Galilean \& Special Relativity Question Paper

Course	HLIBPhysics	
Section	Space, Time \& Motion	
Topic	Galilean \& Special Relativity	
Difficulty		

To be used by all students preparing for HL IB Physics Students of other boards may also find this useful

Question 1

Which of the following graphs correctly shows the Lorentz factor for objects travelling at different velocities?

A

C

[1 mark]

Question 2

Persons A, B \& C go to an ice skating rink. Person A sits at the side as an observer. Person B and person C are skating.

Person B skates away from the cafe at a constant speed of $10 \mathrm{~m} \mathrm{~s}^{-1}$. Person C skates toward the cafe at a constant speed of $8 \mathrm{~m} \mathrm{~s}^{-1}$. Persons B and C pass one another in front of Person A.

What speed is Person C travelling at from Person B's reference frame?
A. $-18 \mathrm{~m} \mathrm{~s}^{-1}$
B. $-2 \mathrm{~m} \mathrm{~s}^{-1}$
C. $2 \mathrm{~m} \mathrm{~s}^{-1}$
D. $18 \mathrm{~m} \mathrm{~s}^{-1}$

Question 3

Twin A goes on a space exploration trip to the furthest reaches of the SolarSystem, leaving Twin B behind on Earth. The date of Twin A's departure is their 31st birthday. Twin A travels at a constant speed of 0.85 c , as measured by Twin B, for the entire duration of the trip.

When Twin A returns to Earth, Twin B is 47 years old.
What is the age of Twin A when they return to Earth?
A. 33 years old
B. 39 years old
C. 47 years old
D. 67 years old

[1 mark]
Exam Papers Practice

Question 4

On a space-time diagram, the units of time are metres.

Event A occurred 10 seconds after event B.
Which value is equal to 1 second on the spacetime diagram?
A. 1 m
B. 10 m
C. $3 \times 10^{8} \mathrm{~m}$
D. $3 \times 10^{9} \mathrm{~m}$

Question 5

Which postulate(s) of special relativity, if any, can be predicted by Maxwell's theory of electromagnetism?
A. The laws of physics are the same in all inertial frames of reference
B. The speed of light in a vacuum is the same in all inertial reference frames
C. Both postulates
D. Neither postulate

