

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme

Suitable for all boards

Designed to test your ability and thoroughly prepare you

Further Math Revision Note

MATH

IGCSE

AQA IGCSE Further Maths Revision Notes

Formulas given in formula sheet:

Surface area of sphere: $4\pi r^2$ Curve surface area: πr^4 Volume of sphere: $\frac{4}{3}\pi r^3$

Volume of cone: $\frac{1}{2}\pi r^2 h$

• Area of triangle: $\frac{1}{2}ab \sin C$

Sine Rule: $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ Cosine Rule: $a^2 = b^2 + c^2 - 2bc \cos A$ Quadratic equation: $ax^2 + bx + c = 0 \rightarrow x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ • Sine Rule: $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$

Trigonometric Identities: $\tan \theta \equiv \frac{\sin \theta}{\cos \theta}$ $\sin^2 \theta + \cos^2 \theta \equiv 1$

1. Number

Specification	Notes	What can go ugly
1.1 Knowledge and use of numbers and the number system including fractions, decimals, percentages, ratio, proportion and order of operations are expected.	A few possibly helpful things: • If $a:b=c:d$ (i.e. the ratios are the same), then $\frac{a}{c}=\frac{b}{d}$ • "Find the value of a after it has been increased by $b\%$ " If say b was 4, we'd want to \times 1.04 to get a a 4% increase. Can use $1+\frac{b}{100}$ as the multiplier, thus answer is: $a\left(1+\frac{b}{100}\right)$ "Show that $a\%$ of b is the same as $b\%$ of a " $\frac{a}{100}\times b=\frac{ab}{100}$	
1.2 Manipulation of surds, including rationalising the denominator.	GCSE recap: • Laws of surds: $\sqrt{a} \times \sqrt{b} = \sqrt{ab}$ and $\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}$ But note that $a \times \sqrt{b} = a\sqrt{b}$ not \sqrt{ab} Note also that $\sqrt{a} \times \sqrt{a} = a$ • To simplify surds, find the largest square factor and put this first: $\sqrt{12} = \sqrt{4}\sqrt{3} = 2\sqrt{3}$ $\sqrt{75} = \sqrt{25}\sqrt{3} = 5\sqrt{3}$ • $5\sqrt{2} \times 3\sqrt{2}$ Note everything is being multiplied here. Multiply surd-ey things and non surd-ey things separately. $= 15 \times 2 = 30$ • $\sqrt{8} + \sqrt{18} = 2\sqrt{2} + 3\sqrt{2} = 5\sqrt{2}$ • To 'rationalise the denominator' means to make it a nonsurd. Recall we just multiply top and bottom by that surd: $\frac{6}{\sqrt{3}} \rightarrow \frac{6}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} = \frac{6\sqrt{3}}{3} = 2\sqrt{3}$ • The new thing at IGCSE FM level is where we have more complicated denominators. Just multiply by the 'conjugate': this just involves negating the sign between the two terms: $\frac{3}{\sqrt{6} - 2} \rightarrow \frac{3}{\sqrt{6} - 2} \times \frac{\sqrt{6} + 2}{\sqrt{6} + 2} = \frac{3(\sqrt{6} + 2)}{2}$ A trick to multiplying out the denominator is that we have the difference of two squares, thus $(\sqrt{6} - 2)(\sqrt{6} + 2) = 6 - 4 = 2$ (remembering that $\sqrt{6}$ squared is 6, not 36!) • $\frac{2\sqrt{3} - 1}{3\sqrt{3} + 4} \rightarrow \frac{2\sqrt{3} - 1}{3\sqrt{3} + 4} \times \frac{3\sqrt{3} - 4}{3\sqrt{3} - 4} = \frac{(2\sqrt{3} - 1)(3\sqrt{3} - 4)}{27 - 16} = \frac{18 - 3\sqrt{3} - 8\sqrt{3} + 4}{3\sqrt{3} - 4} = \frac{22 - 11\sqrt{3}}{27 - 16} = $	I've seen students inexplicably reorder the terms in the denominator before they multiply by the conjugate, e.g. $(2+\sqrt{3})(\sqrt{3}-2)$ Just leave the terms in their original order! I've also seen students forget to negate the sign, just doing $(2+\sqrt{3})(2+\sqrt{3})$ in the denominator. The problem here is that it won't rationalise the denominator, as we'll still have surds! Silly error: $\frac{6\sqrt{6}}{2} \rightarrow 3\sqrt{3}$ (rather than $3\sqrt{6}$)

2. Algebra

Specification	Notes	What can go ugly
2.2 Definition of a	A function is just something which takes an input and uses some rule	
function	to produce an output, i.e. $f(input) = output$	
	You need to recognise that when we replace the input x with some	
	other expression, we need to replace every instance of it in the	
	output, e.g. if $f(x) = 3x - 5$, then $f(x^2) = 3x^2 - 5$, whereas	
	$f(x)^2 = (3x - 5)^2$. See my Domain/Range slides.	
	e.g. "If $f(x) = 2x + 1$, solve $f(x^2) = 51$	
	$2x^2 + 1 = 51 \rightarrow x = \pm 5$	
2.3 Domain and	The domain of a function is the set of possible inputs.	Not understanding
range of a function.	The range of a function is the set of possible outputs. Use x to refer to input and $f(x)$ to refer to output. Use "for all" if any value possible. Note that $<$ vs \le is important. • $f(x) = 2x$ Domain: for all x Range: for all $f(x)$ • $f(x) = x^2$ Domain: for all x Range: $f(x) \ge 0$	what $f(x^2)$ actually means. Not sketching the graph! (And hence not being able to visualise
	• $f(x) = \sqrt{x}$ Domain: $x \ge 0$ Range: $f(x) \ge 0$	what the range should
	• $f(x) = 2^x$ Domain: for all x Range: $f(x) > 0$	be). This is particularly
	• $f(x) = \frac{1}{x}$ Domain: for all x except 0.	important for
	Range: for all $f(x)$ except 0.	'piecewise' functions. Not being discerning
	$\bullet f(x) = \frac{1}{x-2}$	between < and ≤ in
	Domain: for all x except 2 (since we'd be dividing by 0) Range: for all $f(x)$ except 0 (sketch to see it)	the range. e.g. For quadratics you should
	• $f(x) = x^2 - 4x + 7$	have ≤ but for
	Completing square we get $(x-2)^2 + 3$	exponential graphs yo
	The min point is (2,3). Thus range is $f(x) \ge 3$	should have <.
	You can work out all of these (and any variants) by a quick sketch and	Writing the range of a
	observing how x and y values vary.	function in terms of x
	 Be careful if domain is 'restricted' in some way. 	instead of the correct
	Range if $f(x) = x^2 + 4x + 3$, $x \ge 1$	f(x).
	When $x = 1$, $f(1) = 8$, and since $f(x)$ is increasing after	300 04 3000
	this value of x , $f(x) \ge 8$.	
	 To find range of trigonometric functions, just use a suitable 	
EYAN	sketch, e.g. " $f(x) = \sin(x)$ " \rightarrow Range: $-1 \le f(x) \le 1$ However be careful if domain is restricted:	CTICI
	" $f(x) = \sin(x)$, $180 \le x < 360$ ". Range: $-1 \le f(x) \le 0$	
	(using a sketch)	
	For 'piecewise function',	
	fully sketch it first to find range. "The function $f(x)$ is	
	defined for all x : $f(x) = \begin{cases} 4 & x < -2 \\ x^2 & -2 \le x \le 2 \end{cases}$	
	$f(x) = \begin{cases} x^2 & -2 \le x \le 2 \end{cases}$	
	(12-4x	
	Determine the range of $f(x)$." From the sketch it is clear	
	$f(x) \le 4$	
	 You may be asked to construct a function given information about its domain and range. 	
	e.g. " $y = f(x)$ is a straight line. Domain is $1 \le x \le 5$ and	
	range is $3 \le f(x) \le 11$. Work out one possible expression	
	for $f(x)$."	
	We'd have this domain and range if line passed through	
	points (1,3) and (5,11). This gives us $f(x) = 2x + 1$	
2.4 Expanding	Deal with brackets with more than two things in them.	Classic error of
brackets and	e.g. $(x + y + 1)(x + y) = x^2 + y^2 + 2xy + x + y$	forgetting that two
collecting like	Just do "each thing in first bracket times each in second"	negatives multiply to
terms.	Deal with three (or more) brackets.	give a positive. E.g. in
	Just multiply out two brackets first, e.g.	$(y-4)^3$
	$(x+2)^3 = (x+2)(x+2)(x+2)$	
	$=(x+2)(x^2+4x+4)$	
	$= x^3 + 4x^2 + 4x + 2x^2 + 8x + 8$	
	$= x^3 + 6x^2 + 12x + 8$	

2.5 Factorising	GCSE recap: You should know how to factorise difference of two	
	squares, quadratics of form $x^2 + ax + b$, form $ax^2 + bx + c$ and	
	where you have a common factor.	
	1. Sometimes multiple factorisation steps are required.	
	$x^4 - 25x^2 = x^2(x^2 - 25) = x^2(x + 5)(x - 5)$	
	2. Sometimes use 'intelligent guessing' of brackets,	
	e.g. $15x^2 - 34xy - 16y^2 \rightarrow (5x + 2y)(3x - 8y)$	
	3. If the expression is already partly factorised, identify common	
	factors rather than expanding out and starting factorising from	
	scratch, e.g.	
	"Factorise $(2x + 3)^2 - (2x - 5)^2$ "	
	While we could expand, we might recognise we have the difference of	
	two squares:	
	= ((2x+3) + (2x-5))((2x+3) - (2x-5))	
	=(4x-2)(8)	
	=16(2x-1)	
	Or "Factorise $(x + 1)(x + 3) + y(x + 1)$ "	
	= (x+1)(x+3+y)	
2.6 Manipulation of	$= (x+1)(x+3+y)$ "Simplify $\frac{x^2+3x-10}{x^2-9} \div \frac{x+5}{x^2+3x}$ " Footogies on whither f :	
rational	$x^2-9 \qquad x^2+3x$ Exertorise everything first:	
expressions: Use of	ractorise everything first:	
+-x÷ for	$\frac{(x+5)(x-2)}{(x+3)(x-3)} \div \frac{x+5}{x(x+3)}$	
algebraic fractions		
with denominators	Flip the second fraction and change ÷ to ×:	
being numeric,	$= \frac{(x+5)(x-2)}{(x+3)(x-3)} \times \frac{x(x+3)}{x+5}$	
linear or quadratic.	(x+3)(x-3) $x+5$	
, , , , , , , , , , , , , , , , , , , ,	$= \frac{x(x+3)(x-3)}{(x+5)(x-2)(x+3)} = \frac{x(x+5)(x-2)(x+3)}{(x+3)(x-3)(x+5)}$	
	-(x+3)(x-3)(x+5)	
	x(x-2)	
	$\overline{x-3}$	
	"Simplify $\frac{x^3+2x^2+x}{2}$ "	
	$x^{2}+x$ $x(x^{2}+2x+1)$ $x(x+1)(x+1)$	
	$=\frac{x(x+2x+1)}{x(x+1)}=\frac{x(x+1)(x+1)}{x(x+1)}=x+1$	
2711	"Simplify $\frac{x^3+2x^2+x}{x^2+x}$ " $=\frac{x(x^2+2x+1)}{x(x+1)}=\frac{x(x+1)(x+1)}{x(x+1)}=x+1$ Same skills as GCSE. Isolate subject on one side of equation, and factorise it out if necessary.	
2.7 Use and	Same skills as GCSE. Isolate subject on one side of equation, and	
manipulation of	1	
Commendate and	1 1 1	
formulae and	e.g. "Rearrange $\frac{1}{f} = \frac{1}{u} + \frac{1}{v}$ to make v the subject."	
formulae and expressions.	e.g. "Rearrange $\frac{1}{f} = \frac{1}{u} + \frac{1}{v}$ to make v the subject." Multiplying everything by fuv :	CTICE
	Multiplying everything by fuv :	CTICE
	Multiplying everything by fuv : $uv = fv + fu$	CTICE
	Multiplying everything by fuv : $uv = fv + fu$ $uv - fv = fu$	CTICE
	Multiplying everything by fuv : $uv = fv + fu$ $uv - fv = fu$ $v(u - f) = fu$	CTICE
	Multiplying everything by fuv : $uv = fv + fu$ $uv - fv = fu$ $v(u - f) = fu$	CTICE
expressions.	Multiplying everything by fuv : $uv = fv + fu$ $uv - fv = fu$ $v(u - f) = fu$ $v = \frac{fu}{u - f}$	If you find $f(2) = 0$.
expressions. 2.8 Use of the	Multiplying everything by fuv : $uv = fv + fu$ $uv - fv = fu$ $v(u - f) = fu$ $v = \frac{fu}{u - f}$ In: $7 \div 3 = 2 \ rem \ 1$, the 7 is the 'dividend', the 3 is the 'divisor', the 2	If you find $f(2) = 0$, then the factor is $(x - \frac{1}{2})^2 = 0$
2.8 Use of the factor theorem for	Multiplying everything by fuv : $uv = fv + fu$ $uv - fv = fu$ $v(u - f) = fu$ $v = \frac{fu}{u - f}$	then the factor is $(x -$
2.8 Use of the factor theorem for integer values of	Multiplying everything by fuv : $uv = fv + fu$ $uv - fv = fu$ $v(u - f) = fu$ $v = \frac{fu}{u - f}$ In: $7 \div 3 = 2 \ rem \ 1$, the 7 is the 'dividend', the 3 is the 'divisor', the 2 is the 'quotient' and the 1 is the 'remainder'.	
2.8 Use of the factor theorem for integer values of the variable	Multiplying everything by fuv : $uv = fv + fu$ $uv - fv = fu$ $v(u - f) = fu$ $v = \frac{fu}{u - f}$ In: $7 \div 3 = 2 \ rem \ 1$, the 7 is the 'dividend', the 3 is the 'divisor', the 2 is the 'quotient' and the 1 is the 'remainder'. $\mathbf{Remainder Theorem}$: For a polynomial $f(x)$, the remainder when	then the factor is $(x -$
2.8 Use of the factor theorem for integer values of	Multiplying everything by fuv : $uv = fv + fu$ $uv - fv = fu$ $v(u - f) = fu$ $v = \frac{fu}{u - f}$ In: $7 \div 3 = 2 \ rem \ 1$, the 7 is the 'dividend', the 3 is the 'divisor', the 2 is the 'quotient' and the 1 is the 'remainder'. $\mathbf{Remainder \ Theorem} \colon For \ a \ polynomial \ f(x), \ the \ remainder \ when \ f(x) \ is \ divided \ by \ (x - a) \ is \ f(a).$	then the factor is $(x -$
2.8 Use of the factor theorem for integer values of the variable	Multiplying everything by fuv : $uv = fv + fu$ $uv - fv = fu$ $v(u - f) = fu$ $v = \frac{fu}{u - f}$ In: $7 \div 3 = 2 \ rem \ 1$, the 7 is the 'dividend', the 3 is the 'divisor', the 2 is the 'quotient' and the 1 is the 'remainder'. Remainder Theorem: For a polynomial $f(x)$, the remainder when $f(x)$ is divided by $(x - a)$ is $f(a)$. Factor Theorem: If $f(a) = 0$, then by above, the remainder is 0. Thus	then the factor is $(x -$
2.8 Use of the factor theorem for integer values of the variable	Multiplying everything by fuv : $uv = fv + fu$ $uv - fv = fu$ $v(u - f) = fu$ $v = \frac{fu}{u - f}$ In: $7 \div 3 = 2 \ rem \ 1$, the 7 is the 'dividend', the 3 is the 'divisor', the 2 is the 'quotient' and the 1 is the 'remainder'. $\mathbf{Remainder \ Theorem} \colon For \ a \ polynomial \ f(x), \ the \ remainder \ when \ f(x) \ is \ divided \ by \ (x - a) \ is \ f(a).$	then the factor is $(x -$
2.8 Use of the factor theorem for integer values of the variable	Multiplying everything by fuv : $uv = fv + fu$ $uv - fv = fu$ $v(u - f) = fu$ $v = \frac{fu}{u - f}$ In: $7 \div 3 = 2 \ rem \ 1$, the 7 is the 'dividend', the 3 is the 'divisor', the 2 is the 'quotient' and the 1 is the 'remainder'. Remainder Theorem: For a polynomial $f(x)$, the remainder when $f(x)$ is divided by $(x - a)$ is $f(a)$. Factor Theorem: If $f(a) = 0$, then by above, the remainder is 0. Thus $(x - a)$ is a factor of $f(x)$.	then the factor is $(x -$
2.8 Use of the factor theorem for integer values of the variable	Multiplying everything by fuv : $uv = fv + fu$ $uv - fv = fu$ $v(u - f) = fu$ $v = \frac{fu}{u - f}$ In: $7 \div 3 = 2 \ rem \ 1$, the 7 is the 'dividend', the 3 is the 'divisor', the 2 is the 'quotient' and the 1 is the 'remainder'. Remainder Theorem: For a polynomial $f(x)$, the remainder when $f(x)$ is divided by $(x - a)$ is $f(a)$. Factor Theorem: If $f(a) = 0$, then by above, the remainder is 0. Thus $(x - a)$ is a factor of $f(x)$. e.g. When $x^2 - 3x + 2$ is divided by $x - 2$, remainder is $f(a) = 2^2 - 1$	then the factor is $(x -$
2.8 Use of the factor theorem for integer values of the variable	Multiplying everything by fuv : $uv = fv + fu$ $uv - fv = fu$ $v(u - f) = fu$ $v = \frac{fu}{u - f}$ In: $7 \div 3 = 2 \ rem \ 1$, the 7 is the 'dividend', the 3 is the 'divisor', the 2 is the 'quotient' and the 1 is the 'remainder'. Remainder Theorem: For a polynomial $f(x)$, the remainder when $f(x)$ is divided by $(x - a)$ is $f(a)$. Factor Theorem: If $f(a) = 0$, then by above, the remainder is 0. Thus $(x - a)$ is a factor of $f(x)$. e.g. When $x^2 - 3x + 2$ is divided by $x - 2$, remainder is $f(2) = 2^2 - 3(2) + 2 = 0$ (thus $x - 2$ is a factor as remainder is 0). Note that we	then the factor is $(x -$
2.8 Use of the factor theorem for integer values of the variable	Multiplying everything by fuv : $uv = fv + fu$ $uv - fv = fu$ $v(u - f) = fu$ $v = \frac{fu}{u - f}$ In: $7 \div 3 = 2 \ rem \ 1$, the 7 is the 'dividend', the 3 is the 'divisor', the 2 is the 'quotient' and the 1 is the 'remainder'. Remainder Theorem: For a polynomial $f(x)$, the remainder when $f(x)$ is divided by $(x - a)$ is $f(a)$. Factor Theorem: If $f(a) = 0$, then by above, the remainder is 0. Thus $(x - a)$ is a factor of $f(x)$. e.g. When $x^2 - 3x + 2$ is divided by $x - 2$, remainder is $f(2) = 2^2 - 3(2) + 2 = 0$ (thus $x - 2$ is a factor as remainder is 0). Note that we negated the -2 and subbed in 2 into the original equation.	then the factor is $(x -$
2.8 Use of the factor theorem for integer values of the variable	Multiplying everything by fuv : $uv = fv + fu$ $uv - fv = fu$ $v(u - f) = fu$ $v = \frac{fu}{u - f}$ In: $7 \div 3 = 2 \ rem \ 1$, the 7 is the 'dividend', the 3 is the 'divisor', the 2 is the 'quotient' and the 1 is the 'remainder'. Remainder Theorem: For a polynomial $f(x)$, the remainder when $f(x)$ is divided by $(x - a)$ is $f(a)$. Factor Theorem: If $f(a) = 0$, then by above, the remainder is 0. Thus $(x - a)$ is a factor of $f(x)$. e.g. When $x^2 - 3x + 2$ is divided by $x - 2$, remainder is $f(2) = 2^2 - 3(2) + 2 = 0$ (thus $x - 2$ is a factor as remainder is 0). Note that we negated the -2 and subbed in 2 into the original equation. • "Show that $(x - 2)$ is a factor of $x^3 + x^2 - 4x - 4$ "	then the factor is $(x -$
2.8 Use of the factor theorem for integer values of the variable	Multiplying everything by fuv : $uv = fv + fu$ $uv - fv = fu$ $v(u - f) = fu$ $v = \frac{fu}{u - f}$ In: $7 \div 3 = 2 \ rem \ 1$, the 7 is the 'dividend', the 3 is the 'divisor', the 2 is the 'quotient' and the 1 is the 'remainder'. Remainder Theorem: For a polynomial $f(x)$, the remainder when $f(x)$ is divided by $(x - a)$ is $f(a)$. Factor Theorem: If $f(a) = 0$, then by above, the remainder is 0. Thus $(x - a)$ is a factor of $f(x)$. e.g. When $x^2 - 3x + 2$ is divided by $x - 2$, remainder is $f(2) = 2^2 - 3(2) + 2 = 0$ (thus $x - 2$ is a factor as remainder is 0). Note that we negated the -2 and subbed in 2 into the original equation. • "Show that $(x - 2)$ is a factor of $x^3 + x^2 - 4x - 4$ " $f(2) = 2^3 + 2^2 - 4(2) - 4 = 0$	then the factor is $(x -$
2.8 Use of the factor theorem for integer values of the variable	Multiplying everything by fuv : $uv = fv + fu$ $uv - fv = fu$ $v(u - f) = fu$ $v = \frac{fu}{u - f}$ In: $7 \div 3 = 2 \ rem \ 1$, the 7 is the 'dividend', the 3 is the 'divisor', the 2 is the 'quotient' and the 1 is the 'remainder'. Remainder Theorem: For a polynomial $f(x)$, the remainder when $f(x)$ is divided by $(x - a)$ is $f(a)$. Factor Theorem: If $f(a) = 0$, then by above, the remainder is 0. Thus $(x - a)$ is a factor of $f(x)$. e.g. When $x^2 - 3x + 2$ is divided by $x - 2$, remainder is $f(2) = 2^2 - 3(2) + 2 = 0$ (thus $x - 2$ is a factor as remainder is 0). Note that we negated the -2 and subbed in 2 into the original equation. • "Show that $(x - 2)$ is a factor of $x^3 + x^2 - 4x - 4$ " $f(2) = 2^3 + 2^2 - 4(2) - 4 = 0$ • "If $(x - 5)$ is a factor of $x^3 - 6x^2 + ax - 20$, determine the	then the factor is $(x -$
2.8 Use of the factor theorem for integer values of the variable	Multiplying everything by fuv : $uv = fv + fu$ $uv - fv = fu$ $v(u - f) = fu$ $v = \frac{fu}{u - f}$ In: $7 \div 3 = 2 \ rem \ 1$, the 7 is the 'dividend', the 3 is the 'divisor', the 2 is the 'quotient' and the 1 is the 'remainder'. Remainder Theorem : For a polynomial $f(x)$, the remainder when $f(x)$ is divided by $(x - a)$ is $f(a)$. Factor Theorem : If $f(a) = 0$, then by above, the remainder is 0. Thus $(x - a)$ is a factor of $f(x)$. e.g. When $x^2 - 3x + 2$ is divided by $x - 2$, remainder is $f(2) = 2^2 - 3(2) + 2 = 0$ (thus $x - 2$ is a factor as remainder is 0). Note that we negated the -2 and subbed in 2 into the original equation. • "Show that $(x - 2)$ is a factor of $x^3 + x^2 - 4x - 4$ " $f(2) = 2^3 + 2^2 - 4(2) - 4 = 0$ • "If $(x - 5)$ is a factor of $x^3 - 6x^2 + ax - 20$, determine the value of a "	then the factor is $(x -$
2.8 Use of the factor theorem for integer values of the variable	Multiplying everything by fuv : $uv = fv + fu$ $uv - fv = fu$ $v(u - f) = fu$ $v = \frac{fu}{u - f}$ In: $7 \div 3 = 2 \ rem \ 1$, the 7 is the 'dividend', the 3 is the 'divisor', the 2 is the 'quotient' and the 1 is the 'remainder'. Remainder Theorem : For a polynomial $f(x)$, the remainder when $f(x)$ is divided by $(x - a)$ is $f(a)$. Factor Theorem : If $f(a) = 0$, then by above, the remainder is 0. Thus $(x - a)$ is a factor of $f(x)$. e.g. When $x^2 - 3x + 2$ is divided by $x - 2$, remainder is $f(2) = 2^2 - 3(2) + 2 = 0$ (thus $x - 2$ is a factor as remainder is 0). Note that we negated the -2 and subbed in 2 into the original equation. • "Show that $(x - 2)$ is a factor of $x^3 + x^2 - 4x - 4$ " $f(2) = 2^3 + 2^2 - 4(2) - 4 = 0$ • "If $(x - 5)$ is a factor of $x^3 - 6x^2 + ax - 20$, determine the value of a " $f(5) = 5^3 - 6(5^2) + 5a - 20 = 0$	then the factor is $(x -$
2.8 Use of the factor theorem for integer values of the variable	Multiplying everything by fuv : $uv = fv + fu$ $uv - fv = fu$ $v(u - f) = fu$ $v = \frac{fu}{u - f}$ In: $7 \div 3 = 2 \ rem \ 1$, the 7 is the 'dividend', the 3 is the 'divisor', the 2 is the 'quotient' and the 1 is the 'remainder'. Remainder Theorem : For a polynomial $f(x)$, the remainder when $f(x)$ is divided by $(x - a)$ is $f(a)$. Factor Theorem : If $f(a) = 0$, then by above, the remainder is 0. Thus $(x - a)$ is a factor of $f(x)$. e.g. When $x^2 - 3x + 2$ is divided by $x - 2$, remainder is $f(2) = 2^2 - 3(2) + 2 = 0$ (thus $x - 2$ is a factor as remainder is 0). Note that we negated the -2 and subbed in 2 into the original equation. • "Show that $(x - 2)$ is a factor of $x^3 + x^2 - 4x - 4$ " $f(2) = 2^3 + 2^2 - 4(2) - 4 = 0$ • "If $(x - 5)$ is a factor of $x^3 - 6x^2 + ax - 20$, determine the value of a " $f(5) = 5^3 - 6(5^2) + 5a - 20 = 0$ $5a - 45 = 0 \rightarrow a = 9$	then the factor is $(x -$
2.8 Use of the factor theorem for integer values of the variable	Multiplying everything by fuv : $uv = fv + fu$ $uv - fv = fu$ $v(u - f) = fu$ $v = \frac{fu}{u - f}$ In: $7 \div 3 = 2 \ rem \ 1$, the 7 is the 'dividend', the 3 is the 'divisor', the 2 is the 'quotient' and the 1 is the 'remainder'. Remainder Theorem: For a polynomial $f(x)$, the remainder when $f(x)$ is divided by $(x - a)$ is $f(a)$. Factor Theorem: If $f(a) = 0$, then by above, the remainder is 0. Thus $(x - a)$ is a factor of $f(x)$. e.g. When $x^2 - 3x + 2$ is divided by $x - 2$, remainder is $f(2) = 2^2 - 3(2) + 2 = 0$ (thus $x - 2$ is a factor as remainder is 0). Note that we negated the -2 and subbed in 2 into the original equation. • "Show that $(x - 2)$ is a factor of $x^3 + x^2 - 4x - 4$ " $f(2) = 2^3 + 2^2 - 4(2) - 4 = 0$ • "If $(x - 5)$ is a factor of $x^3 - 6x^2 + ax - 20$, determine the value of a " $f(5) = 5^3 - 6(5^2) + 5a - 20 = 0$ $5a - 45 = 0 \rightarrow a = 9$ Harder questions might involve giving you two factors, and two	then the factor is $(x -$
2.8 Use of the factor theorem for integer values of the variable	Multiplying everything by fuv : $uv = fv + fu$ $uv - fv = fu$ $v(u - f) = fu$ $v = \frac{fu}{u - f}$ In: $7 \div 3 = 2 \ rem \ 1$, the 7 is the 'dividend', the 3 is the 'divisor', the 2 is the 'quotient' and the 1 is the 'remainder'. Remainder Theorem: For a polynomial $f(x)$, the remainder when $f(x)$ is divided by $(x - a)$ is $f(a)$. Factor Theorem: If $f(a) = 0$, then by above, the remainder is 0. Thus $(x - a)$ is a factor of $f(x)$. e.g. When $x^2 - 3x + 2$ is divided by $x - 2$, remainder is $f(2) = 2^2 - 3(2) + 2 = 0$ (thus $x - 2$ is a factor as remainder is 0). Note that we negated the -2 and subbed in 2 into the original equation. • "Show that $(x - 2)$ is a factor of $x^3 + x^2 - 4x - 4$ " $f(2) = 2^3 + 2^2 - 4(2) - 4 = 0$ • "If $(x - 5)$ is a factor of $x^3 - 6x^2 + ax - 20$, determine the value of a " $f(5) = 5^3 - 6(5^2) + 5a - 20 = 0$ $5a - 45 = 0 \rightarrow a = 9$ Harder questions might involve giving you two factors, and two unknowns – just use factor theorem to get two equations, then	then the factor is $(x -$
2.8 Use of the factor theorem for integer values of the variable	Multiplying everything by fuv : $uv = fv + fu$ $uv - fv = fu$ $v(u - f) = fu$ $v = \frac{fu}{u - f}$ In: $7 \div 3 = 2 \ rem \ 1$, the 7 is the 'dividend', the 3 is the 'divisor', the 2 is the 'quotient' and the 1 is the 'remainder'. Remainder Theorem: For a polynomial $f(x)$, the remainder when $f(x)$ is divided by $(x - a)$ is $f(a)$. Factor Theorem: If $f(a) = 0$, then by above, the remainder is 0. Thus $(x - a)$ is a factor of $f(x)$. e.g. When $x^2 - 3x + 2$ is divided by $x - 2$, remainder is $f(2) = 2^2 - 3(2) + 2 = 0$ (thus $x - 2$ is a factor as remainder is 0). Note that we negated the -2 and subbed in 2 into the original equation. • "Show that $(x - 2)$ is a factor of $x^3 + x^2 - 4x - 4$ " $f(2) = 2^3 + 2^2 - 4(2) - 4 = 0$ • "If $(x - 5)$ is a factor of $x^3 - 6x^2 + ax - 20$, determine the value of a " $f(5) = 5^3 - 6(5^2) + 5a - 20 = 0$ $5a - 45 = 0 \rightarrow a = 9$ Harder questions might involve giving you two factors, and two unknowns – just use factor theorem to get two equations, then solve simultaneously.	then the factor is $(x -$
2.8 Use of the factor theorem for integer values of the variable	Multiplying everything by fuv : $uv = fv + fu$ $uv - fv = fu$ $v(u - f) = fu$ $v = \frac{fu}{u - f}$ In: $7 \div 3 = 2 \ rem \ 1$, the 7 is the 'dividend', the 3 is the 'divisor', the 2 is the 'quotient' and the 1 is the 'remainder'. Remainder Theorem: For a polynomial $f(x)$, the remainder when $f(x)$ is divided by $(x - a)$ is $f(a)$. Factor Theorem: If $f(a) = 0$, then by above, the remainder is 0. Thus $(x - a)$ is a factor of $f(x)$. e.g. When $x^2 - 3x + 2$ is divided by $x - 2$, remainder is $f(2) = 2^2 - 3(2) + 2 = 0$ (thus $x - 2$ is a factor as remainder is 0). Note that we negated the -2 and subbed in 2 into the original equation. • "Show that $(x - 2)$ is a factor of $x^3 + x^2 - 4x - 4$ " $f(2) = 2^3 + 2^2 - 4(2) - 4 = 0$ • "If $(x - 5)$ is a factor of $x^3 - 6x^2 + ax - 20$, determine the value of a " $f(5) = 5^3 - 6(5^2) + 5a - 20 = 0$ $5a - 45 = 0 \rightarrow a = 9$ Harder questions might involve giving you two factors, and two unknowns – just use factor theorem to get two equations, then solve simultaneously. • "Fully factorise $x^3 - 3x^2 - 4x + 12$ "	then the factor is $(x -$
2.8 Use of the factor theorem for integer values of the variable	Multiplying everything by fuv : $uv = fv + fu$ $uv - fv = fu$ $v(u - f) = fu$ $v = \frac{fu}{u - f}$ In: $7 \div 3 = 2 \ rem \ 1$, the 7 is the 'dividend', the 3 is the 'divisor', the 2 is the 'quotient' and the 1 is the 'remainder'. Remainder Theorem: For a polynomial $f(x)$, the remainder when $f(x)$ is divided by $(x - a)$ is $f(a)$. Factor Theorem: If $f(a) = 0$, then by above, the remainder is 0. Thus $(x - a)$ is a factor of $f(x)$. e.g. When $x^2 - 3x + 2$ is divided by $x - 2$, remainder is $f(2) = 2^2 - 3(2) + 2 = 0$ (thus $x - 2$ is a factor as remainder is 0). Note that we negated the -2 and subbed in 2 into the original equation. • "Show that $(x - 2)$ is a factor of $x^3 + x^2 - 4x - 4$ " $f(2) = 2^3 + 2^2 - 4(2) - 4 = 0$ • "If $(x - 5)$ is a factor of $x^3 - 6x^2 + ax - 20$, determine the value of a " $f(5) = 5^3 - 6(5^2) + 5a - 20 = 0$ $5a - 45 = 0 \rightarrow a = 9$ Harder questions might involve giving you two factors, and two unknowns – just use factor theorem to get two equations, then solve simultaneously. • "Fully factorise $x^3 - 3x^2 - 4x + 12$ " Step 1: Try a few values of x until you stumble upon a factor.	then the factor is $(x -$
2.8 Use of the factor theorem for integer values of the variable	Multiplying everything by fuv : $uv = fv + fu$ $uv - fv = fu$ $v(u - f) = fu$ $v = \frac{fu}{u - f}$ In: $7 \div 3 = 2 \ rem \ 1$, the 7 is the 'dividend', the 3 is the 'divisor', the 2 is the 'quotient' and the 1 is the 'remainder'. Remainder Theorem: For a polynomial $f(x)$, the remainder when $f(x)$ is divided by $(x - a)$ is $f(a)$. Factor Theorem: If $f(a) = 0$, then by above, the remainder is 0. Thus $(x - a)$ is a factor of $f(x)$. e.g. When $x^2 - 3x + 2$ is divided by $x - 2$, remainder is $f(2) = 2^2 - 3(2) + 2 = 0$ (thus $x - 2$ is a factor as remainder is 0). Note that we negated the -2 and subbed in 2 into the original equation. • "Show that $(x - 2)$ is a factor of $x^3 + x^2 - 4x - 4$ " $f(2) = 2^3 + 2^2 - 4(2) - 4 = 0$ • "If $(x - 5)$ is a factor of $x^3 - 6x^2 + ax - 20$, determine the value of a " $f(5) = 5^3 - 6(5^2) + 5a - 20 = 0$ $5a - 45 = 0 \rightarrow a = 9$ Harder questions might involve giving you two factors, and two unknowns – just use factor theorem to get two equations, then solve simultaneously. • "Fully factorise $x^3 - 3x^2 - 4x + 12$ " Step 1: Try a few values of x until you stumble upon a factor. $f(1) = 1^3 - 3(1^2) - 4(1) + 12 = 6$ (so not a factor)	then the factor is $(x -$
2.8 Use of the factor theorem for integer values of the variable	Multiplying everything by fuv : $uv = fv + fu$ $uv - fv = fu$ $v(u - f) = fu$ $v = \frac{fu}{u - f}$ In: $7 \div 3 = 2 \ rem \ 1$, the 7 is the 'dividend', the 3 is the 'divisor', the 2 is the 'quotient' and the 1 is the 'remainder'. Remainder Theorem: For a polynomial $f(x)$, the remainder when $f(x)$ is divided by $(x - a)$ is $f(a)$. Factor Theorem: If $f(a) = 0$, then by above, the remainder is 0. Thus $(x - a)$ is a factor of $f(x)$. e.g. When $x^2 - 3x + 2$ is divided by $x - 2$, remainder is $f(2) = 2^2 - 3(2) + 2 = 0$ (thus $x - 2$ is a factor as remainder is 0). Note that we negated the -2 and subbed in 2 into the original equation. • "Show that $(x - 2)$ is a factor of $x^3 + x^2 - 4x - 4$ " $f(2) = 2^3 + 2^2 - 4(2) - 4 = 0$ • "If $(x - 5)$ is a factor of $x^3 - 6x^2 + ax - 20$, determine the value of a " $f(5) = 5^3 - 6(5^2) + 5a - 20 = 0$ $5a - 45 = 0 \rightarrow a = 9$ Harder questions might involve giving you two factors, and two unknowns – just use factor theorem to get two equations, then solve simultaneously. • "Fully factorise $x^3 - 3x^2 - 4x + 12$ " Step 1: Try a few values of x until you stumble upon a factor.	then the factor is $(x -$

Step 2: Since a cubic, must factorise like:

$$(x-2)(x+?)(x+?)$$

Since all the constants must multiply to give +12 (as in the original cubic), the two missing numbers must multiply to give -6. This rounds down what we need to try with the remainder theorem:

 $f(-2) = (-2)^3 - 3(-2)^2 + \dots = 0$ (therefore a factor) Since (x + 2) is a factor, last factor must be (x - 3)

"Solve $x^3 + x^2 - 10x + 8 = 0$ "

Using above technique, factorisating gives:

$$(x-1)(x-2)(x+4) = 0$$

x = 1,2 or -4

2.9 Completing the square.

Recap of GCSE: Halve number in front of x for number inside bracket. Square this and 'throw it away'.

e.g.
$$x^2 + 4x - 3 \rightarrow (x+2)^2 - 4 - 3 = (x+2)^2 - 7$$

If coefficient of x^2 (i.e. the constant on the front of the x^2 term) is not 1, always factorise this number out first, even if other numbers don't have this as a factor:

$$3x^{2} + 12x - 5$$

$$= 3\left(x^{2} + 4x - \frac{5}{3}\right)$$

$$= 3\left((x+2)^{2} - 4 - \frac{5}{3}\right)$$

$$= 3(x+2)^{2} - 12 - 5$$

$$= 3(x+2)^{2} - 17$$

In the penultimate line we expanded out the outer 3(...) bracket. You can check your answer by expanding it back out and seeing if you get the original expression.

Rearrange terms into form $ax^2 + bx + c$ first, e.g. "Express $2 - 4x - 2x^2$ in the form $a - b(x + c)^2$ " = $-2x^2 - 4x + 2$

$$= -2x^{2} - 4x + 2$$

$$= -2(x^{2} + 2x - 1)$$

$$= -2((x + 1)^{2} - 1 - 1)$$

$$= -2(x + 1)^{2} + 4 = 4 - 2(x + 1)^{2}$$

We always subtract when we 'throw away', even if number we halved was negative. e.g. $x^2 - 6x + 1 =$ $(x-3)^2-9+1$ Often students add by mistake.

When coefficient of x^2 is not 1, be careful to maintain your outer bracket until the last

2.10 Sketching of functions. Sketch graphs of linear and quadratic functions. Quadratics:

e.g. "Sketch $y = x^2 - x - 2$ " a. Factorise and set y to 0 to find x-intercepts (known as 'roots').

$$(x+1)(x-2) = 0$$

 $\rightarrow (-1,0), (2,0)$

b. Set x = 0 to find y-intercept.

(0, -2)c. x^2 term is positive therefore 'smiley face' shape.

x-intercepts of say 2 and 3 if y = (x+2)(x+3)

Typical mistake is to do

Similarly if $y = (x+2)^2 + 3$, an incorrect minimum point would be (2.3)

We might similarly make sign errors if doing the reverse: finding the equation from the graph. If one of the x-intercepts is $\frac{3}{4}$, then one of brackets is (4x - 3), not (4x + 3)or (3x + 4) or (3x -4). Check by setting bracket to 0 and solving.

But note frowney face shape as x^2 term is negative.

You may have to go backwards: find the equation given the sketch.

In left example, brackets of y = (4x + 1)(3x - 2)

would work as if 4x + 1 = 0 then $x = -\frac{1}{4}$ and similarly with (3x - 2)

GCSE recap: We can complete the square to find the minimum/maximum point (or use $\frac{dy}{dx} = 0!$)

$$y = x^2 - 6x + 10$$
$$= (x - 3)^2 + 1$$

 $= (x-3)^2 + 1$ Min point is (3,1) (If $y = (x+a)^2 + b$ then minimum point is (-a,b)

Cubics

- When cubic is in factorised form then:
 - If (x + a) appears once, curve crosses x-axis at -a
 - If $(x + a)^2$ appears, curve touches at x = -a
 - As before, can get y-intercept by setting x = 0.
 - If x^3 term is positive, uphill zig-zag shape, otherwise downhill. e.g.

$$y = x^2(2-x)$$

You may have to factorise yourself, e.g. $y=x^3-12x^2 \rightarrow x^2(x-12)$ which crosses at x=12 and touches at x=0.

And again you may need to suggest an equation. Suitable equation for graph on right:

$$y = (x+2)^2(x-3)$$

 (Note that reciprocal graphs are in C1 only – you can find this in my IGCSEFM Sketching Graphs slides)

Piecewise Functions

Just a function defined in 'pieces'. So in the above example, the function to draw between $0 \le x < 1$ is $y = x^2$

Note: You do \underline{not} need to know about graph transforms for IGCSEFM (but do for C1).

2.11 Solution of linear and quadratic equations

GCSE recap. Solve $x^2 + 2x - 3 = 0...$

- ...by factorisation. $(x + 3)(x 1) = 0 \rightarrow x = -3, 1$
- ...by completing the square

$$(x+1)^2 - 4 = 0$$

$$(x+1)^2 = 4$$

$$x+1 = \pm 2$$

$$x+2 - 1 - 1$$

$$x = +2 - 1 = 1$$
, $x = -2 - 1 = -3$

...by formula

$$a = 1, b = 2, c = -3$$
$$x = \frac{-2 \pm \sqrt{4 - (4 \times 1 \times -3)}}{2} = \cdots$$

...by graph

Sketch $y=x^2+2x-3$. Comparing to original equation, we've substituted y for 0. So interested in values of x for which y=0. We could similarly 'look up' values of x for other values of y, e.g. $x^2+2x-3=5$.

2.12 Algebraic and	To 'graphically' solve simultaneous equations, sketch both lines,	Suppose that $x = y +$
graphical solution	and look at the points where they intersect.	4 and $x^2 + y^2 = 20$
of simultaneous	• Equations might not be in the usual $ax + by = c$ form; if not,	Common error is to
equations in two	rearrange them! e.g.	accidentally drop the
unknowns where	2y + 3x + 4	$+y^2$ after subbing in
the equations could	2x = -3y - 7	the x , i.e.
both be linear or	becomes:	$y^2 + 8x + 16 = 20$
one linear and one	3x - 2y = -4	(extra $+y^2$ has gone!)
second order.	2x + 3y = -7	(extra 1) has gone.
Sceona oraci.	then solve in usual GCSE manner. Could also solve by	Other common error is
	substitution.	squaring brackets.
	Similarly:	e.g. $(4-x)^2 = 16 -$
	A TOTAL CONTROL AND A STATE OF THE STATE OF	$8x + x^2$
	$\frac{x-1}{y-2} = 3$ $\frac{x+6}{y-1} = 4$	Incorrect variants:
	becomes:	 16 − x²
	x - 1 = 3y - 6 $x + 6 = 4y - 4$	• $16 - x$
	For "one linear, one quadratic", solve as per GCSE method:	• $16 - 8x - x^2$
	rearrange linear equation to make x or y the subject, then sub	10 - 62 - 2
	into quadratic equation and solve, e.g.	Don't forget to find the
	x + y = 4	values of the other
	$v^2 = 4x + 5$	variable at the end,
	Then:	and make sure it's
	v = 4 - x	
	$(4-x)^2 = 4x + 5$	clear which x matches
	$16 - 8x + x^2 = 4x + 5$	up to which y.
	$x^2 - 12x + 11 = 0$	
	(x-11)(x-1) = 0	
	$(x-1)(x-1) = 0$ $x = 11 \rightarrow y = -7$	
	$ \begin{array}{c} x - 11 - y - y \\ x = 1 \rightarrow y = 3 \end{array} $	
2.13 Solution of	When solving linear inequalities, just remember that dividing or	When solving
linear and quadratic	multiplying by a negative number reverses the direction of the	quadratic inequalities,
inequalities	inequality. You can avoid this by putting x on the side which is	students usually get
inequalities	positive.	the 'critical values'
	·	right but stumble at
	• To solve quadratic inequalities. $2x^2 + 5x \le 3$	the last hurdle because
	$2x^2 + 5x \le 3$ $2x^2 + 5x - 3 \le 0 \qquad \text{Get 0 on one side.}$	they don't sketch their
		quadratic, and
		therefore guess which
	This gives us 'critical values' of $x = \frac{1}{2}$, $x = -3$	way the inequality is
	Then you MUST SKETCH.	
	Since on the left we sketched	supposed to go.
	y = (2x - 1)(x + 3) we're interested	Uses the sure of feet
	$\sqrt{\text{where } y \leq 0}$	Use the word 'or'
	This is in indicated region on left, i.e. where	when you want the
	-3 $\sqrt{\frac{1}{2}}$ $-3 \le x \le \frac{1}{2}$	two tails (and not 'and'
		or comma)
	Had we wanted	
	$(2x-1)(x+3) \ge 0$, this would have given us the two 'tails' of the	
	graph, and we'd write " $x < -3$ or $x \ge \frac{1}{2}$ "	
2.14 Index laws,	GCSE recap: $x^{-a} = \frac{1}{x^a}$ $x^0 = 1$	You might get
including fractional	$8^{\frac{2}{3}} = 2^{2} = 4$ $25^{-\frac{1}{2}} = \frac{1}{25^{\frac{1}{2}}} = \frac{1}{5}$ $\left(\frac{27}{8}\right)^{\frac{2}{3}} = \left(\frac{8}{27}\right)^{\frac{2}{3}} = \left(\frac{2}{3}\right)^{2} = \frac{4}{9}$	confused with straight
and negative	$8^3 = 2^2 = 4$ $25^2 = \frac{1}{25^2} = \frac{1}{5}$	line equations and
indices.	$\frac{2}{2}$ $\frac{2}{2}$ $\frac{2}{2}$ $\frac{2}{2}$ $\frac{2}{2}$ 4	raise both sides to the
	$\left(\frac{27}{-1}\right)^3 = \left(\frac{8}{-1}\right)^3 = \left(\frac{2}{-1}\right)^3 = \frac{4}{-1}$	negative reciprocal
	3 (8) (27) (3) 9	rather than just the
	Example: "Solve $x^{\frac{3}{4}} = 27$ "	reciprocal?
	Just raise both sides to the reciprocal of the power to 'cancel it out'.	
	$(3)\frac{4}{3}$ 4	
	$\left(x^{\frac{3}{4}}\right)^{\frac{\alpha}{3}} = 27^{\frac{4}{3}}$	
	x = 81	
	Convert any mixed numbers to improper fractions first.	
	"Solve $x^{-\frac{2}{3}} = 2\frac{7}{9}$ "	
	$(2)^{-\frac{3}{2}}$ $(25)^{-\frac{3}{2}}$	
	$\left(x^{-\frac{2}{3}}\right)^{-\frac{3}{2}} = \left(\frac{25}{9}\right)^{-\frac{3}{2}}$	

	0000 - 1 1 1 1 1 1 1 1	
	GCSE recap: To raise an algebraic term to a power, simply do each part	
	of the term to that power, e.g.	
	$(3x^2y^3)^2 \rightarrow 9x^4y^6$	
	$(9x^4y)^{\frac{1}{2}} \rightarrow 3x^2y^{\frac{1}{2}}$	
2.15 Algebraic	"Prove that the difference between the squares of two consecutive odd	
Proof	numbers is a multiple of 8."	
	Let two consecutive odd numbers be $2n + 1$ and $2n + 3$	
	$(2n+3)^2 - (2n+1)^2$	
	$=4n^2+12n+9-4n^2-4n-1$	
	=8n+8 = 8(n+1)	
	which is divisible by 8.	
	(The factoring out of 8 makes the divisibility explicit)	
	"Prove that $x^2 - 4x + 7 > 0$ for all x "	
	(Just complete the square!)	
	$(x-2)^2 - 4 + 7$ = $(x-2)^2 + 3$	
	$= (x-2)^2 + 3$ $(x-2)^2 \ge 0$ thus $(x-2)^2 + 3 > 0$ for all x	
	$(x-2)^{2} \ge 0$ thus $(x-2)^{2} + 3 > 0$ for all x	
	"In this identity h and k are integer constants	
	"In this identity, h and k are integer constants. $4(hx - 1) - 3(x + h) \equiv 5(x + k)$	
	4(hx - 1) - 3(x + h) = 3(x + k) Work out the values of h and k"	
	The ≡ means the left-hand-side and right-hand-side are equal for all	
	values of x (known as an identity). Compare the coefficients of x and	
	separately compare constants:	
	4hx - 4 - 3x - 3h = 5x + 5k	
	Comparing x terms: $4h-3=5 \rightarrow h=2$	
2.16 Common and with	Comparing constant terms: $-4 - 3h = 5k \rightarrow k = -2$	Maka aura uau ahaak
2.16 Sequences: nth terms of linear and	Linear sequences recap: 4, 11, 18, 25 \rightarrow nth term $7n-3$	Make sure you check your formula against
quadratic	For quadratic sequences, i.e. where second difference is constant:	the first few terms of
sequences. Limiting	n 1 2 3 4 5 STEP 1: Write out n and un	the sequence by using
value of a sequence		n = 1, 2, 3.
as $n \to \infty$	n th term 3 8 15 24 35 STEP 2: Work out	n = 1, 2, 3.
as $n \to \infty$	+5 $+7$ $+9$ second difference.	
	+2 +2 STEP 3: Halve this	
	to find coefficient	
	$1n^2 \mid 1 \mid 4 \mid 9 \mid 16 \mid 25 \mid \frac{\text{of } n^2 \text{ term.}}{}$	
	STEP 4: Work out	
	Adjust +2 +4 +6 +8 +10 what we need to add to get from this to	
	correct term. Work	
	$n^2 + 2n$	
	Limiting values:	
	"Show that the limiting value of $\frac{3n+1}{6n-5}$ is $\frac{1}{2}$ as $n \to \infty$ "	
	$n \to \infty$ means "as n tends towards infinity".	
	Write "As n becomes large, $\frac{3n+1}{6n-5} \rightarrow \frac{3n}{6n} = \frac{1}{2}$ "	
	The idea is that as <i>n</i> becomes large, the +1 and -5 become	
	inconsequential, e.g. if $n = 1000$, then $\frac{3001}{5995} \approx \frac{3000}{6000} = \frac{1}{2}$	

3. Co-ordinate Geometry (2 dimensions only)

Specification	Notes	What can go ugly
3.1 Know and use the	Gradient is the change in y for each unit increase in x .	Doing $\frac{\Delta x}{\Delta y}$ accidentally, or
definition of gradient	$m = \frac{\Delta y}{\Delta x}$ (change in y over change in x)	getting one of the two
	e.g. If a line goes through (2,7) and (6,5)	signs wrong.
	$m = -\frac{2}{4} = -\frac{1}{2}$	
3.2 Know the relationship	Parallel lines have the same gradient.	Doing just the reciprocal
between the gradients of	For perpendicular lines:	rather than the 'negative
parallel and perpendicular	One gradient is the negative reciprocal of the other.	reciprocal'.
lines.	e.g. $2 \rightarrow -\frac{1}{2}$ $-4 \rightarrow \frac{1}{4}$ $\frac{1}{5} \rightarrow -5$ $\frac{2}{3} \rightarrow -\frac{3}{2}$	
	$\frac{1}{2} \rightarrow -5$ $\frac{2}{2} \rightarrow -\frac{3}{2}$	
	5 3 2 Remember that the reciprocal of a fraction flips it.	
	To show two lines are perpendicular, show the product	
	of the gradients is -1:	
	$-\frac{1}{4} \times 4 = -1$	
	Example: "Show that $A(0,0)$, $B(4,6)$, $C(10,2)$ form a right-	
	angled triangle."	
	Gradients are:	
	$m_{AB} = \frac{6}{4} = \frac{3}{2}$ $m_{AC} = \frac{2}{10} = \frac{1}{5}$, $m_{BC} = \frac{-4}{6} = -\frac{2}{3}$	
	Since $\frac{3}{2} \times -\frac{2}{3} = -1$, lines <i>AB</i> and <i>BC</i> are perpendicular so	
	triangle is right-angled.	
3.3 Use Pythagoras'	$d = \sqrt{\Delta x^2 + \Delta y^2}$	
Theorem to calculate the	e.g. If points are $(3,2)$ and $(6,-2)$, then	
distance between two	$d = \sqrt{3^2 + 4^2} = 5$	
points.	Note that it doesn't matter if the 'change' is positive or	
2 Alles matic to final the	negative as we're squaring these values anyway.	
3.4 Use ratio to find the coordinates of a point on a	"Two points $A(1,5)$ and $B(7,14)$ form a straight line. If a point $C(5,k)$ lies on the line, find k ."	
line given the coordinates	Method 1 (implied by specification on left):	
of two other points.	On the x axis, 5 is 4 6ths of the way between 1 and 7.	
	So "4 6ths" of the way between 5 and 14 is	
	$k = 5 + \frac{4}{6} \times 9 = 11$	
	Method 2 (easier!): Find equation of straight line first.	CTICE
	Using $y - y_1 = m(x - x_1)$:	
	Using $y - y_1 = m(x - x_1)$: $m = \frac{9}{6} = \frac{3}{2}$	
	V 2	
	$y - 5 = \frac{3}{2}(x - 1)$	
	Thus if $x = 5$ and $k = 5$:	
	$k-5=\frac{3}{2}(5-1)$	
	k = 11	
3.5 The equation of a	"A line goes through the point (4,5) and is perpendicular to	Don't confuse x and x_1
straight line in the forms	the line with equation $y = 2x + 6$. Find the equation of the	in the straight line
$y = mx + c$ and $y - y_1 = m(x - x)$	line. Put your answer in the form $y = mx + c''$	equation. x_1 and y_1 are
$m(x-x_1)$	For all these types of questions, we need (a) the gradient and (b) a point, in order to use $y - y_1 = m(x - x_1)$:	constants, representing the point (x_1, y_1) the
		line goes through. x and
	$m=-\frac{1}{2}$	y meanwhile are
	$y-5=-\frac{1}{2}(x-4)$	variables and must stay
	$y-5 = -\frac{1}{2}(x-4)$ $y-5 = -\frac{1}{2}x+2$	as variables.
		Be careful with negative
	$y = -\frac{1}{2}x + 7$	values of x or y , e.g. if
	"Determine the coordinate of the point where this line	m = 3 and $(-2,4)$ is the
	crosses the x axis"	point, then:
	$0 = -\frac{1}{2}x + 7 \rightarrow x = 14 \rightarrow (14,0)$	y-4=3(x+2)
	2 2 17 7 2 14 7 (14,0)	
3.6 Draw a straight line		
from given information.		
	•	•

3.7 Understand the equation of a circle with any centre and radius.

Circle with centre (a, b) and radius r is:

$$(x-a)^2 + (y-b)^2 = r^2$$

Examples:

• "A circle has equation $(x + 3)^2 + y^2 = 25$. What is its centre and radius?"

Centre: (-3,0) r = 5

• "Does the circle with equation $x^2 + (y-1)^2 = 16$ pass through the point (2,5)?"

In general a point is on a line if it satisfies its equation.

$$2^2 + (5 - 1)^2 = 16$$
$$20 = 16$$

So no, it is not on the circle.

 "A circle has centre (3,4) and radius 5. Determine the coordinates of the points where the circle intercepts the x and y axis."

Firstly, equation of circle: $(x-3)^2 + (y-4)^2 = 25$

On x-axis: y = 0:

$$(x-3)^2 + (0-4)^2 = 25$$

$$(x-3)^2 = 9$$

$$x-3 = \pm 3 \rightarrow (0,0), (6,0)$$

On y-axis, x = 0:

= 0:

$$(0-3)^2 + (y-4)^2 = 25$$

 $(y-4)^2 = 16$
 $y-4=\pm 4 \rightarrow (0,0), (0,8)$

 "A(4,7) and B(10,15) are points on a circle and AB is the diameter of the circle. Determine the equation of the circle."

We need to find radius and centre.

Centre is just midpoint of diameter: (7,11)

$$\sqrt{\Delta x^2 + \Delta y^2} = \sqrt{3^2 + 4^2} = 5$$
 Equation: $(x - 7)^2 + (y - 11)^2 = 25$

See slides for harder questions of this type.

• " $x^2 - 2x + y^2 - 6y = 0$ is the equation of a circle. Determine its centre and radius."

Need to complete the square to get in usual form.

$$(x-1)^2 - 1 + (y-3)^2 - 9 = 0$$

$$(x-1)^2 + (y-3)^2 = 10$$

Centre: (1,3) $r = \sqrt{10}$

Using Circle Theorems

 Angle in semicircle is 90°: which means that the two chords will be perpendicular to each other (i.e. gradients will multiply to give -1).

Gradient of chord: $-\frac{4}{2} = -2$ Midpoint of chord: (1,2) Gradient of radius $=\frac{1}{2}$

Equation of radius:
$$y - 2 = \frac{1}{2}(x - 1)$$

If
$$x = 6$$
: $y - 2 = \frac{1}{2}(6 - 1)$
 $y = 4.5$

• The tangent to a circle is perpendicular to the radius. Example: "The equation of this circle is $x^2 + y^2 = 20$. $P(4,2)$ is a point on the circle. Work out the equation of the tangent to the circle at P , in the form $y = mx + c$ "	
As always, to find an equation we need (i) a point and (ii) the gradient. Point: (4,2) Gradient of radius is $\frac{2}{4} = \frac{1}{2}$ \therefore Gradient of tangent = -2 $y-2=-2(x-4)$ $y=-2x+10$	

4. Calculus

Specification	Notes	What can go ugly
4.1 Know that the gradient	Whereas with say $y = 3x + 2$ the gradient is constant ($m =$	
function $\frac{dy}{dx}$ gives the	3), with curves, the gradient depends on the point. $\frac{dy}{dx}$ is the	
gradient of the curve and	gradient function: it takes an x value and gives you the	
measures the rate of	gradient at that point.	
change of y with respect to	e.g. If $\frac{dy}{dx} = 2x$, then at (5,12), the gradient is $2 \times 5 = 10$.	
x.	Technically this the gradient of the tangent at this point.	
4.2 Know that the gradient	Another way of interpreting $\frac{dy}{dx}$ is "the rate of change of y	
of a function is the gradient	with respect to x ."	
of the tangent at that point. 4.3 Differentiation of kx^n	Multiply by power and then reduce power by 1.	Don't forget that
where n is a positive		constants disappear
integer or 0, and the sum of	$y = x^3 \rightarrow \frac{dy}{dx} = 3x^2$	when differentiated.
such functions.	$y = 5x^2 \rightarrow \frac{dy}{dx} = 10x$	Common mistake is to
	ux	reduce power by 1 then
	$y = 7x \rightarrow \frac{dy}{dx} = 7$	multiply by this new
	ax	power.
	$y = -3 \rightarrow \frac{dy}{dx} = 0$	1
	Put expression in form kx^n first, and split up any fractions.	Don't forget that $\frac{1}{\sqrt{x}} =$
	Then differentiate.	$x^{-\frac{1}{2}}$ with a negative
	$y = (2x+1)^2 = 4x^2 + 4x + 1$	power.
	$\frac{dy}{dx} = 8x + 4$ $y = \sqrt{x} = x^{\frac{1}{2}} \frac{dy}{dx} = \frac{1}{2}x^{-\frac{1}{2}}$	
_/\/\\\\	$=$ $\begin{array}{cccccccccccccccccccccccccccccccccccc$	ALIAP
	$y = \sqrt{x} = x^{\frac{1}{2}}$ $\frac{3}{dx} = \frac{1}{2}x^{-\frac{1}{2}}$	
	$y = \frac{1+x}{\sqrt{x}} = x^{-\frac{1}{2}} + x^{\frac{1}{2}}$	
	V.A.	
	$\frac{dy}{dx} = -\frac{1}{2}x^{-\frac{3}{2}} + \frac{1}{2}x^{-\frac{1}{2}}$	
4.4 The equation of a	Use $\frac{dy}{dx}$ to find gradient at specific point (ensuring you use	Don't mix up the tangent
tangent and normal at any	the negative reciprocal if we want the normal). You may	to the curve and the
point on a curve.	need to use the original equation to also find y.	normal to a curve (the
	Then use $y - y_1 = m(x - x_1)$	latter which is
		perpendicular to the
	Example: "Work out the equation of the tangent to the	tangent).
	curve $y = x^3 + 5x^2 + 1$ at the point where $x = -1$."	
	$\frac{dy}{dx} = 3x^2 + 10x$	
	$m = 3(-1)^{2} + 10(-1) = -7$ $y = (-1)^{3} + 5(-1)^{2} + 1 = 5$	
	Therefore:	
	y - 5 = -7(x + 1)	
	"Work out the equation of the normal to the curve $y = x^3 + y^3$	
	work out the equation of the normal to the curve $y = x^2 + 1$ $5x^2 + 1$ at the point where $x = -1$."	
	Exactly the same, except we use negative reciprocal for the	
	gradient:	
	$y-5=\frac{1}{7}(x+1)$	
	$\frac{y-3-7}{7}$	

					T
4.5 Use of differentiation to	At min/max points, the curve is flat, and the gradient				Common error is to
find stationary points on a	therefore 0. Use gradient value just before and after turning			forget to find the y value	
curve: maxima, minima and	point to work out what type it is.			of the stationary point	
points of inflection.	1 V		/		when asked for the full
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		_	•	coordinate
		1 1		\	
				_	
	Type: minimum	Type: maximum	Type: 'point of inflection'	Type: 'point of inflection'	
	Gradient just before	Gradient just before		Gradient just before	
	turning point: Negative	turning point: Positive	Gradient just before turning point:	turning point:	
	Gradient just after		Positive	Negative	
	turning point:	Gradient just after turning point:	Gradient just after	Gradient just after	
	Positive	Negative	turning point: Positive	turning point: Negative	
		ırve has equatio			
	Work out the c	oordinates of a	ny stationary p	oints on this	
	curve and dete	rmine their nati	ure."		
		$\frac{dy}{dx} = 12x^2 + 12x + 3 = 0$			
		$4x^2 + 4x + 1$			
		$(2x+1)^2 =$	0		
		$x = -\frac{1}{2}$			
		$x = -\frac{1}{2}$			
	Find the y valu	e of the station	ary point:		
		$(1)^3$	$1\rangle^2$ (1)	9	
	y=4	$\left(-\frac{1}{2}\right)^3 + 6\left(-\frac{1}{2}\right)^3$	$\frac{1}{2}$) + 3($-\frac{1}{2}$)	$+5 = \frac{1}{2}$	
	So stationary n	point is $\left(-\frac{1}{2}, \frac{9}{2}\right)$.	2, 2,	-	
	The second secon	(2 2)			
		nt just before ar	nd	Grad At after	
	after:		Grad	stationary	
		$.51, \frac{dy}{dx} = 0.001$	2 before	point	
	When $x = -0$.	$.49, \frac{dy}{dx} = 0.001$	2 /		
	Both positive, so a point of inflection.				
4.6 Sketch a curve with	Self-explanator	ry. Just plot the	points and dra	w a nice curve	
known stationary points.	to connect the				
		The state of the s			1

5. Matrix Transformations

Specification	Notes	What can go ugly
Specification 5.1 Multiplication of matrices	Do each row of the first matrix 'multiplied' by each column of the second. And by 'multiply', multiply each pair of number of numbers pairwise, and add these up. See my slides for suitable animation! e.g.	What can go ugly When multiplying matrices, doing each column in the first matrix multiplied by each row ir the second, rather than the correct way.
	front. So A multiplied by B is BA , not AB .	
5.2 The identity matrix, $I(2 \times 2 \text{ only})$.	$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ Just as '1' is the identity in multiplication of numbers, as $a \times 1 = a$ and $1 \times a = a$ (i.e. multiplying by 1 has no effect), I is the same for matrices, i.e. $AI = IA = A$.	
5.3 Transformations of the unit square in the $x-y$ plane.	Matrices allow us to represent transformations such as enlargements, rotations and reflections. Example: "Find the matrix that represents the 90° clockwise rotation of a 2D point about the origin." Easiest way to is to consider some arbitrary point, say $\binom{1}{3}$, and use a sketch to see where it would be after the transformation, in this case $\binom{3}{-1}$. Thus more generically we're looking for a matrix such that: $\binom{x}{y} = \binom{y}{-x}$ It is easy to see this will be $\binom{0}{-1}$	

	Using the same technique we can find:	
	• Rotation 90° anticlockwise about the origin: $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$	
	• Reflection 180° about the origin: $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$	
	20 -12	
	• Reflection in the line $y = x$: $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$	
	• Reflection in the line $x = 0$: $\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$	
	• Reflection in the line $y = 0: \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$	
	• Enlargement scale factor 2 centre origin: $\begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$	
	Note that a rotation is <u>anticlockwise</u> if not specified.	
	- (0) (1) (1) (0)	
	The 'unit' square consists of the points $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$.	
	To find the effect of a transformation on a unit square, just transform each point in turn.	
	e.g. "On the grid, draw the image of the unit square after it is	
	transformed using the matrix $\begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix}$."	
	Transforming the second point for example we get:	
	$\begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 3 \\ 0 \end{pmatrix}$	
5.4 Combination of	The matrix BA represents the combined transformation of A	It is easy to accidentally
transformations.	followed by B. Example:	multiply the matrices the
	"A point P is transformed using the matrix $\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$, i.e. a	wrong way round. It does matter which way
	reflection in the line $x = 0$, followed by $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, i.e. a	you multiply them!
	reflection in the line $y = x$.	
	(a) Give a single matrix which represents the	
->/ 4 5 4	combined transformation. (b) Describe geometrically the single transformation	07107
$- X \Delta M$	this matrix represents."	
	(a) $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$	O I I O L
	(b) Rotation 90° clockwise about the origin.	
	1-/	

6. Geometry

Specification	Notes	What can go ugly			
6.1 Perimeter and area of					
common shapes including					
area of triangle $\frac{1}{2}ab \sin C$					
and volumes of solids. Circle Theorems.					
6.2 Geometric proof:	Examples: "Triangle ABC is isosceles	Not given reasons for			
Understand and construct	with $AC = BC$. Triangle CDE is isosceles	each angle. Angles (and			
geometric proofs using	with $CD = CE$. ACD and DEF are	their reasons) not being			
formal arguments.	straight lines.	given in a logical			
	(a) Prove that angle $DCE = 2x$ and (b)	sequence. Misremembering Circle			
	Prove that DF is perpendicular to AB" Make clear at each point what the angle	Theorems! (learn the			
	is you're calculating, with an appropriate	wording of these			
	reason. It may help to work out the angles on the diagram	verbatim)			
	first, before writing out the steps.	10000000000000000000000000000000000000			
	(a) $\angle CBA = x$ (base angles of isosceles triangle are				
	equal)				
	$\angle ACB = 180 - 2x$ (angles in $\triangle ABC$ add to 180)				
	$\angle DCE = 2x$ (angles on straight line add to 180)				
	(b) $\angle DEC = \frac{180 - 2x}{2} = 90 - x$ (base angles of				
	isosceles triangle are equal) $\angle DFA = 180 - (90 - x) - x = 90^{\circ}$				
	$\therefore DF \text{ is perpendicular to } AB.$				
	(In general with proofs it's good to end by restating the thing				
	you're trying to prove)				
	"A, B, C and D are points on the				
	circumference of a circle such				
	that BD is parallel to the tangent to the circle at A.				
	Prove that AC bisects angle				
	BCD."				
	$\angle BCA = \angle BAE$ (by Alternate	CTICE			
	Segment Theorem)				
-/W 11-1	$\angle BAE = \angle DBA$ (alternate angles are equal)	91191			
	$\angle DBA = \angle ACD$ (angles in the same segment are equal)				
	So $\angle BCA = \angle ACD$. AC bisects $\angle BCD$.				
600 80 80 80 80 80 80 80 80 80 80 80 80 8	Color By Country Control (Color By Color By Colo				
6.3 Sine and cosine rules in	Sine rule: $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ (recall from GCSE that if have a	Forgetting to square root			
scalene triangles.	missing angle, put sin's at top).	at the end when using cosine rule to find a side.			
	Cosine rule: $a^2 = b^2 + c^2 - 2bc \cos A$ (use when missing	cosine raie to mia a side.			
	side is opposite known angle, or all three sides known and angle required)				
	Example: "If area is 18cm², work out y."				
	Not drawn				
	accurately				
	w/				
	30°				
	Area is given, so use area formula:				
	$\frac{1}{2} \times w \times 2w \times \sin 30^{\circ} = 18$				
	$\frac{1}{2}w^2 = 18 \rightarrow w = 6$				
	2				
	Then using cosine rule to find y :				
	$y^2 = 6^2 + 12^2 - 2 \times 6 \times 12 \times \cos 30^\circ$				
	y = 7.44cm	l			

We can use half a unit square (which has angles 45° , 45° , 90°) and half an equilateral triangle originally with sides 2 (angles 30° , 60° , 90°), as pictured below, to get exact values of $\sin 30^{\circ}$, $\sin 45^{\circ}$, etc. We use Pythagoras to obtain the remaining side length.

Then using simple trigonometry on these triangles:

$$\sin 30^\circ = \frac{1}{2}$$

$$\sin 60^\circ = \frac{\sqrt{3}}{2}$$

$$\sin 45^\circ = \frac{1}{\sqrt{2}}$$

Similarly $\cos 30^{\circ} = \frac{\sqrt{3}}{2}$, $\cos 60^{\circ} = \frac{1}{2}$, $\cos 45^{\circ} = \frac{1}{\sqrt{2}}$

$$\tan 30^\circ = \frac{1}{\sqrt{3}}$$
, $\tan 60^\circ = \sqrt{3}$, $\tan 45^\circ = 1$
You don't need to memorise all these, just the two triangles!

6.9 Trig identities $\tan \theta = \frac{\sin \theta}{\cos \theta}$ and $\sin^2 \theta + \cos^2 \theta = \frac{\sin \theta}{\cos \theta}$

Remember that $\sin^2 \theta$ just means $(\sin \theta)^2$

"Prove that $1 - \tan \theta \sin \theta \cos \theta \equiv \cos^2 \theta$ "

Generally a good idea to replace $\tan \theta$ with $\frac{\sin \theta}{\cos \theta}$.

$$1 - \frac{\sin \theta}{\cos \theta} \sin \theta \cos \theta \equiv \cos^2 \theta$$
$$1 - \frac{\sin^2 \theta \cos \theta}{\cos \theta} \equiv \cos^2 \theta$$
$$1 - \sin^2 \theta \equiv \cos^2 \theta$$
$$\cos^2 \theta \equiv \cos^2 \theta$$

"Prove that $\tan \theta + \frac{1}{\tan \theta} \equiv \frac{1}{\sin \theta \cos \theta}$ "

Generally a good idea to combine any fractions into one.

$$\frac{\sin \theta}{\cos \theta} + \frac{\cos \theta}{\sin \theta} \equiv \frac{1}{\sin \theta \cos \theta}$$

$$\frac{\sin^2 \theta + \cos^2 \theta}{\sin \theta \cos \theta} \equiv \frac{1}{\sin \theta \cos \theta}$$

$$\frac{1}{\sin \theta \cos \theta} \equiv \frac{1}{\sin \theta \cos \theta}$$

 $\frac{1}{\sin\theta\cos\theta} \equiv \frac{1}{\sin\theta\cos\theta}$ See my slides for more examples.

6.10 Solution of simple trigonometric equations in given intervals.

"Solve sin(x) = -0.3 in the range $0^{\circ} \le x < 360^{\circ}$ " $x = sin^{-1}(-0.3) = -17.46^{\circ}$

At this point, we use the rules in [6.7] to get the solutions in the range provided. We usually get a pair of solutions for each 360° interval:

 $180 - -17.46 = 197.46^{\circ}$ (since $\sin(x) = \sin(180^{\circ} - x)$) -17.46° + 360° = 342.54° (since sin repeats every 360°)

"Solve 2 tan(x)=1 in the range $0^{\circ} \leq x < 360^{\circ}$ "

$$\tan(x) = \frac{1}{2}$$
 $x = \tan^{-1}\left(\frac{1}{2}\right) = 26.6^{\circ}$

 $26.6^{\circ} + 180^{\circ} = 206.6^{\circ}$ (tan repeats every 180°)

"Solve $\sin x = 2\cos x$ in the range $0^{\circ} \le x < 360^{\circ}$ " When you have a mix of \sin and \cos (neither squared), divide both sides of the equation by \cos :

$$\tan x = 2$$

 $x = \tan^{-1}(2) = 63.4^{\circ}, 243.4^{\circ}$

"Solve $tan^2 \, \theta + 3 \, tan \, \theta = 0$ in the range $0^\circ \le x < 360^\circ$ "

Factorising:
$$\tan \theta (\tan \theta + 3) = 0$$

 $\tan \theta = 0$ or $\tan \theta = -3$

 $\theta = 0^{\circ}, 180^{\circ}, -71.6^{\circ}, 108.4^{\circ}, 288.4^{\circ}$

(Cross out any solutions outside the range, i.e. -71.6°)

One of two main risks: (a) Missing out solutions, either because we haven't used all the applicable rules in 6.7, or we've forgotten the negative solution when square rooting both sides (where applicable). $\ln \tan^2 \theta + 3 \tan \theta = 0,$ it would be wrong to divide by $tan \theta$ because we lose the solution where $\tan \theta = 0$ (in general, never divide both sides of an equation by an expression involving a variable – always factorise!)

(b) Mixing up the rules in 6.7, e.g. doing 180 when you were supposed to 360 —

"Solve
$$cos^2 \theta = \frac{1}{4}$$
 in the range $0^\circ \le x < 360^\circ$ "

"Solve $\cos^2\theta=\frac{1}{4}$ in the range $0^\circ \le x < 360^\circ$ "
You get both $\cos\theta=\frac{1}{2}$ and $\cos\theta=-\frac{1}{2}$, so solve both!

"Solve $2 \sin^2 \theta - \sin \theta - 1 = 0$ in the range

 $0^{\circ} \le x < 360^{\circ}$ "

Again factorising: $(2 \sin \theta + 1)(\sin \theta - 1) = 0$

$$\sin \theta = -\frac{1}{2} \ or \sin \theta = 1$$

"Solve $2cos^2 \theta + 3 sin \theta = 3$ in the range $0^{\circ} \le x < 360^{\circ}$ "

If you have a mix of sin and cos with one of them squared, use $\sin^2 x + \cos^2 x = 1$ to change the squared term.

$$2(1 - \sin^2 \theta) + 3\sin \theta = 0$$

2 - 2\sin^2 \theta + 3\sin \theta = 0

$$2 - 2\sin^2\theta + 3$$

$$2\sin^2\theta - 3\sin\theta - 2 = 0$$

$$(2\sin\theta - 1)(\sin\theta - 1) = 0$$

$$\sin \theta = \frac{1}{2} \text{ or } \sin \theta = 1 \quad \dots$$

EXAM PAPERS PRACTICE