

IB Maths: AI HL Integration

Topic Questions

These practice questions can be used by students and teachers and is Suitable for IB

Maths Al HL Topic Questions

Course	IB Maths	
Section	5. Calculus	
Topic	5.3 Integration	
Difficulty	Medium	

Level: IB Maths

Subject: IB Maths AI HL

Board: IB Maths

Topic: Integration

A curve y = f(x) passes through point A(4,2) and has a gradient of f'(x) = 5x - 2.

(a) Find the gradient of the curve at point A.

[2 marks]

(b) Find the equation of the tangent to the curve at point A. Give your answer in the form y = mx + c.

[2 marks]

(c) Determine the equation of the curve y = f(x).

[3 marks]

Question 2

A point P(3,8) lies on the curve y = f(x) that has a gradient of $f'(x) = -2x^2 + 11$.

(a) Find the gradient of the curve at point P.

[2 marks]

(b) Find the equation of the tangent to the curve at point P. Give your answer in the form y = mx + c.

(c)	Determine the equation of the curve	<i>y</i> =	f(x)).
-----	-------------------------------------	------------	------	----

[3 marks]

Question 3

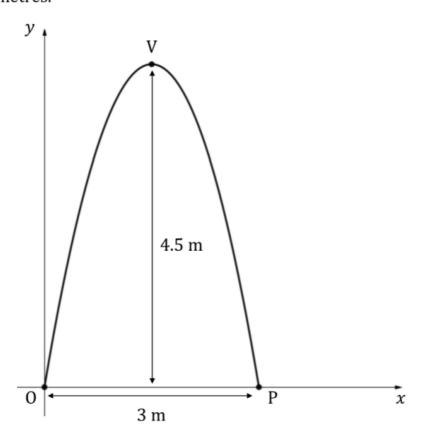
The following table shows the x and y coordinates of five points that lie on a curve y = f(x).

x	0	0.25	0.5	0.75	1
y = f(x)	1	2.25	4	6.25	9

(a) Estimate the area under the curve over the interval $0 \le x \le 1$.

[2 marks]

The equation of the curve was found to be $y = (2x + 1)^2$.


(b) Find the exact value of the area under the curve over the interval $0 \le x \le 1$.

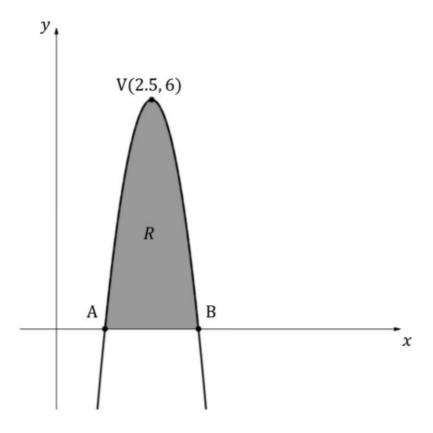
[2 marks]

(c) Find the percentage error between the estimation in part (a) and the exact value in part (b). Provide a reason for the difference.

The following diagram shows an arch that is 4.5 m tall and 3 m wide. The arch crosses the x-axis at the origin, O, and at point P, and its vertex is at point V. The arch may be represented by a curve with an equation of the form y = x(ax + 6), where all units are measured in metres.

- (a) Find
 - (i) the coordinates of P
 - (ii) the coordinates of V
 - (iii) the value of a.

[4 marks]



(b) Find the cross-sectional area under the arch.

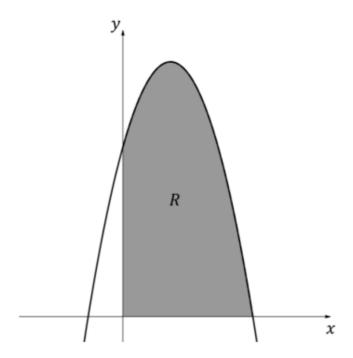
[2 marks]

Question 5

The diagram below shows a part of the curve $y = -4x^2 + px + q$. Points A and B represent the *x*-intercepts, point V(2.5, 6) represents the vertex of the curve, and the shaded region *R* represents the area between the curve and the *x*-axis.

(a) Find the values of p and q.

(b) Find the coordinates of points A and B.

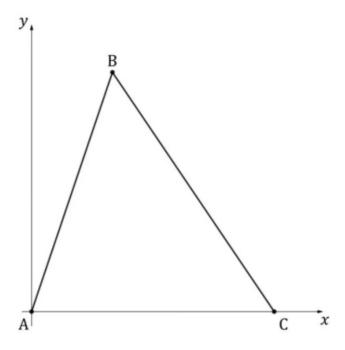

[4 marks]

(c) Find the area of region R.

[2 marks]

Question 6

The following diagram shows part of the graph of f(x) = (5 - 2x)(2 + 3x), $x \in \mathbb{R}$. The shaded region R is bounded by the x-axis, the y-axis and the graph of f.


(a) Write down an integral for the area of region R.

(b) Find the area of region R.

[1 mark]

The three points A(0,0), B(4,h) and C(9,0) define the vertices of a triangle.

(c) Find the value of *h*, the *y*-coordinate of B, given that the area of the triangle is equal to the area of region *R*.

A rice farm sells x kg of rice every week.

It is known that $\frac{dP}{dx} = -0.02x + 6$, $x \ge 0$, where P is the weekly profit, in dollars (\$), from the sale of x kg of rice.

(a) Find the amount of rice, in kg, that should be sold each week to maximise the profit.

[3 marks]

The profit from selling 250 kg of rice is \$480.

(b) Find P(x).

[5 marks]

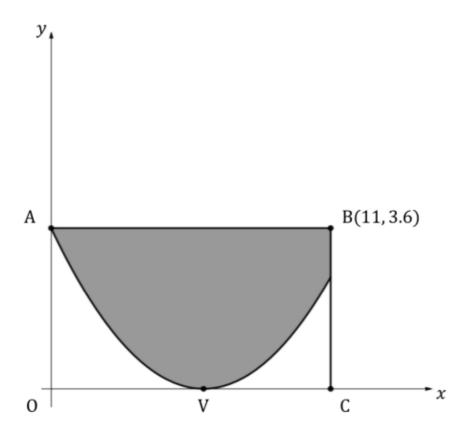
Question 8

A paint company sells *x* hundred of litres of paint every week.

It is known that $\frac{dP}{dx} = -1.9x + 145$, $x \ge 0$, where P is the weekly profit, in euros (\in), from the sale of x hundred litres of paint.

(a) Find the number of litres that should be sold each week to maximise the profit.

[3 marks]


The profit from selling 7000 litres of paint is €5000.

(b) Find P(x).

[5 marks]

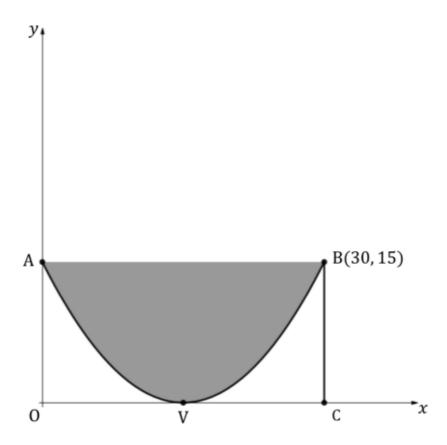
A river has a cross-sectional area shown by the shaded region of the diagram below, where the x and y values are in metres. The riverbed (the curved part of the region shown) has an equation of the form $y = q(x-6)^2$. Point O is the origin, and points O, A, B and C are the vertices of a rectangle. Point V, the deepest point of the riverbed, is situated on the x-axis.

(a) Find

- (i) the coordinates of V
- (ii) the area of the rectangle OABC.

[3 marks]

(b) Determine the value of q.


[2 marks]

(c) Find the cross-sectional area of the riverbed.

[3 marks]

Question 10

A trough has a cross-sectional area shown by the shaded region of the diagram below, where the x and y values are in centimetres. The curved bottom of the trough has an equation in the form $y = r(x - 15)^2$. Point O is the origin, and points O, A, B and C are the vertices of a rectangle. Point V, the deepest point of the trough, is situated on the x-axis.

(a) Determine the value of r.

(b) Find the cross-sectional area of the trough.	
	[4 marks]
The length of the trough is 1.2 m.	
(c) Find the volume of the trough. Give your answer in ${\rm cm}^3$.	
	[2 marks]