric accept variable(s) are categoric accept it is categoric accept variable(s) are not continuous descriptions of variables ie names and numbers is insufficient
- (iii) copper
 - greatest temperature change only scores if copper chosen accept heat for temperature accept heated water the fastest accept it was hottest (after 10 minutes) accept it is the best / a good conductor

(c) larger (surface) area

2.1

accept the pipe is longer accept hot (dirty) water (inside pipe) is in contact with the cold water (outside pipe) for a longer time he pipe is a spiral is insufficient

Q29.

(a) (i)

correct answer only

(ii) 3.15
 or
 their (a)(i) × 1.5 correctly calculated
 allow 1 mark for correct substitution
 ie 2.1 × 1.5
 For more help, please visit exampaperspractice.co.uk

1

1

1

1

1

or

their (a)(i) × 1.5

	kilo	watt-hour	
		accept kWh	
		or	
		a substitution 2100 × 5400 scores 1 mark	
		2100 × 5400 incorrectly calculated with answer in joules scores 2 marks	
		an answer of 11 340 000 scores 2 marks	
		an answer of 11 340 000 J scores 3 marks	
			1
	(iii) mos	st (input) energy is usefully transformed	
	. ,	accept does not waste a lot of energy	
		accept most of the output / energy is useful	
		do not accept it does not waste energy	
			1
(b)	the room	is losing energy / heat	
(-)			1
	at the sar	ne rate as the heater supplies it	
		this mark only scores if the first is scored	
		do not accept heater reaches same temperature as room / surroundings	
		rate of heat gain = rate of heat loss scores both marks	
			1

Q30.

(a) (i) silvered surfaces more than the correct number of ticks in a row negates the mark

radiation

plastic cap

conduction, convection (both required)

	conduction	convection	radiation	
vacuum	×	×		
silvered surfaces			*	(1)
plastic cap	×	×		(1)

For more help, please visit exampaperspractice.co.uk

2

	(ii)	
		any mention of air or any other substance in a vacuum scores zero
		because there are no particles in a vacuum accept atoms / molecules for particles accept vacuum is empty space accept there is nothing in a vacuum accept there is no air / gas in the vacuum
		conduction and convection need particles / medium need reference to both conduction and convection accept correct descriptions
(b)	(i)	less heat lost (to air above the heater) do not accept no heat lost
		light shiny surfaces are poor emitters (of radiation) accept radiators for emitters references to reflection are neutral
		or dull, matt surfaces are good emitters (of radiation) do not credit answers which infer reflection from the underside of the hood ignore correct reference to absorption
	(ii)	correct diagram drawn with one output arrow narrower than the other <i>ignore input</i>
		arrows correctly labelled with energy form eg
		heat light flow charts score zero
	(iii)	energy cannot be destroyed accept (principle of) conservation of energy do not accept because energy cannot be lost without clarification

For more help, please visit exampaperspractice.co.uk

[9]

Q31.

(a)	the bigger the surface area, the faster the water cools down / temperature falls
	answers must imply rate
	accept heat for temperature provided rate is implied
	do not accept cools down more unless qualified
	1

(b) any **two** from:

the ears:

- have large surface / area
 not just has large ears
- radiate heat accept loses heat, but does not score if the reason given for heat loss is wrong
- keep blood cooler
 (c) (i) radiation
 (ii) conduction

Q32.

(a)	cond	luction	
		do not accept conductor	1
(b)	the f	reezer	
		both parts needed	
	grea	ter temperature difference (between freezer and room)	
		do not accept because it is the coldest	1
			1
(c)	any f	two from:	
	•	poor absorber of heat / radiation	
		accept does not absorb heat poor emitter of heat / radiation is neutral	
	•	reflects heat / radiation (from room away from fridge-freezer)	
	•	reduces heat transfer into the fridge-freezer	
	•	reduces power consumption of fridge-freezer do not accept it is a bad conductor / good insulator	

For more help, please visit exampaperspractice.co.uk

[5]

2

[4]

[5]

Q33.

(a)	(i)	makes it warmer / raises the temperature	
		accept produces convection (current)	
		accept makes it less dense	
			1
	(ii)	reduced or slows down	
			1
(b)	(i)	electrical energy (to run the pump) must be paid for	
		accept electricity for electrical energy	
		accept electricity is needed for the pump	
		accept it uses electricity	
		accept because of the pump	
			1
	(ii)	more useful (heat) energy is transferred into the house than the energy	V
	(")	used to operate the pump	y
		or reduced cost of boating the bourse is greater than the cost of running	a tho
		(electrical) pump	gine
		or costs little to run compared to the savings made	
		accept for 1 mark	
		reduces energy bills	
		or reduced fuel costs / heating costs owtte	
		do not accept it's cheap	2
			2
024			
Q34.	(i)	Znm	
(a)	(1)	7pm	
		accept 19.007 1900	1
	(ii)	8pm	
		accept 20.00 / 2000	1
			1
		temperature drops more slowly	
		accept heat for temperature accept line is less steep	1
			1
(b)	insu	lator	
			1
	conc	luction *	
			1

	conv	vection *	
		* answers can be either way around	1
(c)	(i)	4 (years)	1
	(ii)	it is the cheapest / cheaper / cheap do not accept answers in terms of heat rising or DIY	1
		has the shortest / shorter payback time do not accept short payback time	1
Q35. (a)	(i)	as a source of thermal <u>radiation</u> accept heat for thermal radiation accept to act as the Sun do not accept sunlight alone	1
	(ii)	any one from:	
		volume of water accept amount for volume	
		distance between lamp and boiling tube	
		initial / starting temperature of water	
		• same room temperature do not accept time or same insulation material	1
	(iii)	any one from:	
		 greater sensitivity / precision do not accept more reliable (negates mark) 	
		could link to a computer for (automatic) data analysis	
		could take more frequent readings	
		 reduces instrument reading error accept more accurate do not accept easier to use on its own 	1
(b)	(i)	acts as a control accept to be able to make a comparison For more help, please visit exampaperspractice.co.uk	

[9]

		accept to see the difference	
		do not accept 'to make it a fair test' OWTTE on its own	1
			1
	(ii)	(plastic) foam and aluminium foil	1
	(:::)	(aluminium) fail is a page abaath or of the read rediction	
	(111)	(aluminium) toll is a poor absorber of thermal radiation	
		accept heat / infra red for thermal radiation	1
			1
		or (aluminium) foil is a (good) reflector of thermal radiation	
		do not accept 'reflects sunlight' on its own	
		(plastic) foam traps air which is a (good) insulator	
		accept (plastic) foam is a poor conductor / (good) insulator	
		do not accent 'the material' is a good insulator / noor	
		conductor	
			1
(c)	partic	cles vibrate with a bigger / stronger amplitude / faster / with more	
	(kinet	ic) energy	
		accept particles vibrate more	
		do not accept <u>start</u> to vibrate only	
			1
	energy transferred by <u>collisions</u> with other particles		
		do not accept answers in terms of	
		free/mobile electrons	
			1