

Helping you Achieve Highest Grades in IB

IB Chemistry HL

Question Paper

Fully in-lined with the First Teaching in 2023 & First Assessment Examinations in 2025 & Beyond

Paper: 1 (Multiple-Choice Questions)

- All Topics

Marks: 185

Total Marks: / 185

Suitable for HL Students sitting the 2025 exams onwards However, SL students may also find these resources useful

Questions

21M.1A.HL.TZ2.40

What information can be deduced from the splitting pattern of ¹ H NMR signals? [1]

- A. total number of hydrogen atoms in a compound
- B. number of hydrogen atoms on adjacent atom(s)
- C. functional group on which hydrogen atoms are located
- D. number of hydrogen atoms in a particular chemical environment

22M.1A.HL.TZ1.23

At equilibrium, the concentrations of chlorine and iodine are both 0.02 mol dm $^{-3}$. [1] $\frac{1}{2}$ Cl $_2$ (g) $+\frac{1}{2}$ I $_2$ (g) \rightleftharpoons I Cl (g) $K_c = 454$

What is the concentration of iodine monochloride, I Cl?

A.
$$\frac{454}{0.02}$$

B.
$$454 \times 0.02$$

C.
$$\frac{454}{0.04}$$

D.
$$454 \times 0.04$$

SPM.1A.HL.TZ0.28

What is the equilibrium constant expression for the following reaction? [1] $2SO_3(g) \rightleftharpoons 2SO_2(g) + O_2(g)$

A.
$$\frac{2[SO_2]^2O_2}{[SO_3]^2}$$

B.
$$\frac{[SO_2]^2 + [O_2]}{[SO_2]^2}$$

C.
$$\frac{[SO_3]^2}{[SO_2]^2[O_2]}$$

D.
$$\frac{2[SO_2][O_2]}{2[SO_3]}$$

21M.1A.HL.TZ1.27

Which combination will produce an alkaline buffer in water? [1]

- A. 0.10 mol NH $_3$ and 0.05 mol H $_2$ SO $_4$
- B. 0.50 mol NH $_3$ and 0.10 mol H $_2$ SO $_4$
- C. 0.10 mol CH 3 COOH and 0.05 mol NaOH
- D. 0.10 mol CH ₃ COOH and 0.50 mol NaOH

SPM.1A.HL.TZ0.13

Why is copper(II) sulfate blue?

A. Red light is absorbed when electrons are promoted between the orbitals in the split

d-sublevels.

- B. Blue light is emitted when electrons fall between the orbitals in the split d-sublevels.
- C. Red light is absorbed when electrons fall between the orbitals in the split d-sublevels.
- D. Blue light is emitted when electrons are promoted between the orbitals in the split d-sublevels.

[1]

22M.1A.HL.TZ2.27

Which species are **both** Lewis and Brønsted–Lowry bases? [1]

- I. CN
- II. OH -
- III. NH ₃
- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III

21M.1A.HL.TZ2.8

Which factor does **not** affect the colour of a complex ion? [1]

- A. temperature of the solution
- B. identity of the ligand
- C. identity of the metal
- D. oxidation number of the metal

22N.1A.HL.TZ0.17

At which temperature could ΔH , ΔS , and ΔG all be positive? [1]


- A. High temperatures
- B. Low temperatures
- C. Any temperature
- D. No temperature

22M.1A.HL.TZ1.16

Which compound has the largest value of lattice enthalpy? [1]

- A. Na₂O
- B. K₂O
- C. Na₂S
- D. K₂S

22M.1A.HL.TZ2.6

- A. 23
- B. 24
- C. 25
- D. 28

22M.1A.HL.TZ2.30

Which E $^{\ominus}$ value, in V, for the reaction Mn (s) + Zn $^{2+}$ (aq) \rightarrow Mn $^{2+}$ (aq) + Zn (s) can be deduced from the following equations?

Mn (s) +
$$2Ag^{+}$$
 (aq) \rightarrow Mn ²⁺ (aq) + $2Ag$ (s) E^{+} = 1.98 V

$$Zn(s) + Cu^{2+}(aq) \rightarrow Zn^{2+}(aq) + Cu(s)$$

$$E \stackrel{\bigcirc}{=} 1.10 \text{ V}$$

Cu (s) + 2Ag
$$^+$$
 (aq) \rightarrow Cu $^{2+}$ (aq) + 2Ag (s) E $^{\ominus}$ = 0.46 V

- A. 0.42
- B. 1.34
- C. 2.62
- D. 3.54

[1]

22N.1A.HL.TZ0.11

Which molecule has a tetrahedral molecular geometry? [1]

- A. HNO₃
- B. SF $_{\rm 4}$
- C. XeF₄
- D. XeO ₄

21N.1A.HL.TZ0.25

What is the pH of 0.01 mol dm $^{-3}$ KOH (aq)? [1]

- A. 1.0
- B. 2.o
- C. 12.0

21M.1A.HL.TZ2.30

What would be the electrode potential, $E \ominus$, of the Mn ²⁺ (aq)|Mn (s) half-cell if Fe ³⁺ (aq)|Fe ²⁺ (aq) is used as the reference standard?

Mn
$$^{2+}$$
 (aq) + 2e $^{-} \rightleftharpoons$ Mn (s) $E \ominus = -1.18 \text{ V}$

Fe³⁺ (aq) + e⁻
$$\rightleftharpoons$$
 Fe²⁺ (aq) E^{Θ} = +0.77 V

- A. -1.95 V
- B. -0.41 V
- C. +0.41 V
- D. +1.95 V

[1]

21N.1A.HL.TZ0.21

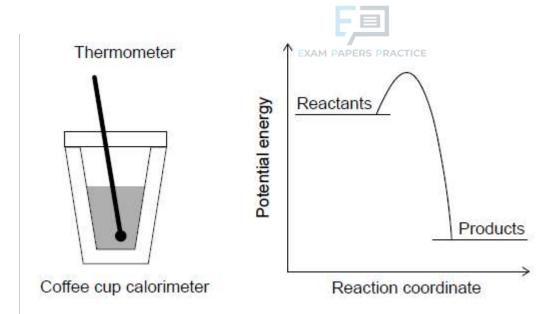
The rate equation for a reaction is:

rate = k[A][B]

[1]

Which mechanism is consistent with this rate equation?

- A. $2A \rightleftharpoons I$ Fast
- $I + B \rightarrow P$ Slow
- B. $A + B \rightleftharpoons I$ Fast
- $I + A \rightarrow P$ Slow
- C. $A \rightarrow I$ Slow
- $I + B \rightarrow P$ Fast
- D. B \rightleftharpoons I Fast
- $I + A \rightarrow P$ Slow


19M.1A.HL.TZ2.30

What can be deduced from the infrared (IR) spectrum of a compound? [1]

- A. Number of hydrogens
- B. Number of hydrogen environments
- C. Bonds present
- D. Molar mass

SPM.1A.HL.TZ0.20

The potential energy profile for a "coffee cup" calorimetry experiment is shown. [1]

What is the correct interpretation of this reaction?

	Temperature Type of reaction	
A.	increases	exothermic
B.	increases	endothermic
C.	decreases	exothermic
D.	decreases	endothermic

21M.1A.HL.TZ1.35

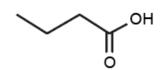
Which is most likely to hydrolyse via a $S_N 1$ mechanism? [1]

- A. CH₃ CHBrCH₂ CH₃
- B. (CH₃)₂CHBr
- C. $(CH_3)_3 CBr$
- D. CH₃CH₂CH₂CH₂Br

21M.1A.HL.TZ1.31

What are the products when concentrated aqueous copper (II) chloride is electrolysed using platinum electrodes?

	Anode (positive electrode)	Cathode (negative electrode)	
A.	O ₂ (g)	Cu(s)	
B.	Cl ₂ (g)	H ₂ (g)	
C.	Cl ₂ (g)	Cu(s)	
D.	O ₂ (g)	H ₂ (g)	


[1]

EXM.1A.HL.TZ0.2

Which of the following is the correct skeletal formula of butanoic acid? [1]

A.

В.

D. COOH

SPM.1A.HL.TZ0.9

Which is the preferred Lewis formula of nitrous oxide, N $_2$ O, as deduced by formal charges?

[1]

19N.1A.HL.TZ0.21

Which is correct? [1]

	Units of second-order rate constant	RS Effect of increasing temperature on rate constant
A.	mol dm ⁻³ s ⁻¹	increases
B.	dm ³ mol ⁻¹ s ⁻¹	increases
C.	mol dm ⁻³ s ⁻¹	no change
D.	dm ³ mol ⁻¹ s ⁻¹	no change

Which statement is correct for a spontaneous reaction? [1]

	∆G ^e	K _c
Α.	negative	>1
В.	negative	<1
C.	positive	<1
D.	positive	>1

21M.1A.HL.TZ2.11

What is the formula of the compound formed from Ca $^{2+}$ and PO $_4$ $^{3-}$? [1]

- A. CaPO₄
- B. $Ca_3(PO_4)_2$
- C. Ca $_2$ (PO $_4$) $_3$
- D. Ca(PO₄)₂

21M.1A.HL.TZ2.12

Which atom has an expanded octet? [1]

- A. C in CO₂
- B. S in SCl₄
- C. Oin H₂O₂
- D. P in PCl₃

SPM.1A.HL.TZ0.5

A gas storage tank of fixed volume V contains N molecules of an ideal gas at 300 K with a pressure of 40 kPa. $\frac{N}{4}$

molecules are removed, and the temperature is changed to 450 K.

What is the new pressure of the gas in kPa?

A. 15

B. 30

C. 45

D. 60

[1]

19M.1A.HL.TZ1.12

Which species has delocalized electrons? [1]

A. OH -

B. H₂CO

C. CO₂

D. CO 3 2-

21N.1A.HL.TZ0.5

Which statement explains why the **second** ionization energy of aluminium is higher than the **first** ionization energy of magnesium?

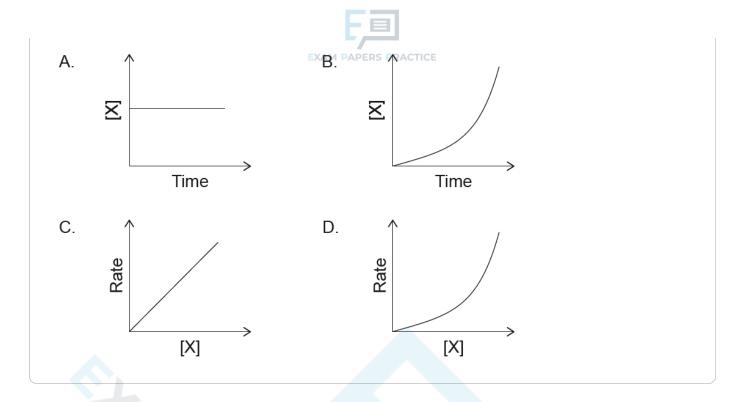
- A. Ionization energy increases along period 3.
- B. 3p electrons are at a higher energy level than 3s electrons.
- C. 3p electrons are further away from the nucleus than 2p electrons.
- D. Both have the same number of electrons and aluminium has one more proton.

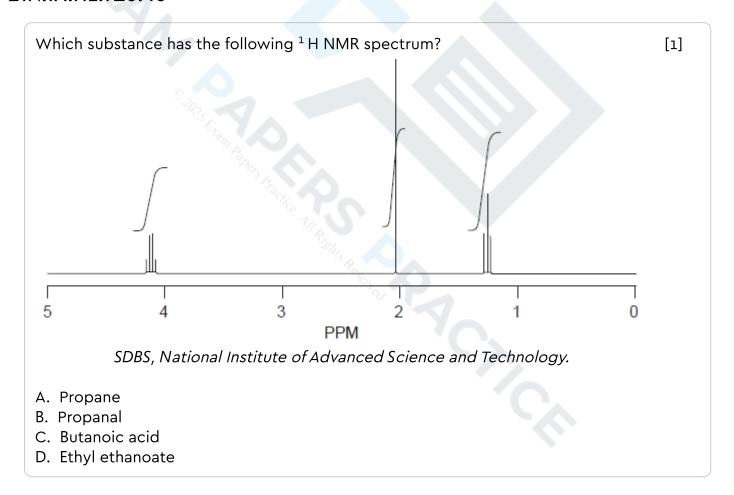
[1]

19M.1A.HL.TZ1.16

Which is correct for the reaction $H_2O(g) \rightarrow H_2O(l)$? [1]

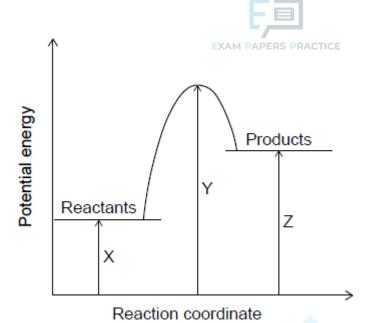
- A. Enthalpy increases and entropy increases.
- B. Enthalpy decreases and entropy increases.
- C. Enthalpy increases and entropy decreases.
- D. Enthalpy decreases and entropy decreases.


19M.1A.HL.TZ2.35


What must be present on a nucleophile? [1]

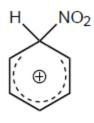
- A. Negative charge
- B. Lone pair of electrons
- C. Positive charge
- D. Symmetrical distribution of electrons

21M.1A.HL.TZ2.20

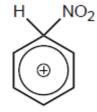

Which graph represents a second order reaction with respect to X? [1]

SPM.1A.HL.TZ0.26

The diagram shows the energy profile of a reaction. [1]

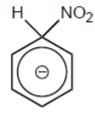

Which combination is correct?

	Activation energy of forward reaction	Activation energy of reverse reaction	
A.	X	Z	
B.	Y – X	Y – Z	
C.	Y	Υ	
D.	Y – X	Z-X	


SPM.1A.HL.TZ0.40

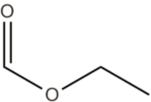
Which illustrates the correct intermediate formed in the nitration of benzene by NO $_2$ $^+$?

Α.


C.

B.

D.



[1]

EXM.1A.HL.TZ0.3

Which is the correct structural formula of this compound? [1]

- A. OCOCH₂CH₃
- B. HCOOC₂H₅
- C. HCOOCH 2 CH 3
- D. OCOHC 2 CH 3

22M.1A.HL.TZ1.20

The table shows data for the hydrolysis of a halogenoalkane, RCl.

[1]

[NaOH] / mol dm ⁻³	[RCI] / moldm ⁻³	Rate / mol dm ⁻³ s ⁻¹
0.1	0.01	5.0×10^{-7}
0.2	0.01	1.0 × 10 ⁻⁶
0.2	0.02	1.9 × 10 ⁻⁶

Which statements are correct?

- I. The reaction is first order with respect to RCI.
- II. The reaction is second order overall.
- III. The reaction proceeds by an S $_{\mbox{\scriptsize N}}\,2$ mechanism.
- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III

20N.1A.HL.TZ0.17

Which reaction becomes more spontaneous as temperature increases? [1]

- A. $CaCO_3$ (s) $\rightarrow CaO$ (s) $+ CO_2$ (g)
- B. N_2 (g) + $3H_2$ (g) $\rightleftharpoons 2NH_3$ (g)
- C. $3CO_2$ (g) + $4H_2O$ (g) $\rightarrow C_3H_8$ (g) + $5O_2$ (g)
- D. SO_2 (g) + H_2O_2 (1) $\rightarrow H_2SO_4$ (1)

19M.1A.HL.TZ2.17

Which change has the greatest increase in entropy? [1]

- A. CO $_2$ (s) \rightarrow CO $_2$ (g)
- B. CO $_2$ (g) \rightarrow CO $_2$ (l)
- C. CO $_2$ (g) \rightarrow CO $_2$ (s)

Which species can act both as a Lewis acid and a Lewis base? [1]

 $A. H_2O$

B. NH ⁺

C. Cu 2+

D. CH 4

21M.1A.HL.TZ1.20

A reaction proceeds by the following mechanism: [1]

step 1: $A + A \rightarrow B$

step 2: $B + C \rightarrow D$

Which rate equation is consistent with this mechanism?

A. Rate = k [B] 2 [C]

B. Rate = $k [A]^2 [B][C]$

C. Rate = $k [A]^{2}$

D. Rate = k [A][C]

21N.1A.HL.TZ0.15

Which equation represents the standard enthalpy of formation of lithium oxide? [1]

A. $4Li(s) + O_2(g) \rightarrow 2Li_2O(s)$

B. $2\text{Li}(s) + \frac{1}{2}\text{O}_{2}(g) \rightarrow \text{Li}_{2}\text{O}(s)$ C. $\text{Li}(s) + \frac{1}{4}\text{O}_{2}(g) \rightarrow \frac{1}{2}\text{Li}_{2}\text{O}(s)$ D. $\text{Li}(g) + \frac{1}{4}\text{O}_{2}(g) \rightarrow \frac{1}{2}\text{Li}_{2}\text{O}(g)$

22M.1A.HL.TZ1.17

In which reaction does entropy decrease? [1]

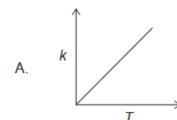
A. NaCl (s) \rightarrow NaCl (aq)

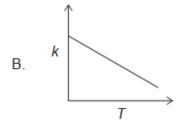
B. $Zn(s) + H_2SO_4(aq) \rightarrow ZnSO_4(aq) + H_2(g)$

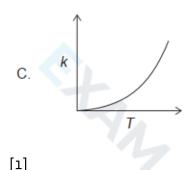
C. NH₃(g) + HCl(g) \rightarrow NH₄Cl(s)

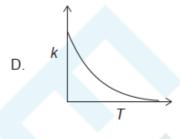
D. CuCO $_{3}$ (s) \rightarrow CuO (s) + CO $_{2}$ (g)

EXM.1A.HL.TZ0.4


Which of the following elements yields a basic oxide when combusted? [1]


A. Au


B. P


C. Ca

Which graph represents the relationship between the rate constant, k, and temperature, T, in kelvin?

19M.1A.HL.TZ2.36

Which compound exists as two configurational isomers? [1]

A. $CBr_2 = CH_2$

B. $CH_2 = CHBr$

C. CHBr ₂ CH ₂ Br

D. CHBr=CHBr

22N.1A.HL.TZ0.16

Which alkane has the lowest standard entropy, $S \oplus ?$ [1]

A. CH ₄ (g)

B. $C_2H_6(g)$

C. $C_3H_8(g)$

D. $C_4H_{10}(g)$

22M.1A.HL.TZ2.40

Given equimolar concentrations, which substance would produce the strongest signal in a 1 H NMR spectrum?

A. (CH₃)₃CH

B. C₆H₆

C. C₈H₁₈

19M.1A.HL.TZ2.25

Which of the following can be both formed from bromoethane and converted directly into ethanal?

$$CH_3 CH_2 Br \rightarrow X$$

 $X \rightarrow CH_3 CHO$

- A. CH₃ CH₂ OH
- B. CH₃ OCH₃
- C. CH 3 COOH
- D. H₂C=CHBr

[1]

22M.1A.HL.TZ1.12

For which species can resonance structures be drawn? [1]

- A. HCOOH
- B. HCOO -
- C. CH₃OH
- D. H_2CO_3

19N.1A.HL.TZ0.8

What is the effect of a stronger ligand?

[1]

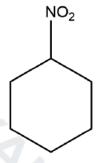
	d-d splitting	Wavelength absorbed	
A.	increases	decreases	
B.	decreases	decreases	
C.	increases	increases	
D.	decreases	increases	

SPM.1A.HL.TZ0.16

Which d block element has the highest number of different oxidation states? [1]

- A. Ti
- B. Mn
- C. Cu
- D. Zn

19M.1A.HL.TZ1.8


Which electrons are removed from iron (Z = 26) to form iron(II)? [1]

- A. two 3d electrons
- B. two 4s electrons
- C. one 4s electron and one 3d electron
- D. two 4p electrons

21M.1A.HL.TZ1.36

What is the product of the reaction of benzene with a mixture of concentrated nitric and sulfuric acids?

Α.

C.

В.

D

[1]

21M.1A.HL.TZ2.27

Which compound is acidic in aqueous solution? [1]

- A. KBr
- B. CH₃COONa
- C. NH₄Cl
- D. Na₂CO₃

19N.1A.HL.TZ0.27

Which can act as a Lewis acid but not a Brønsted-Lowry acid? [1]

- A. BF ₃
- B. H₂O
- C. NF₃
- D. NH₃

19M.1A.HL.TZ2.12

How many sigma (σ) and pi (π) bonds are present in hydrogen cyanide, HCN? [1]

	Sigma (σ)	Pi (π)	
A.	1	1	
В.	2	2	
C.	2	1	
D.	1	3	

20N.1A.HL.TZ0.27

What is the pH of an ammonia solution that has $[0H^-] = 1 \times 10^{-4} \text{ mol dm}^{-3}$? [1]

A. 4.0

B. 8.0

C. 10.0

D. 12.0

19M.1A.HL.TZ1.23

Which is correct for a reaction with a positive change in Gibbs free energy, ΔG^{θ} ? [1]

A. The formation of reactants is favoured.

B. The formation of products is favoured.

C. The reaction is at equilibrium.

D. The reaction is spontaneous.

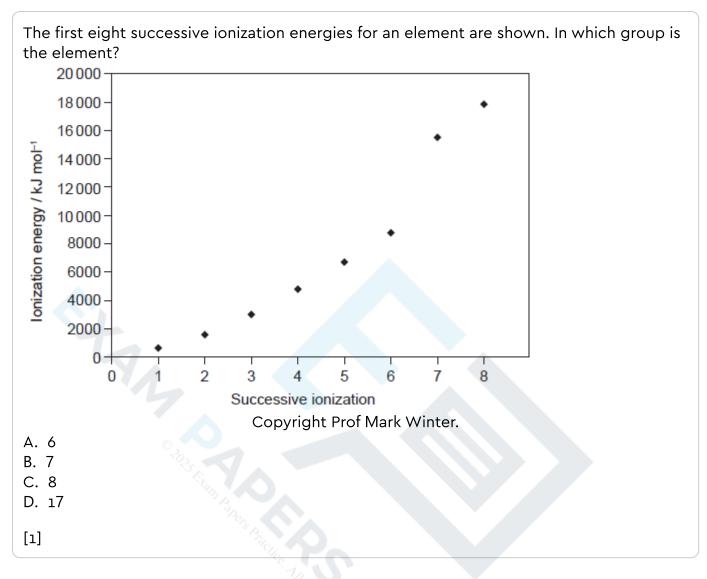
22M.1A.HL.TZ1.14

What is the enthalpy change of the following reaction? [1]

CH $_2$ CHCH $_2$ CH $_3$ + HBr \rightarrow CH $_3$ CHBrCH $_2$ CH $_3$

Substance	$\Delta H_{\mathrm{f}}^{\Theta} / \mathrm{kJ} \mathrm{mol}^{-1}$
CH₂CHCH₂CH₃	0.1
HBr	-36.3
CH₃CHBrCH₂CH₃	-156.0

A. -119.6 kJ


B. +119.6 kJ

C. -119.8 kJ

D. +119.8 kJ

21M.1A.HL.TZ2.5

19M.1A.HL.TZ2.8

What is the oxidation state of the metal ion and charge of the complex ion in [Co(NH $_3$) $_4$ Cl $_2$]Cl?

	Oxidation state of metal ion	Charge of complex ion	
A.	+1	2+	
В.	+2	1+	
C.	+3	1+	
D.	+3	0	

[1]

20N.1A.HL.TZ0.20

What are the units of the rate constant, k, if the rate equation is Rate = kAB^2 ? [1]

A. mol dm $^{-3}$ s $^{-1}$

B. $dm^3 \mod^{-1} s^{-1}$

C. dm⁶ mol⁻² s⁻¹ D. dm⁹ mol⁻³ s⁻¹

20N.1A.HL.TZ0.26

Which species is a Lewis acid but **not** a Brønsted-Lowry acid? [1]

A. Cu²⁺

B. NH₄⁺

C. Cu

D. CH₃COOH

22N.1A.HL.TZ0.33

Which compound has a chiral carbon? [1]

- A. Bromoethane
- B. 2-bromopropane
- C. 2-bromobutane
- D. 3-bromopentane

21N.1A.HL.TZ0.35

Which statement is correct about configurational isomers?

- A. Configurational isomers can only be interconverted by breaking and reforming bonds.
- B. Configurational isomers have different molecular formulas but the same structural formulas.
- C. Configurational isomers are not distinct compounds.
- D. Configurational isomers always have identical physical properties.

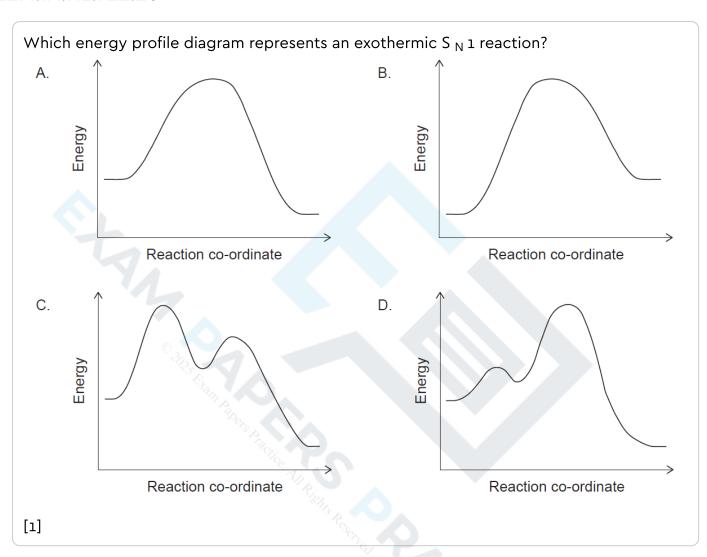
[1]

20N.1A.HL.TZ0.37

Which molecule has an enantiomer?

A. CH₃CH₂CH (OH) CH₂CH₃

- B. CH_2 (OH) $CH_2CH_2CH = CH_2$
- C. $CH_3CH_2CH_2CH = CHBr$
- D. CH₃CHBrCH₂CH₂CH₃

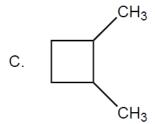

21M.1A.HL.TZ1.9

What is the overall charge, x, of the chromium (III) complex? $[\operatorname{Cr}(H_2O)_{a}\operatorname{Cl}_2]^{x}$

- A. 0
- B. 1+
- C. 2-
- D. 3+

22M.1A.HL.TZ2.20

22M.1A.HL.TZ1.27


In which set are the salts arranged in order of increasing pH? [1]

- A. HCOONH $_4$ < KBr < NH $_4$ Br < HCOOK
- B. KBr < NH ₄ Br < HCOOK < HCOONH ₄
- C. NH ₄ Br < HCOONH ₄ < KBr < HCOOK
- D. HCOOK < KBr < HCOONH 4 < NH 4 Br

19M.1A.HL.TZ1.37

Which compound can exist as cis- and trans-isomers? [1]

- A. CH₂=CHCH₂CH₃
- B. CBr₂=CF₂

D.

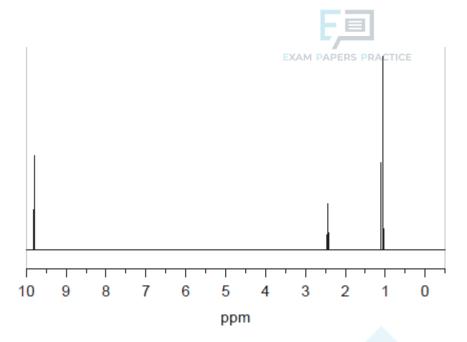
21M.1A.HL.TZ1.30

Which gives the equation and cell potential of the spontaneous reaction? [1]

	E [⊕] /V
$Mn^{2+}(aq) + 2e^- \rightleftharpoons Mn(s)$	-1.18
$Ag^{+}(aq) + e^{-} \rightleftharpoons Ag(s)$	+0.80

		E [⊕] /V
A.	$Mn^{2^+}(aq) + 2Ag(s) \to Mn(s) + 2Ag^+(aq)$	-1.98
B.	$Mn^{2^+}(aq) + 2Ag(s) \to Mn(s) + 2Ag^+(aq)$	+0.38
C.	$Mn(s) + 2Ag^{+}(aq) \rightarrow Mn^{2+}(aq) + 2Ag(s)$	-0.38
D.	$Mn(s) + 2Ag^{+}(aq) \rightarrow Mn^{2+}(aq) + 2Ag(s)$	+1.98

19M.1A.HL.TZ2.39

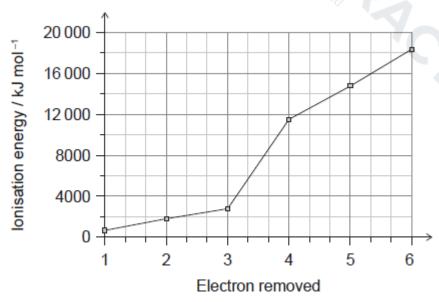

What can be deduced from the infrared (IR) spectrum of a compound? [1]

- A. Number of hydrogens
- B. Number of hydrogen environments
- C. Bonds present
- D. Molar mass

22M.1A.HL.TZ1.38

Which compound produces the following ¹ H NMR spectrum?

[1]


- A. propanal
- B. propanone
- C. propane
- D. methlypropane

Which is the electrophile in the nitration of benzene? [1]

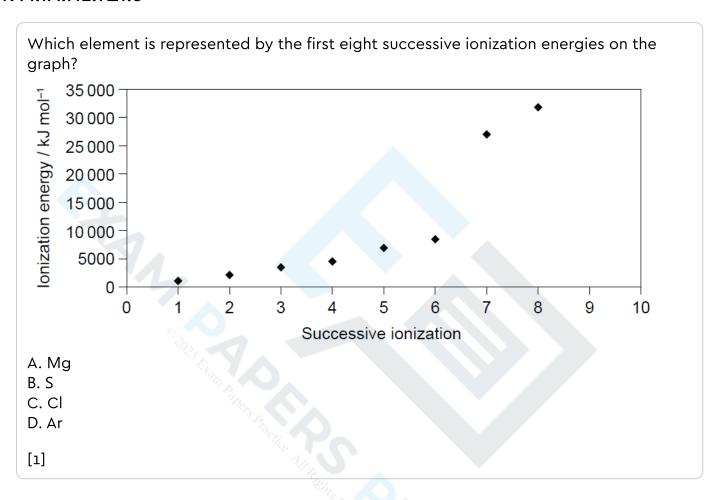
- A. HNO_3
- B. NO₂⁺
- C. NO_2
- D. NH_4^+

22M.1A.HL.TZ1.5

The graph shows the first six ionization energies of an element.

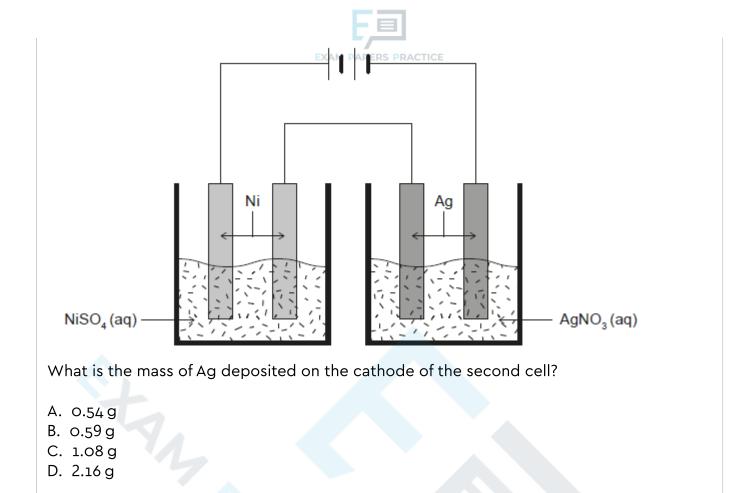
In which group is the element?

A. 13


B. 14

C. 15

D. 16


[1]

19M.1A.HL.TZ1.5

22M.1A.HL.TZ1.31

In the electrolysis apparatus shown, 0.59 g of Ni is deposited on the cathode of the first cell.

[1]

NIST Mass Spectrometry Data Center Collection (C) 2021 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. 2-Pentanone Mass Spectrum, MS Number 291264. [graph] Available at: https://webbook.nist.gov/cgi/cbook.cgi?ID=C107879&Units=SI&Mask=200#Mass-Spec2-pentanone [Accessed 4 May 2020]. source adapted.

- A. The molar mass is $43 \, \mathrm{g} \, \mathrm{mol}^{-1}$.
- B. The atoms have many isotopes.
- C. The most likely bond to break is C–C between carbons 2 and 3.

D. The signal with the largest mass is due to the oxidation of the ketone in the spectrometer.

[1]

EXM.1A.HL.TZ0.7

Which of the following can act as a nucleophile? [1]

- I. Benzene
- II. Water
- III. Bromine
- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III

21M.1A.HL.TZ2.35

Which compound shows cis-trans isomerism? [1]

A. CH₃CH=CCl₂

B. $CCl_2 = CH_2$

C.

D.

21N.1A.HL.TZ0.8

Which complex ion contains a central ion with an oxidation state of +3? [1]

- A. [PtCl₆] ²⁻
- B. $[Cu(H_2O)_4(OH)_2]$
- C. $[Ni(NH_3)_4(H_2O)_2]^{2+}$
- D. [Co(NH₃)₄Cl₂]⁺

19M.1A.HL.TZ1.13

How many carbon atoms are sp 3 , sp 2 and sp hybridized in the molecule? [1]

	- F	=1		
		- 1		
	/			
А	DADED	S DD	ACT	CE

	sp³	sp²	sp
A.	3	1	2
В.	2	1	3
C.	3	2	1
D.	3	2	2

SPM.1A.HL.TZ0.8

What is the molecular geometry of the central atom in SF $_4$ Cl $_2$? [1]

- A. linear
- B. tetrahedral
- C. hexagonal
- D. octahedral

22N.1A.HL.TZ0.6

Which best explains why complexes of d-block elements are coloured? [1]

- A. Light is absorbed when electrons are promoted between d orbitals.
- B. Light is emitted when electrons are promoted between d orbitals.
- C. Light is absorbed when electrons return to lower energy d orbitals.
- D. Light is emitted when electrons return to lower energy d orbitals.

19M.1A.HL.TZ2.23

lodine and bromine gases were mixed and allowed to reach equilibrium. [1] $I_2(g) + Br_2(g) \rightleftharpoons 2IBr(g)$

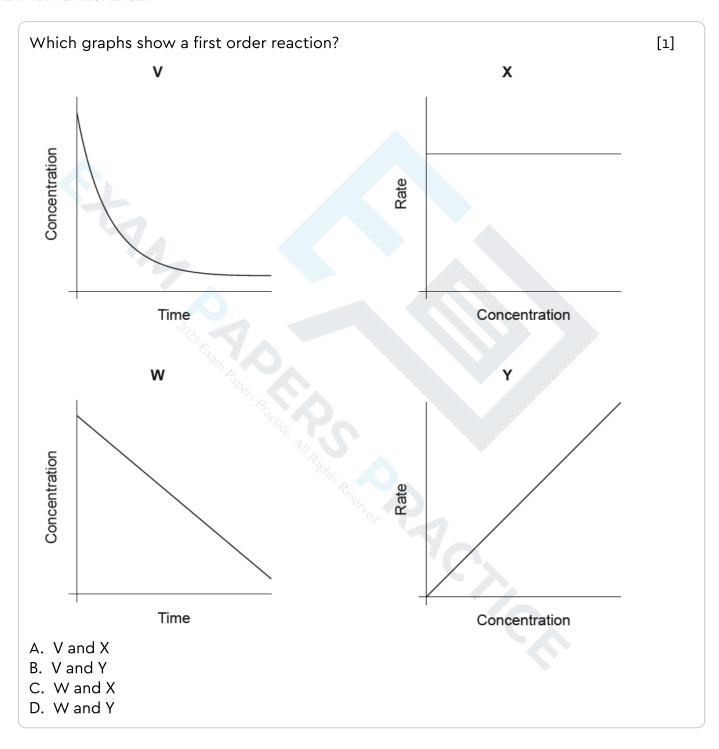
	[I ₂]	[Br ₂]	[IBr]
Initial concentration	0.20	0.20	0.00
Equilibrium concentration	0.10	0.10	x

What is the value of the equilibrium constant?

- A. 0.05
- B. 1
- C. 4
- D. 10

21M.1A.HL.TZ1.13

In which series are all carbon atoms sp 2 hybridized? [1]


A. C₂H₂H₂CO HCOOH

B. C₂H₄H₂CO HCOOH

C. C₂H₂CO HCN

D. C₂H₆CH₃OH CH₃OCH₃

21M.1A.HL.TZ1.21

19M.1A.HL.TZ1.10

Which species does **not** have resonance structures? [1]

A. C $_6$ H $_6$

B. NH ₄ +

C. CO₃²

SPM.1A.HL.TZ0.12

The structure shows the repeating unit of a polymer found in some plastics. [1]

Which monomer is used to form this plastic?

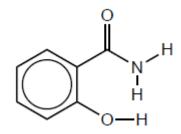
- A. $H_2C=C(CH_3)_2$
- B. CH₃CH(CH₃)₂
- C. $(H_3C)_2C=C(CH_3)_2$
- D. $(H_3C)_2C=CHCH(CH_3)_2$

19M.1A.HL.TZ2.13

What is the hybridization of carbon and oxygen in methanol? [1]

	Hybridization of C	Hybridization of O
A.	sp ²	sp ² / ₂
В.	sp ²	sp Tege
C.	sp	sp ²
D.	sp ³	sp ³

22M.1A.HL.TZ1.8


Why is hydrated copper (II) sulfate blue?

- A. Blue light is emitted when electrons return to lower d-orbitals.
- B. Light complimentary to blue is absorbed when electrons return to lower d-orbitals.
- C. Blue light is emitted when electrons are promoted between d-orbitals.
- D. Light complimentary to blue is absorbed when electrons are promoted between dorbitals.

[1]

SPM.1A.HL.TZ0.10

	Number of non-bonding pairs of electrons	Number of electrons in π bonds
A.	3	6
B.	3	8
C.	5	6
D.	5	8

In which of the following situations is the forward reaction spontaneous? [1]

- A. The equilibrium constant is greater than one under standard conditions.
- B. The cell potential is negative.
- C. The Gibbs free energy change of the reverse reaction is negative.
- D. The entropy change of the universe for the forward reaction is negative.

22N.1A.HL.TZ0.21

The activation energy of a reaction can be obtained from the rate constant, k, and the absolute temperature, T. Which graph of these quantities produces a straight line?

A. k against T

B. k against $\frac{1}{T}$

C. In k against T

D. In k against $\frac{1}{T}$

[1]

SPM.1A.HL.TZ0.31

Which reaction would be expected to have the largest Arrhenius (pre-exponential) factor, A, at constant temperature?

A. $H(g) + I(g) \rightarrow HI(g)$

B. $H_2(g) + I_2(g) \rightarrow 2HI(g)$

C. $2HCl(g) \rightarrow H_2(g) + Cl_2(g)$

[1]

22N.1A.HL.TZ0.22

For the reaction I₂(g) + 3Cl₂(g) \rightleftharpoons 2 I Cl₃(g) at a certain temperature, the equilibrium concentrations are (in mol dm $^{-3}$):

$$[I_2] = 0.20, [CI_2] = 0.20, [ICI_3] = 2.0$$

What is the value of K_c ?

- A. o.25
- B. 50
- C. 2500
- D. 5000

[1]

22M.1A.HL.TZ1.18

 $\frac{1}{2}$ Cl₂(g) + $\frac{1}{2}$ I₂(g) \rightleftharpoons I Cl(g) $K_c = 454$ [1]

What is the K_c value for the reaction below?

$$2 \operatorname{ICl}(g) \rightleftharpoons \operatorname{Cl}_{2}(g) + \operatorname{I}_{2}(g)$$

- $A.2 \times 454$
- B. $\frac{1}{2 \times 454}$
- C. 454²
- D. $\frac{1}{454^2}$

19N.1A.HL.TZ0.22

What is the intercept on the y-axis when a graph of $\ln k$ is plotted against $\frac{1}{T}$ on the x-axis?

$$lnk = -\frac{E_a}{RT} + lnA$$

- A. In *A*
- B. $-\frac{E_a}{R}$
- C. $-\frac{\Re}{E_a}$
- D. E_a

[1]

22N.1A.HL.TZ0.23

Which of these changes would shift the equilibrium to the right? [1 $[Co(H_2O)_6]^{2+}(aq) + 4CI^{-}(aq) \rightleftharpoons [CoCl_4]^{2-}(aq) + 6H_2O(I)$

- I. Addition of 0.01 M HCl
- II. Addition of concentrated HCl
- III. Evaporation of water

- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III

SPM.1A.HL.TZ0.7

In which group of ions and molecules are electrons delocalized in all species? [1]

- A. CH $_3$ COOH, O $_3$, C $_{60}$
- B. CH₃COO -, NO₂ -, C(graphite)
- C. C₂H₂, (COOH)₂, C(diamond)
- D. C₂H₄, NO₂⁺, SiO₂

21N.1A.HL.TZ0.37

Which attacking species is matched with its mechanism of reaction? [1]

	Attacking species	Type of mechanism
A.	OH ⁻	Electrophilic substitution
B.	Cl ⁺ S _A	Nucleophilic addition
C.	NH₄ ⁺	Nucleophilic addition
D.	NO ₂ ⁺	Electrophilic substitution

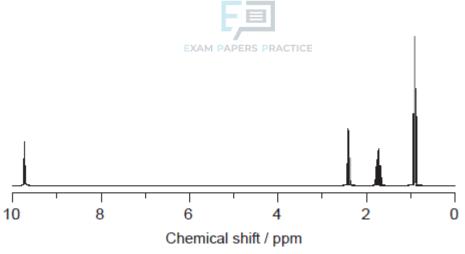
20N.1A.HL.TZ0.5

A.

B.

C.

D.


Which element is in group 13?

	Ionization en		-
1st	2nd	3rd	4th
789	1580	3230	4360
578	1820	2750	11 600
738	1450	7730	10 500
496	4560	6910	9540

[1]

20N.1A.HL.TZ0.40

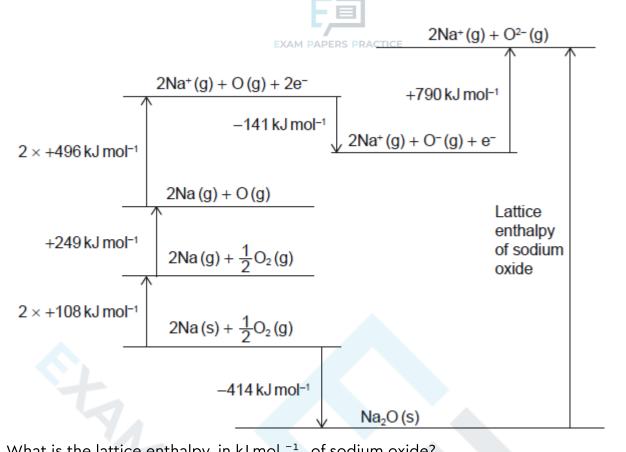
Which compound with the molecular formula C_4H_8O has this high resolution H_1 NMR?

From: libretexts.org. Courtesy of Chris Schaller, Professor (Chemistry) at College of Saint Benedict/Saint John's University.

- A. but-3-en-2-ol, $CH_2 = CHCH (OH) CH_3$
- B. butanal, CH₃CH₂CH₂CHO
- C. butanone, CH₃COCH₂CH₃
- D. but-3-en-1-ol, $CH_2 = CHCH_2CH_2OH$

[1]

22M.1A.HL.TZ2.26


A weak base is titrated with a strong acid. Which value of p K b can be estimated from this titration curve?

- A. 11.3
- B. 9.2
- C. 4.8
- D. 1.8

[1]

21N.1A.HL.TZ0.16

What is the lattice enthalpy, in kJ mol ⁻¹, of sodium oxide?

A.
$$414 + 2(108) + 249 + 2(496) - 141 + 790$$

B.
$$414 + 2(108) + 249 + 2(496) + 141 + 790$$

C.
$$-414 + 2(108) + 249 + 2(496) - 141 + 790$$

D.
$$-414 - 2(108) - 249 - 2(496) + 141 - 790$$

19M.1A.HL.TZ2.6

How is colour produced in transition metal complexes?

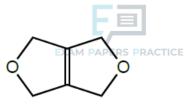
[1]

- A. Light is absorbed when electrons are promoted between split d-orbitals.
- B. Light is emitted when electrons fall between split d-orbitals.
- C. Light is absorbed when electrons escape from the complex.
- D. Light is emitted when the complex returns to ground state.

19N.1A.HL.TZ0.36

In which compound is the halogen substituted the most rapidly by aqueous hydroxide ions?

A. $(CH_3)_3 CCI$


B. $(CH_3)_3 CI$

C. CH₃ CH₂ CH₂ CH₂ Cl

D. CH₃CH₂CH₂CH₂I

[1]

22M.1A.HL.TZ2.28

- A. 1
- B. 2
- C. 3
- D. 4

19M.1A.HL.TZ2.11

Which species has a square planar molecular geometry? [1]

- A. SF₄
- B. XeF ₄
- C. CF 4
- D. PF ₄

22M.1A.HL.TZ2.15

What are the signs of ΔH and ΔS for a reaction that is non-spontaneous at low temperatures but spontaneous at high temperatures?

	ΔΗ	S _y ΔS
Α.	_	Aday -
B.	-	+
C.	+	- ³ C _I ,
D.	+	+

[1]

20N.1A.HL.TZ0.31

Which statement is correct when a zinc spoon is electroplated with silver? [1]

- A. The cathode (negative electrode) is made of silver.
- B. The anode (positive electrode) is the zinc spoon.
- C. The anode (positive electrode) is made of silver.
- D. The electrolyte is zinc sulfate solution.

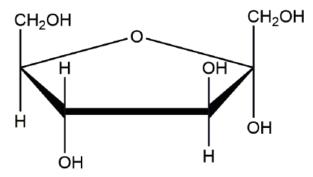
19M.1A.HL.TZ2.31

What are the products when concentrated KBr (aq) is electrolyzed? [1]

	Anode (positive electrode)	Cathode (negative electrode)
A.	O ₂	К
В.	O ₂	H ₂
C.	Br ₂	К
D.	Br ₂	H ₂

Which combination correctly describes the geometry of BrF₄⁻? [1]

	Electron domain geometry around Br	Molecular geometry around Br
A.	Octahedral	Tetrahedral
B.	Tetrahedral	Square planar
C.	Octahedral	Square planar
D.	Tetrahedral	Tetrahedral


19M.1A.HL.TZ1.40

Which can be identified using infrared (IR) spectroscopy? [1]

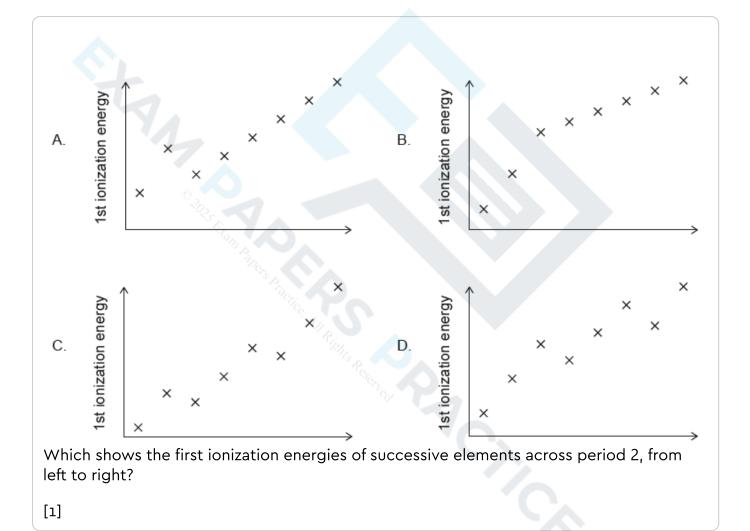
- A. functional groups
- B. molar mass
- C. 3-D configuration
- D. bond angle

21M.1A.HL.TZ1.37

How many chiral centres are there in the following molecule? [1]

- A. 2
- B. 3
- C. 4
- D. 6

SPM.1A.HL.TZ0.39



Which statement is correct when 2-chloro-2-methylpentane reacts with water to form 2-methylpentan-2-ol?

- A. Water acts as a nucleophile and attacks the chlorine atom.
- B. The reaction occurs in a single step.
- C. A carbocation intermediate is formed.
- D. Homolytic bond fission occurs.

[1]

19N.1A.HL.TZ0.5

SPM.1A.HL.TZ0.6

What is the formula of the compound formed between magnesium ions and hydrogencarbonate ions?

- A. MgHCO₃
- B. $Mg(HCO_3)_2$
- C. Mg(HCO $_3$) $_3$
- D. Mg $_3$ (HCO $_3$) $_2$

What is the enthalpy change for the reaction in kJ mol $^{-1}$? [1] $CO_2(g) + H_2(g) \rightarrow CO(g) + H_2O(g)$ $2CO(g) + O_2(g) \rightarrow 2CO_2(g) \Delta H = -566 \text{ kJ mol}^{-1}$ $2H_2(g) + O_2(g) \rightarrow 2H_2O(l) \Delta H = -572 \text{ kJ mol}^{-1}$ $H_2O(g) \rightarrow H_2O(l) \Delta H = -44 \text{ kJ mol}^{-1}$

A. - 1182

B. - 899

C. - 41

D. + 41

SPM.1A.HL.TZ0.27

What is the main reason for an increase in rate of reaction when the temperature is raised?

- A. A greater proportion of collisions are successful.
- B. Particles collide more frequently.
- C. The bonds in the reactants are weakened.
- D. The activation energy of the reaction decreases.

[1]

19N.1A.HL.TZ0.17

Which reaction has the greatest increase in entropy of the system? [1]

A. HCl (g) + NH $_3$ (g) \rightarrow NH $_4$ Cl (s)

B. $(NH_4)_2 Cr_2 O_7(s) \rightarrow Cr_2 O_3(s) + N_2(g) + 4H_2 O(g)$

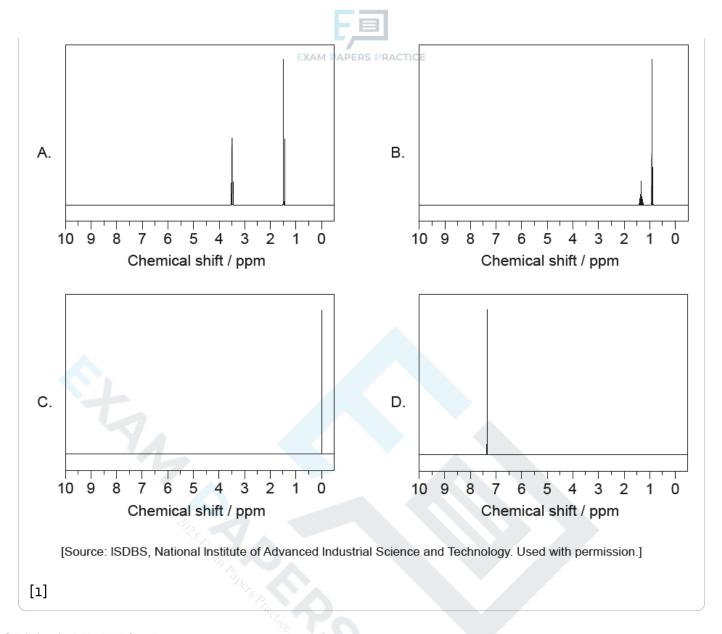
C. CaCO $_3$ (s) \rightarrow CaO (s) + CO $_2$ (g)

D. $I_2(g) \rightarrow I_2(s)$

21M.1A.HL.TZ1.26

Which is a Lewis acid, but not a Brønsted-Lowry acid? [1]

A. BF_3


B. H_3O^+

C. NH₃

D. Cl

19N.1A.HL.TZ0.40

Which is the ¹ H NMR spectrum of tetramethylsilane, TMS, (CH ₃) ₄ Si?

Which molecule has a carbonyl functional group? [1]

- A. CH₃OCH₃
- B. CH₃COCH₃
- C. CH₃CH₂OH
- D. CH₃CH₂NH₂

19N.1A.HL.TZ0.24

Which corresponds to a system at equilibrium? [1]

	Entropy Gibbs free energy	
A.	maximum	maximum
B.	maximum	minimum
C.	minimum	maximum
D.	minimum	minimum

Which change results in the largest negative value of ΔS ? [1]

A. $C_2 H_5 OH(I) + SOCI_2(I) \rightarrow C_2 H_5 CI(I) + SO_2(g) + HCI(g)$

B. $CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$

C. $H_2O(I) \rightarrow H_2O(s)$

D. $NH_3(g) + HCl(g) \rightarrow NH_4Cl(s)$

SPM.1A.HL.TZ0.4

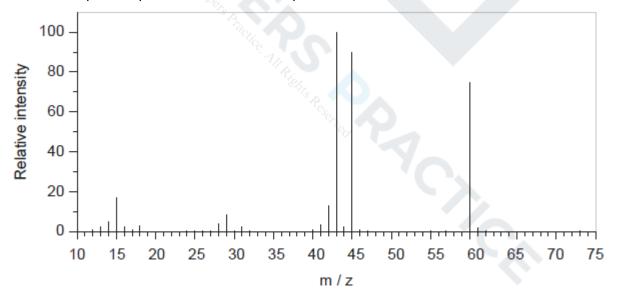
A container holds 30 g of argon and 60 g of neon.

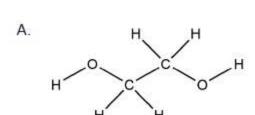
What is the ratio of number of atoms of argon to number of atoms of neon in the container?

A. o.25

B. 0.50

C. 2.0


D. 4.0


[1]

22M.1A.HL.TZ1.29

Which compound produces this mass spectrum?

[1]

C. H C H

21M.1A.HL.TZ2.28

Which spectra would show the difference between propan-2-ol, CH $_{\rm 3}$ CH(OH)CH $_{\rm 3}$, and propanal, CH $_{\rm 3}$ CH $_{\rm 2}$ CHO?

- I. mass
- II. infrared
- III. 1 H NMR
- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III

[1]

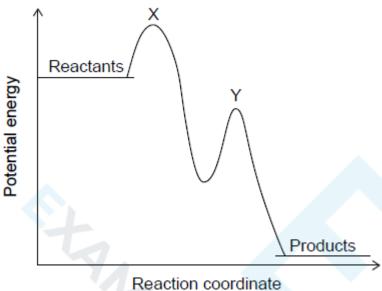
EXM.1A.HL.TZ0.5

Which is the product when but-1-yne reacts with excess hydrogen gas? [1]

- A. But-1-ene
- B. Butane
- C. But-2-ene
- D. No reaction

21N.1A.HL.TZ0.22

A reversible reaction has a reaction quotient, Q, of 4.5 and equilibrium constant, $K_{\rm c}$, of 6.2.


$$2A(g) \rightleftharpoons A_2(g)$$

Which statement describes the reaction at this time?

- A. The system has reached equilibrium.
- B. The rate of the forward reaction is greater than the rate of the reverse reaction.
- C. The concentration of reactant is greater than the concentration of product.
- D. At equilibrium, the concentration of reactant is greater than the concentration of product.

Which statement is correct about points X and Y on the energy profile diagram? [1]

- A. X is a transition state and Y is an intermediate.
- B. X is an intermediate and Y is a transition state.
- C. X and Y are transition states.
- D. X and Y are intermediates.

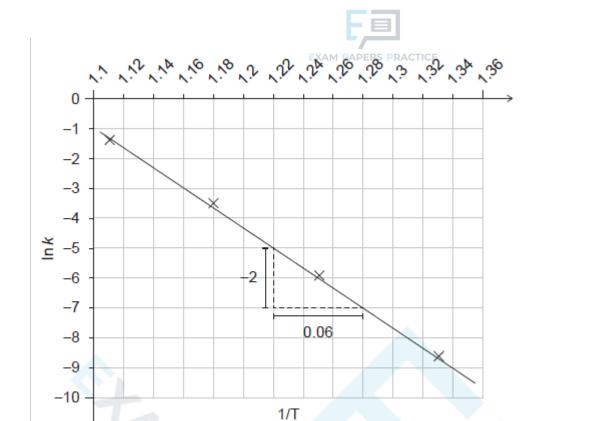
EXM.1A.HL.TZ0.8

Which is correct when benzene undergoes electrophilic substitution by chlorine, Cl $_2$, in presence of the catalyst, Cl $_3$ Al?

A.
$$C_6H_6+Cl_2\rightarrow C_6H_5Cl+HCl$$

B.
$$C_6H_6 + Cl_2 \rightarrow C_6H_4Cl_2 + H_2$$

C.
$$C_6H_6+Cl_2\rightarrow C_6H_6Cl_2$$


D.
$$C_6H_6 + Cl_2 \rightarrow C_6H_6Cl + Cl^-$$

[1]

22M.1A.HL.TZ1.21

What is the activation energy according to the following plot of the linear form of the Arrhenius equation?

Arrhenius equation: $k = Ae^{\frac{-Ea}{RT}}$.

A.
$$E_a = \frac{2 \times 8.31}{0.06}$$

B. $E_a = \frac{2 \times 8.31}{0.06}$
C. $E_a = e^{\frac{2 \times 8.31}{0.06}}$

D. $E_a = e^{\frac{-2 \times 8.31}{0.06}}$

[1]

21N.1A.HL.TZ0.26

What is a possible value of pH at the equivalence point in the titration of a strong acid with a weak base?

A. 5

B. 7

C. 9

D. 11

[1]

19N.1A.HL.TZ0.38

Which can show optical activity? [1]

A. CHBrCHCl

B. CH $_3$ CH $_2$ CHBrCH $_2$ CH $_3$

C. (CH₃)₂CBrCl

D. CH₃CH₂CH(CH₃)Br

SPM.1A.HL.TZ0.32

[1]

- I. $2HCl(aq) + Mg(s) \rightarrow MgCl_2(aq) + H_2(g)$
- II. $2HCl(aq) + MgO(s) \rightarrow MgCl_2(aq) + H_2O(l)$
- III. $2HCl(aq) + MgCO_3(s) \rightarrow MgCl_2(aq) + H_2O(l) + CO_2(g)$
- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III

21M.1A.HL.TZ1.12

Which contain delocalised electrons? [1]

- I. C₆H₅OH
- II. CH 3 COO -
- III. CO_3^{2-}
- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III

SPM.1A.HL.TZ0.36

Which statements explain the following reactions occurring in the upper atmosphere?

	Chlorofluorocarbon (CFC) compounds break down to produce chlorine radicals but usually not fluorine radicals.	A single chlorine radical breaks down many ozone, O ₃ , molecules.
A.	C-Cl bond is stronger than C-F bond	chain propagation steps produce more radicals
B.	C-F bond is stronger than C-Cl bond	chain termination steps cause chlorine radicals to reform chlorine molecules
C.	C-Cl bond is stronger than C-F bond	chain termination steps cause chlorine radicals to reform chlorine molecules
D.	C-F bond is stronger than C-Cl bond	chain propagation steps produce more radicals

[1]

22N.1A.HL.TZ0.26

Which solutions will form a buffer when mixed?

[1]

- A. 50 cm 3 of 1.0 mol dm $^{-3}$ HCl and 50 cm 3 of 1.0 mol dm $^{-3}$ NaOH
- B. 50 cm 3 of 1.0 mol dm $^{-3}$ CH $_3$ COOH and 50 cm 3 of 1.0 mol dm $^{-3}$ NaOH
- C. 50 cm 3 of 1.0 mol dm $^{-3}$ CH $_3$ COOH and 100 cm 3 of 1.0 mol dm $^{-3}$ NaOH

What is the explanation for the malleability of metals? [1]

- A. The bonds are strong.
- B. The bonds are weak.
- C. The bonds involve free electrons.
- D. The bonds do not have a specific direction.

21N.1A.HL.TZ0.13

What is the hybridization of nitrogen and chlorine in NCl_3 ? [1]

	N	CI
A.	sp ²	sp²
B.	sp ²	sp³
C.	sp³	sp²
D.	sp³	sp³

SPM.1A.HL.TZ0.35

In a redox titration, manganate(VII) ions are reduced to manganese(II) ions and iron(II) ions are oxidized to iron(III) ions.

MnO
$$_4$$
 (aq) reduced to Mn $^{2+}$ (aq)
Fe $^{2+}$ (aq) oxidized to Fe $^{3+}$ (aq)

What volume, in cm 3 , of 0.1 mol dm $^{-3}$ MnO $_4$ $^{-}$ (aq) is required to reach the equivalence point in the titration of 20.00 cm 3 of 0.1 mol dm $^{-3}$ Fe $^{2+}$ (aq)?

- A. 2.00
- B. 4.00
- C. 20.00
- D. 100.00

[1]

22M.1A.HL.TZ1.13

What are the electron domain and molecular geometries of the XeF 4 molecule? [1]

	Electron domain geometry	AM PAPE Mõlecula r geometry	
A.	tetrahedral	planar	
B.	tetrahedral	tetrahedral	
C.	octahedral	planar	
D.	octahedral	tetrahedral	

EXM.1A.HL.TZ0.1

Which of the following is most likely to be a transition metal?

[1]

	Melting point	oint Electrical conductivity Ductility	
A.	High	High Good Lo	
B.	High	Poor	Low
C.	High	Good	High
D.	Low	Good	High

21N.1A.HL.TZ0.31

Which aqueous solutions produce oxygen gas during electrolysis? [1]

- I. Dilute CuCl 2 (aq) with inert electrodes
- II. Dilute FeSO 4 (aq) with inert electrodes
- III. Dilute CuCl 2 (aq) with copper electrodes

The standard electrode potentials are provided in the table:

Half-equation	E°/V
$Fe^{2+}(aq) + 2e^{-} \rightleftharpoons Fe(s)$	-0.45
$Cu^{2+}(aq) + 2e^{-} \rightleftharpoons Cu(s)$	+0.34
$\frac{1}{2}O_2(g) + 2H^+(aq) + 2e^- \rightleftharpoons H_2O(l)$	+1.23
$\frac{1}{2}Cl_2(g) + e^- \rightleftharpoons Cl^-(aq)$	+1.36

- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III

SPM.1A.HL.TZ0.22

Which is a renewable energy source? [1]

- A. natural gas
- B. uranium
- C. coal
- D. wood

22M.1A.HL.TZ1.35

What are the type of reaction and role of the nitronium ion, NO $_2^{\,+}$, in the following reaction?

C
$$_6$$
 H $_6$ + NO $_2$ $^+$ \rightarrow C $_6$ H $_5$ NO $_2$ + H $^+$

	Type of reaction	Role of NO ₂ ⁺	
A.	substitution	electrophile	
B.	addition	electrophile	
C.	substitution	nucleophile	
D.	addition	nucleophile	

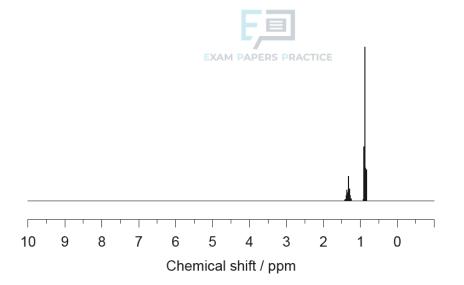
[1]

SPM.1A.HL.TZ0.37

Which term cannot characterize ammonia, NH 3? [1]

- A. Lewis acid
- B. Brønsted-Lowry acid
- C. ligand
- D. nucleophile

SPM.1A.HL.TZ0.38


Which ion is a better leaving group in nucleophilic substitutions? [1

- A. bromide ion
- B. chloride ion
- C. fluoride ion
- D. iodide ion

21M.1A.HL.TZ1.40

Which compound produces the following ¹ H NMR spectrum?

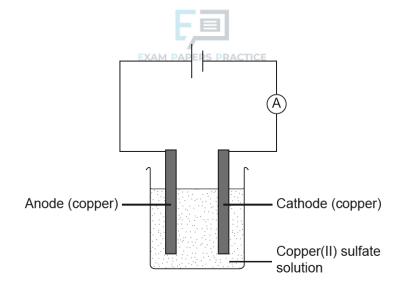
[1]

SDBS, National Institute of Advanced Industrial Science and Technology (AIST).

- A. Propane
- B. Propanone
- C. Propanal
- D. 2,2-dimethylpropane

SPM.1A.HL.TZ0.30

The equation for the reaction between two gases, A and B, is: A (g) + 2B (g) \rightleftharpoons 2C (g)


When the reaction is at equilibrium at 600 K, the concentrations of A, B, and C are 2, 1, and 2 mol dm $^{-3}$ respectively. What is the value of the equilibrium constant at 600 K?

- A. 0.25
- В. 1
- C. 2
- D. 4

[1]

21M.1A.HL.TZ2.31

What happens to the mass of each copper electrode when aqueous copper(II) sulfate solution is electrolysed?

	Anode (positive electrode)	Cathode (negative electrode)
A.	increases	increases
B.	increases	decreases
C.	decreases	increases
D.	decreases	decreases

[1]

SPM.1A.HL.TZ0.33

The indicator, HInd, is used in an acid-base titration. [1] HInd (aq) \rightleftharpoons H $^+$ (aq) + Ind - (aq) colour B

Which statements are correct?

- I. In a strongly alkaline solution, colour B is observed.
- II. Colour A is observed when [HInd] < [Ind -].
- III. [Ind -] approximately equals [HInd] at the end point.
- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III

22N.1A.HL.TZ0.10

Which elements are capable of forming expanded octets? [1]

- I. Nitrogen
- II. Phosphorus
- III. Arsenic
- A. I and II only

- B. I and III only
- C. II and III only
- D. I, II and III

21M.1A.HL.TZ2.36

Which compound rotates the plane of plane-polarized light? [1]

- A. CH₃C(CH₃)ClCH₃
- B. CH₃CH₂CHClCH₃
- C. CH₃C(Cl)₂CH₃
- D. CH₃ CClBrCH₃

22M.1A.HL.TZ2.11

What is the formal charge of the oxygen atom in H $_3$ O $^+$? [1]

- A. -2
- B. -1
- C. o
- D. +1

19M.1A.HL.TZ1.21

Which is correct for the reaction mechanism shown?

 $2A \rightarrow B + 2C$

 $B + C \rightarrow D + E$ fast

slow

[1]

 $C + D \rightarrow E + F$ fast

	Equation of overall reaction	Rate equation
Α.	$2A \rightarrow E + F$	$rate = k[A]^2$
В.	2A → 2E + F	rate = <i>k</i> [C][D]
C.	$2A + B + 2C + D \rightarrow 2E + F$	rate = $k[A]^2[B][C]^2[D]$
D.	2A → 2E + F	$rate = k[A]^2$

21M.1A.HL.TZ1.6

The diagram shows the first ionisation energies of consecutive elements in the same period of the periodic table.

Atomic number

Which factor explains why element X has a higher first ionisation energy than element Y?

- A. Element Y loses an electron from a different sub-level.
- B. Element Y has a smaller atomic radius.
- C. Element X has a full octet.
- D. Element Y has a greater nuclear charge.

[1]

EXM.1A.HL.TZ0.6

Which of the following describes the role of benzene in the reaction? [1]

- A. an electrophile
- B. a nucleophile
- C. a reducing agent
- D. an acid

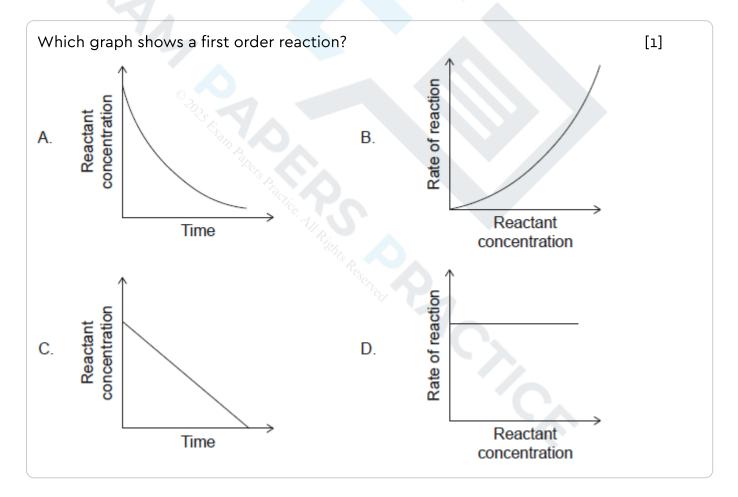
SPM.1A.HL.TZ0.17

What do all greenhouse gases have in common? [1]

- A. They are emitted by the burning of fossil fuels.
- B. They absorb ultraviolet radiation.
- C. They are symmetrical molecules with no polar bonds.
- D. They absorb infrared radiation.

22N.1A.HL.TZ0.20

Data is given for the reaction 2X $_2$ (g) + Y $_2$ (g) \rightarrow 2X $_2$ Y (g).


[X ₂ (g)] (mol dm ⁻³)	[Y ₂ (g)] (mol dm ⁻³)	Rate (mol dm ⁻³ min ⁻¹)	
0.1	0.2	0.1	
0.2	0.2	0.4	
0.2	0.1	0.4	

What rate equation can be inferred from the data?

- A. Rate = $k[X_2][Y_2]$
- B. Rate = $k [X_2]^2 [Y_2]$
- C. Rate = $k [X_2]^2 [Y_2]^\circ$ D. Rate = $k [X_2]^2 [Y_2]^\circ$

[1]

21N.1A.HL.TZ0.20

22M.1A.HL.TZ2.12

What is the molecular geometry of SF_4 ? [1]

- A. Tetrahedral
- B. Trigonal bipyramidal
- C. See-saw
- D. Square planar

19N.1A.HL.TZ0.28

What is the order, in increasing pH, of the following solutions of equal concentration?

	p <i>K</i> a		<i>K</i> a
CH ₃ CH ₂ CH ₂ COOH	4.8	CHCl ₂ COOH	5.0×10^{-2}
CH ₃ CH ₂ COOH	4.9	H ₃ BO ₃	5.8×10^{-10}

A. H₃BO₃ < CH₃CH₂CH₂COOH < CH₃CH₂COOH < CHCl₂COOH

B. H $_3$ BO $_3$ < CH $_2$ CH $_2$ COOH < CHCl $_2$ COOH < CH $_3$ CH $_2$ COOH

C. CH $_3$ CH $_2$ CH $_2$ COOH < CH $_3$ CH $_2$ COOH < CHCl $_2$ COOH < H $_3$ BO $_3$

D. CHCl $_2$ COOH < CH $_3$ CH $_2$ CH $_2$ COOH < CH $_3$ CH $_2$ COOH < H $_3$ BO $_3$

[1]

19M.1A.HL.TZ1.26

Which is a Lewis acid but not a Brønsted-Lowry acid? [1]

A. AICI 3

B. CH₃CO₂H

C. HF

D. CCl 4

22N.1A.HL.TZ0.4

Successive ionization energies of an element, **X** , are shown.

	ેર્ _્ 1st	2nd	3rd	4th
Ionization energy (kJ mol ⁻¹)	740	1450	7730	10540

What energy, in kJ mol $^{-1}$, is required for element **X** to reach its most stable oxidation state in ionic compounds?

A. 740

B. 1450

C. 2190

D. 7730

[1]

SPM.1A.HL.TZ0.25

The complete combustion of 20.0 cm 3 of a gaseous hydrocarbon, C $_{\rm x}$ H $_{\rm y}$, produces 80.0 cm 3 of gaseous products. This volume reduces to 40.0 cm 3 when the water vapour present condenses. All volumes are measured at the same temperature and pressure.

What is the molecular formula of the hydrocarbon?

A. CH 4

B. C_2H_2

C. C_2H_4

D. C₃H₆

[1]

SPM.1A.HL.TZ0.15

The block structure of the periodic table groups elements according to which characteristic?

A. atomic number

B. atomic mass

C. electron configuration

D. reactivity

[1]

19M.1A.HL.TZ2.21

What is the order with respect to each reactant?

2NO (g) + Cl₂ (g)
$$\rightarrow$$
 2NOCl (g)

Initial [NO] / mol dm ⁻³	Initial [Cl₂] / mol dm ⁻³	Initial rate / mol dm ⁻³ s ⁻¹
0.10	0.10	2.5 × 10 ⁻⁶
0.10	0.20	5.0 × 10 ⁻⁶
0.20	0.10	10.0 × 10 ⁻⁶

	Order with respect to NO	Order with respect to Cl ₂
Α.	0	1
В.	1	1
C.	2	1
D.	2	2

[1]

EXM.1A.HL.TZ0.9

Which of the following statements is correct when a 1.0 M NH $_4$ +/NH $_3$ buffer (pH = 9.2) is diluted to 0.5 M with water?

- I. The ability of the buffer to resist changes in pH when acids are added will decrease.
- II. The ability of the buffer to resist changes in pH when bases are added will decrease.
- III. The pH of the buffer will be equal to 7.
- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III

[1]

SPM.1A.HL.TZ0.24

What is correct as a system approaches equilibrium? [1]

- A. Q remains constant.
- B. K_c increases.
- C. Δ G \ominus becomes more negative.
- D. Δ G approaches zero.

SPM.1A.HL.TZ0.2

Ice containing only the isotope 2 H sinks and does not melt when dropped into ordinary distilled water maintained at 3 $^{\circ}$ C.

Which statement is correct?

- A. The isotope 2 H has a high natural abundance.
- B. 2 H ${}_{2}$ O (s) has a higher melting point than normal ice.
- C. ² H ₂ O (s) has a lower density than normal ice-cold water.
- D. 2 H $_2$ O has different chemical properties from normal water.

[1]

19M.1A.HL.TZ1.18

 K_{c} for 2N $_{2}$ O (g) \rightleftharpoons 2N $_{2}$ (g) + O $_{2}$ (g) is 7.3 × 10 34 . [1]

What is K_c for the following reaction, at the same temperature?

$$N_{2}(g) + \frac{1}{2}O_{2}(g) \rightleftharpoons N_{2}O(g)$$

A. 7.3×10^{34}

B.
$$\frac{1}{\sqrt{7.3 \times 10^{34}}}$$

C.
$$\frac{2}{7.3 \times 10^{34}}$$

D.
$$\frac{1}{2 \times 7.3 \times 10^{34}}$$

22M.1A.HL.TZ2.17

Which term in the expression $\Delta G \stackrel{\ominus}{=} \Delta H \stackrel{\ominus}{=} T\Delta S \stackrel{\ominus}{=} is$ an indirect measure of the entropy change of the surroundings when divided by T?

- A. ΔG ⊖
- B. ΔH [⊖]
- C. ∆S ⊖
- D. −TΔS ⊖

[1]

22N.1A.HL.TZ0.30

The standard electrode potentials for three half-cells involving chromium are shown. [1]

$$Cr^{3+}(aq) + e^{-} \rightleftharpoons Cr^{2+}(aq) E^{\Theta} = -0.407 V$$

$$Cr^{3+}$$
 (aq) + 3e $^- \rightleftharpoons Cr$ (s) $E^{\Theta} = -0.744 \text{ V}$

$$Cr^{2+}(aq) + 2e^{-} \rightleftharpoons Cr(s) E^{\Theta} = -0.914 V$$

Which statement is correct?

- A. Cr^{3+} (aq) can oxidize Cr^{2+} (aq) but not Cr (s).
- B. Cr^{3+} (aq) can oxidize Cr (s) but not Cr^{2+} (aq).
- C. Cr 3+ (aq) can oxidize both Cr 2+ (aq) and Cr (s).
- D. Cr ³⁺ (aq) can oxidize Cr (s) and reduce Cr ²⁺ (aq).

SPM.1A.HL.TZ0.34

The overall reaction occurring at the electrodes of a rechargeable metal hydride battery can be summarized as:

$$MH + NiO(OH) \Rightarrow M + Ni(OH)_2$$

Which statement is correct?

- A. The oxidation state of Ni does not change.
- B. M is oxidized by loss of hydrogen.
- C. The oxidation state of one H atom changes from 1 to +1.
- D. The oxidation state of one O atom changes from 1 to 2.

[1]

19M.1A.HL.TZ1.17

Which equation represents the standard enthalpy of atomization of bromine, Br 2? [1]

A.
$$\frac{1}{2}$$
 Br ₂ (I) \rightarrow Br (g)

B. Br
$$_2$$
 (I) \rightarrow 2Br (g)

C. Br
$$_2$$
 (I) \rightarrow 2Br (I)

D.
$$\frac{1}{2}$$
 Br $_2$ (I) \rightarrow Br (I)

SPM.1A.HL.TZ0.23

Which are endothermic processes in a Born–Haber cycle for the formation of an ionic compound?

- I. Enthalpy of atomization
- II. First electron affinity
- III. First ionization energy
- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III

[1]

21M.1A.HL.TZ1.16

The table shows the variation of standard Gibbs energy with temperature for a reversible reaction.

$$\Delta G^{\ominus} = \Delta H^{\ominus} - T \Delta S^{\ominus}$$

$$\Delta G^{\ominus} = -RT \ln K$$

Temperature / K	∆G ^o / kJ mol ⁻¹
298	5.4
350	-3.9
400	~ -12.9

What can be concluded about the reaction?

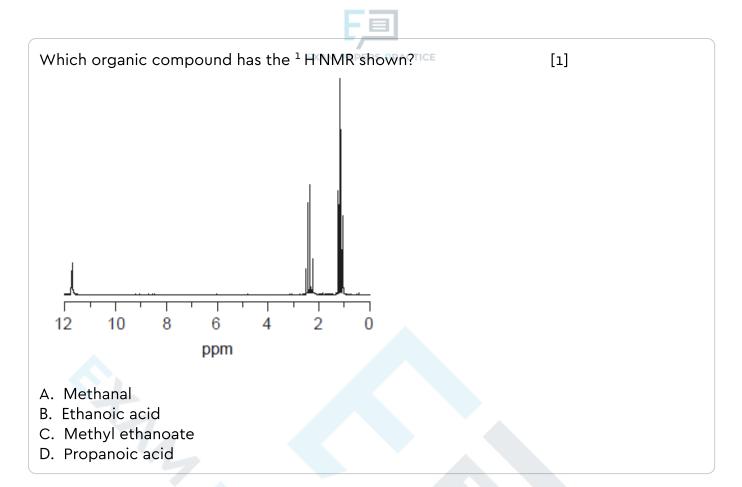
- A. Equilibrium shifts left as temperature increases.
- B. The forward reaction is more spontaneous below 300 K.
- C. Entropy is higher in the products than in the reactants.
- D. K_c decreases as temperature increases.

[1]

SPM.1A.HL.TZ0.3

The table lists successive ionization energies of an element ${\bf Z}$.

 Ionization number
 1st
 2nd
 3rd
 4th
 5th
 6th


 Ionization energy / kJ mol-1
 577.54
 1816.68
 2744.78
 11 577.5
 14 841.9
 18 379

Which is the formula of the stable oxide of the element **Z**?

- $A. Z_2O$
- B. ZO
- $C. Z_2O_3$
- D. ZO₂

[1]

22N.1A.HL.TZ0.40

19N.1A.HL.TZ0.11

Which describes a resonance structure?

[1]

- A. Double bond can be drawn in alternative positions.
- B. Bonds vibrate by absorbing IR radiation.
- C. A double and a single bond in the molecule
- D. A Lewis structure

21M.1A.HL.TZ2.37

Which can be reduced to a secondary alcohol? [1]

- A. C₂H₅COOH
- B. CH₃CH₂OCH₃
- C. (CH₃)₂CHCHO
- D. CH₃COC₂H₅

19M.1A.HL.TZ1.36

Which statement is **not** correct regarding benzene? [1]

- A. It is planar.
- B. The ring contains delocalized electrons.
- C. It always reacts in the same way as alkenes.
- D. The carbon-carbon bond has a bond order of 1.5.

19M.1A.HL.TZ2.22

-, **=**

Consider the following equilibrium reaction. [1]

 $2N_2O(g) + O_2(g) \rightleftharpoons 4NO(g)\Delta H = +16 kJ$

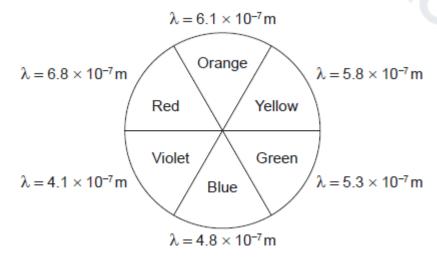
Which change will move the equilibrium to the right?

- A. Decrease in pressure
- B. Decrease in temperature
- C. Increase in [NO]
- D. Decrease in [O₂]

22N.1A.HL.TZ0.29

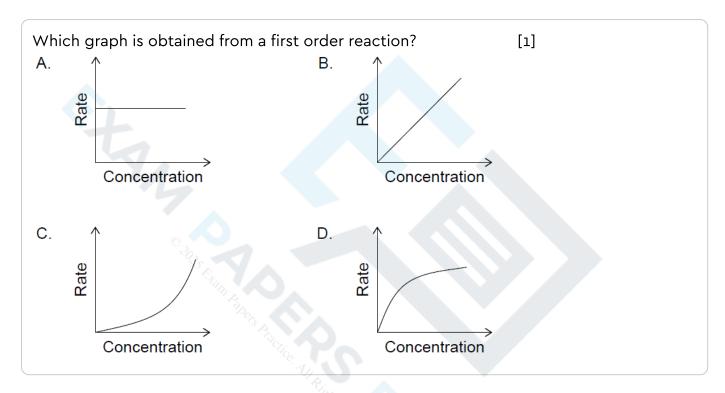
What is the coefficient for H
$$^+$$
 when the equation below is balanced? [1] $_-$ Pb (s) + $_-$ NO $_3$ $^-$ (aq) + $_-$ H $^+$ (aq) \rightarrow $_-$ Pb $^{2+}$ (aq) + $_-$ NO (g) + $_-$ H $_2$ O (l)

- A. 2
- B. 4
- C. 6
- D. 8


21N.1A.HL.TZ0.12

Which molecules contain two pi (π) bonds? [1]

- I. HCN
- II. H₂CO₃
- III. H₂C₂O₄
- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III


22M.1A.HL.TZ2.8

[Cr(OH $_2$) $_6$] $^{3+}$ is violet and [Cr(NH $_3$) $_6$] $^{3+}$ is yellow. What is correct? [1] The Colour Wheel

	L,—	
	Wavelength of light absorbed by [Cr(OH ₂) ₆] ³⁺	d-level splitting caused by H ₂ O compared to NH ₃ ligands
A.	$\lambda = 5.8 \times 10^{-7} \text{m}$	$H_2O > NH_3$
B.	$\lambda = 5.8 \times 10^{-7} \text{m}$	$H_2O < NH_3$
C.	$\lambda = 4.1 \times 10^{-7} \text{m}$	$H_2O > NH_3$
D.	$\lambda = 4.1 \times 10^{-7} \text{m}$	H ₂ O < NH ₃

19M.1A.HL.TZ1.20

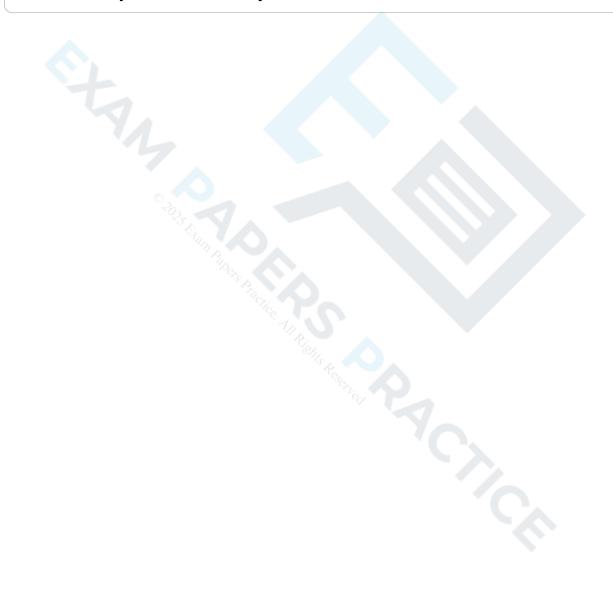
22M.1A.HL.TZ1.30

What are the products when dilute aqueous copper (II) nitrate is electrolysed using platinum electrodes? $E \stackrel{\bigcirc}{=} (Cu \mid Cu^{2+}) = -0.34 \text{ V}.$

	Anode (positive electrode)	Cathode (negative electrode)
Α.	O ₂ (g)	Cu(s)
B.	O ₂ (g)	H ₂ (g)
C.	Cu(s)	O ₂ (g)
D.	H ₂ (g)	Cu(s)

[1]

19N.1A.HL.TZ0.12


Which atom is sp ² hybridized?

- A. C in H₂CO
- B. C in CO₂
- C. N in CH₃NH₂
- D. O in H₂O

What is thin-layer chromatography best used for separating? [1]

- A. molecules of varying polarity
- B. molecules of similar polarity
- C. metals in an alloy
- D. water of crystallization from hydrated salts

