

IB Maths: AA HL Further Trigonometry

Topic Questions

These practice questions can be used by students and teachers and is Suitable for IB

Maths AA HL Topic Questions

Course	IB Maths
Section	3. Geometry & Trigonometry
Topic	3.8 Further Trigonometry
Difficulty	Medium

Level: IB Maths

Subject: IB Maths AA HL

Board: IB Maths

Topic: Further Trigonometry

Question 1

Show that

(i)

$$\cos\left(\theta + \frac{\pi}{2}\right) = -\sin\theta$$

(ii)

$$\tan(\theta - \pi) = \tan \theta$$

(iii)

$$\sin\left(\theta - \frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}(\sin\theta - \cos\theta)$$

[6 marks]

Question 2

Let
$$f(x) = \tan(x + \pi) \sin(x + \frac{\pi}{2})$$
 where $0 < x < \frac{\pi}{2}$.

By using the compound angle formulae, express f(x) in terms of $\sin x$.

[4 marks]

Question 3

Consider the equation $\cos(x-45) = 2 \sin x$ in the interval $0 \le x \le 360^\circ$.

Find an exact value for $\tan x$.

[5 marks]

Question 4

a)

Express $\cos 4\theta$ in terms of $\cos 2\theta$.

[1 mark]

b)

Hence, show that $\cos 4\theta = 8\cos^2 \theta (\cos^2 \theta - 1) + 1$.

[5 marks]

Question 5

Given that $\tan A = \frac{\sqrt{3}}{2}$, solve the equation $\tan (A + x) = \frac{4}{5}$ in the interval $0 \le x \le 360^{\circ}$.

[6 marks]

Question 6

Prove that $\cos 3x \equiv 4 \cos^3 x - 3 \cos x$.

[6 marks]

Question 7

Solve the equation $\sin 2x - \cos 2x = \frac{\sin x + \cos x}{2} - 1$ for the interval $-\pi < x < 0$.

[7 marks]

Question 8

a) Show that $1 - \cos 2x = 2 - 2\cos^2 x$

[2 marks]

Show that
$$\frac{1}{\cos 2x} - \tan 2x = \frac{\cos x - \sin x}{\cos x + \sin x}$$

[5 marks]

Question 9

a)

Find the exact values for $\tan x$ given that $\tan^2 x + 4 \tan x + 1 = 0$

[3 marks]


b)

Hence, solve the equation $\frac{\tan x}{2 \tan x + 1} = \tan 2x$ algebraically for the interval $0 \le x \le 2\pi$.

[5 marks]

Question 10

The following diagram shows the triangle ABC where $AB = \sqrt{2}$, $AC = \sqrt{3}$ and $BAC = 75^{\circ}$.

۵)

By writing 75° as $30^{\circ} + 45^{\circ}$ find the value of $\sin(75^{\circ})$.

[3 marks]

b)

Find the area of the triangle, giving your answer in the form $\frac{a+\sqrt{b}}{c}$, where $a,b,c\in\mathbb{Z}$.

[4 marks]