

EXAM PAPERS PRACTICE

Graphical Inequalities

Question Paper

Find four inequalities that define the region, R, on the grid.

Question 2

Find the four inequalities that define the region that is not shaded.

Question 3

Write down the 3 inequalities which define the unshaded region.

Question 4

By shading the unwanted regions of the grid above, find and label the region R which satisfies the following four inequalities.

$$
y \geqslant 2 \quad x+y \geqslant 6 \quad y \leqslant x+4 \quad x+2 y \leqslant 18
$$

Question 5

(a) Draw the three lines $y=4, \quad 2 x-y=4$ and $x+y=6$ on the grid above.
(b) Write the letter R in the region defined by the three inequalities below.

$$
\begin{equation*}
y \leqslant 4 \quad 2 x-y \geqslant 4 \quad x+y \geqslant 6 \tag{1}
\end{equation*}
$$

EXAM PAPERS PRACTICE

Question 6

By shading the unwanted parts of the grid above, find and label the region R which satisfies the following three inequalities

$$
y \geqslant 3, \quad y \geqslant 5 x \quad \text { and } \quad x+y \leqslant 6 .
$$

Question 7

Find the three inequalities which define the shaded region on the grid.

Question 8

A new school has x day students and y boarding students.
The fees for a day student are $\$ 600$ a term.
The fees for a boarding student are $\$ 1200$ a term.
The school needs at least $\$ 720000$ a term.
(a) Show that this information can be written as $x+2 y \geqslant 1200$.
(b) The school has a maximum of 900 students. Write down an inequality in x and y to show this information.
(c) Draw two lines on the grid below and write the letter R in the region which represents these two inequalities.

(d) What is the least number of boarding students at the school?

Question 9

(a) One of the lines in the diagram is labelled $y=m x+c$.

Find the values of m and c.
(b) Show, by shading all the unwanted regions on the diagram, the region defined by the inequalities

$$
x \geqslant 1, \quad y \leqslant m x+c, \quad y \geqslant x+2 \quad \text { and } \quad y \geqslant 4 .
$$

Write the letter \mathbf{R} in the region required.

Question 10

Marina goes to the shop to buy loaves of bread and cakes.
One loaf of bread costs 60 cents and one cake costs 80 cents.
She buys x loaves of bread and y cakes.
(a) She must not spend more than $\$ 12$.

Show that $3 x+4 y \leq 60$.
(b) The number of loaves of bread must be greater than or equal to the number of cakes. Write down an inequality in x and y to show thisinformation.
(c) On the grid below show the two inequalities by shading the unwanted regions. Write R in the required region.

(d) The total number of loaves of bread and cakes is $x+y$.

Find the largest possible value of $x+y$.

Question 11

A ferry has a deck area of $3600 \mathrm{~m}^{2}$ for parking cars and trucks. Each car takes up $20 \mathrm{~m}^{2}$ of deck area and each truck takes up $80 \mathrm{~m}^{2}$. On one trip, the ferry carries x cars and y trucks.
(a) Show that this information leads to the inequality $x+4 y \leq 180$.
(b) The charge for the trip is $\$ 25$ for a car and $\$ 50$ for a truck.

The total amount of money taken is $\$ 3000$.
Write down an equation to represent this information and simplify it.
[2]
(c) The line $x+4 y=180$ is drawn on the grid below.
(i) Draw, on the grid, the graph of your equation in part (b).

(ii)

Write down a possible number of cars and a possible number of trucks on the trip, which together satisfy both conditions.

Question 12

(a) On the grid, draw the lines $x=1, y=2$ and $x+y=5$.
(b) Write R in the region where $x \geqslant 1, y \geqslant 2$ and $x+y \geqslant 5$.

In one week, Neha spends x hours cooking and y hours cleaning.
The time she spends cleaning is at least equal to the time she spends cooking.
This can be written as $y \geqslant x$.
She spends no more than 16 hours in total cooking and cleaning.
She spends at least 4 hours cooking.
(a) Write down two more inequalities in x and/or y to show thisinformation.
(b) Complete the diagram to show the three inequalities.

Shade the unwanted regions.

(c) Neha receives $\$ 10$ for each hour she spends cooking and $\$ 8$ for each hour she spends cleaning. Work out the largest amount she could receive.

Question 14

By shading the unwanted regions of the grid, find and label the region R that satisfies the following four inequalities.

$$
\begin{equation*}
y \leqslant 2 \quad y \geqslant 1 \quad y \leqslant 2 x-1 \quad y \leqslant 5-x \tag{3}
\end{equation*}
$$

Question 15

By shading the unwanted regions of the grid above, find and label the region R that satisfies the following four inequalities.

$$
\begin{equation*}
x \geqslant 0 \quad x+y \geqslant 7 \quad y \geqslant x \quad x+2 y \leqslant 20 \tag{3}
\end{equation*}
$$

Question 16

Write down the three inequalities that define the unshaded region, R.

Question 17

Find the three inequalities that define the unshaded region, R.

Question 18

The region R satisfies these inequalities.

$$
y \leqslant 2 x \quad 3 x+4 y \geqslant 12 \quad x \leqslant 3
$$

On the grid, draw and label the region R that satisfies these inequalities. Shade the unwanted regions.

Question 19

By shading the unwanted regions of the grid, find and label the region R which satisfies the following four inequalities.

$$
y \geqslant 0 \quad x \geqslant 4 \quad 2 y \leqslant x \quad 2 y+x \leqslant 12
$$

The region R contains points which satisfy the inequalities

$$
y \leqslant \frac{1}{2} x+4, \quad y \geqslant 3 \quad \text { and } \quad x+y \geqslant 6 .
$$

On the grid, label with the letter \boldsymbol{R} the region which satisfies these inequalities.
You must shade the unwanted regions.

Question 21

The region R is bounded by three lines.
Write down the three inequalities which define the region R.

Question 22

The diagram shows the lines $y=1, y=x+4$ and $y=4-x$.
On the diagram, label the region \mathbf{R} where $y \geqslant 1, y \geqslant x+4$ and $y \leqslant 4-x$.

Question 23

(a) Draw the lines $y=2, x+y=6$ and $y=2 x$ on the grid above.
(b) Label the region R which satisfies the three inequalities

$$
\begin{equation*}
x+y \geqslant 6, \quad y \geqslant 2 \quad \text { and } \quad y \leqslant 2 x \tag{1}
\end{equation*}
$$

Question 24

Find the three inequalities which define the shaded triangle in the diagram.

