

EXAM PAPERS PRACTICE

Functions

Model Answers

$$
\mathrm{f}(x)=(x+2)^{3}-5 \quad \mathrm{~g}(x)=2 x+10 \quad \mathrm{~h}(x)=\frac{1}{\mathrm{x}}, x \neq 0
$$

Find
(a) $\operatorname{gf}(x)$,

$$
\begin{equation*}
g(f(x))=2\left((x+2)^{3}-5\right)+10 \tag{2}
\end{equation*}
$$

Now, substitute the expression for $f(x)$:
$g(f(x))=2\left((x+2)^{3}-5\right)+10$
Expand and simplify:
$g(f(x))=2(x+2)^{3}-10+10$
The -10 and +10 cancel out:
$g(f(x))=2(x+2)^{3}$
So, $g f(x)=2(x+2)^{3}$.
$\left(\begin{array}{l}\text { b) } \\ (x), \\ \mathrm{f}^{-1} \quad \text { The instruction lacks clarity and needs further elaboration to be easily understood. }\end{array}\right.$
(c) $\operatorname{gh}\left(-\frac{1}{5}\right)$.

Steps to solve:

1. Reorder terms so constants are on the left:
$-\frac{1}{5} g h$
2. Combine multiplied terms into a single fraction:
$\frac{-g h}{5}$
Answer:
$\frac{-g h}{5}$
$\mathrm{f}(x)=(x-1)^{3}$
$\mathrm{g}(x)=(x-1)^{2}$
$h(x)=3 x+1$
(a) Work out $\mathrm{fg}(-1)$.

Steps to solve:

1. Multiply the polynomials:
$f(-1) g(-1)=(x-1)^{3}(x-1)^{2}$
2. Simplify the expression:
$(x-1)^{3}(x-1)^{2}=(x-1)^{5}$
Answer:
$(x-1)^{5}$

$$
(x-1)
$$

(b) Find $\operatorname{gh}(x)$ in its simplest form.

$$
g(h(x))=(h(x)-1)^{2}
$$

Now, substitute the expression for $h(x)$:
$g(h(x))=(3 x+1-1)^{2}$
Simplify the expression inside the parentheses:
$g(h(x))=(3 x)^{2}$
Expand and simplify:
$g(h(x))=9 x^{2}$
So, $g h(x)=9 x^{2}$, and that is the simplest form.
(c) Find $\quad \mathrm{f}^{-1}(x)$.
[2]

1. Start with the original function:

$$
f(x)=(x-1)^{3}
$$

2. Swap x and y :

$$
x=(y-1)^{3}
$$

3. Solve for y :

$$
\sqrt[3]{x}=y-1
$$

4. Add 1 to both sides to isolate y :
$y=\sqrt[3]{x}+1$
So, the inverse function $f^{-1}(x)$ for $f(x)=(x-1)^{3}$ is: $f^{-1}(x)=\sqrt[3]{x}+1$
Therefore, $f^{-1}(x)=\sqrt[3]{x}+1$.
(a) $\mathrm{f}(x)=1-2 x$.
(i) Find $\mathrm{f}(-5)$.

To find $f(-5)$ for the function $f(x)=1-2 x$, you substitute -5 for x in the expression: $f(-5)=1-2(-5)$
Now, perform the calculations:
$f(-5)=1+10$
$f(-5)=11$
So, $f(-5)=11$.
(ii) $\mathrm{g}(x)=3 x-2$.

Find $\operatorname{gf}(x)$. Simplify your answer.
To find $g f(x)$, you need to substitute the expression for $f(x)$ into the function $g(x)$. Given that $f(x)=1-2 x$ and $g(x)=3 x-2$, the composition is as follows: $g f(x)=g(f(x))$
Substitute $f(x)$ into $g(x)$:
$g f(x)=g(1-2 x)$
Now, replace x in $g(x)$ with $1-2 x$:
$g f(x)=3(1-2 x)-2$
Distribute and simplify:
$g f(x)=3-6 x-2$
Combine like terms:
$g f(x)=-6 x+1$
So, $g f(x)=-6 x+1$.
(b) $\mathrm{h}(x)=x^{2}-5 x-11 . \quad$ Solve $\mathrm{h}(x)=0$.

Show all your working and give your answer correct to 2 decimal places.

To solve the quadratic equation $h(x)=x^{2}-5 x-11$ for x, you can use the quadratic formula: $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
Here, a, b, and c are the coefficients of the quadratic equation $a x^{2}+b x+c=0$.
For $h(x)=x^{2}-5 x-11$, we have:
$a=1, \quad b=-5, \quad c=-11$
Now, substitute these values into the quadratic formula:
$x=\frac{-(-5) \pm \sqrt{(-5)^{2}-4(1)(-11)}}{2(1)}$
Simplify further:
$x=\frac{5 \pm \sqrt{25+44}}{2}$
$x=\frac{5 \pm \sqrt{69}}{2}$
So, the solutions are:
$x=\frac{5+\sqrt{69}}{2}$
$x=\frac{5-\sqrt{69}}{2}$
These solutions are approximately:
$x \approx 6.82$ or $x \approx-1.82$
Therefore, the solutions to $h(x)=0$ are $x \approx 6.82$ and $x \approx-1.82$, rounded to two decimal places.
$\mathrm{f}: x \rightarrow 1-2 x$ and $\mathrm{g}: x \rightarrow \frac{x}{2}$.
(a) Find $\mathrm{fg}(7)$.

1. First, find $g(7)$ by substituting $x=7$ into the function $g(x)$:
$g(7)=\frac{7}{2}$
2. Now, take the result from step 1 and substitute it into the function $f(x)$:
$f\left(\frac{7}{2}\right)=1-2 \cdot \frac{7}{2}$
3. Simplify the expression:
$f\left(\frac{7}{2}\right)=1-7$
$f\left(\frac{7}{2}\right)=-6$
Therefore, $f \circ g(7)=-6$.
(b) (i) Solve $\mathrm{f}(x)=\mathrm{g}(x)$.
$1-2 x=\frac{x}{2}$
To get rid of the fraction, you can multiply both sides of the equation by 2 :
$2(1-2 x)=x$
Distribute on the left side:
$2-4 x=x$
Now, isolate x by moving all the x terms to one side of the equation:
$2=5 x$
Divide both sides by 5 to solve for x :
$x=\frac{2}{5}$
So, the solution to $f(x)=g(x)$ is $x=\frac{2}{5}$.
(ii) The graphs of $y=\mathrm{f}(x)$ and $y=\mathrm{g}(x)$ meet at M.

Find the coordinates of M.

To find the coordinates of the point M, where the graphs of $y=f(x)$ and $y=g(x)$ meet, you need to set the two functions equal to each other and solve for x :
$f(x)=g(x)$
Given that $f(x)=1-2 x$ and $g(x)=\frac{x}{2}$, set them equal to each other:
$1-2 x=\frac{x}{2}$
To solve for x, first, get rid of the fraction by multiplying both sides of the equation by 2 :
$2(1-2 x)=x$
Distribute on the left side:
$2-4 x=x$
Now, isolate x :
$2=5 x$
$x=\frac{2}{5}$
Now that you have the value of x, plug it back into either $f(x)$ or $g(x)$ to find the corresponding y value. Let's use $f(x)$:
$y=f\left(\frac{2}{5}\right)=1-2\left(\frac{2}{5}\right)$
$y=1-\frac{4}{5}=\frac{1}{5}$
So, the coordinates of point M are $\left(\frac{2}{5}, \frac{1}{5}\right)$.
$\mathrm{f}(x)=2 x+3 \quad \mathrm{~g}(x)=x^{2}$
(a) Find $\mathrm{fg}(6)$.
$f(x)=2 x+3, \quad g(x)=x^{2}$
To find $f \cdot g(6)$:

1. Evaluate $g(6)=36$.
2. Evaluate $f(6)=15$.
3. Multiply: $f \cdot g(6)=15 \cdot 36=540$.

So, $f \cdot g(6)=540$.
(b) Solve the equation $\operatorname{gf}(x)=100$.

Let's solve the equation $g(f(x))=100$ using the given functions $f(x)=2 x+3$ and $g(x)=x^{2}$:
$g(f(x))=(2 x+3)^{2}=100$
Expanding and simplifying:
$4 x^{2}+12 x+9=100$
Subtracting 100 from both sides:
$4 x^{2}+12 x-91=0$
Now, you can solve this quadratic equation. The solutions are:
$x=\frac{-12 \pm \sqrt{12^{2}-4(4)(-91)}}{2(4)}$
After solving, you'll get two values for x.
(c) Find $\mathrm{f}^{-1}(x)$. 1. Replace $f(x)$ with $y: y=2 x+3$.
2. Swap x and $y: x=2 y+3$.
3. Solve for y : $2 y=x-3$.
4. Divide by $2: y=\frac{1}{2}(x-3)$. \qquad $\rightarrow-\infty \rightarrow+$
So, $f^{-1}(x)=\frac{1}{2}(x-3)$.
(d) Find $\mathrm{ff}^{-1}(5)$.

To find $f^{-1}(x)$, we switch the roles of x and y in the equation $y=2 x+3$ and solve for x :
$x=2 y+3$
Now, solve for y :
$y=\frac{x-3}{2}$
So, $f^{-1}(x)=\frac{x-3}{2}$.
Now, find $f\left(f^{-1}(5)\right)$:
$f\left(f^{-1}(5)\right)=f\left(\frac{5-3}{2}\right)=f(1)=2 \times 1+3=5$
Therefore, $f\left(f^{-1}(5)\right)=5$.

Find
(a) $\mathrm{fg}(5), \quad$ To find $f(g(5))$, first, evaluate $g(5)$:

$$
g(5)=\frac{1}{2 \times 5}=\frac{1}{10}
$$

Now, substitute this result into $f(x)$:
$f(g(5))=f\left(\frac{1}{10}\right)=5 \times \frac{1}{10}+4=\frac{1}{2}+4=\frac{9}{2}$
Therefore, $f(g(5))=\frac{9}{2}$.
(b) $\operatorname{gg}(x)$ in its simplest form,

The composition $g \circ g(x)$ means applying g to the result of applying g to x. Let's find it step by step: $g(g(x))=g\left(\frac{1}{2 x}\right)$
Now, substitute this into the definition of $g(x)$:
$g(g(x))=\frac{1}{2 \cdot \frac{1}{2 x}}=\frac{1}{\frac{1}{z}}=x$
So, $g \circ g(x)=x$ in its simplest form.
(c) $\mathrm{f}^{-1}(x)$,

To find $f^{-1}(x)$ for $f(x)=5 x+4$, switch the roles of x and y in the equation and solve for x :
$y=5 x+4$
$x=\frac{y-4}{5}$
So, $f^{-1}(x)=\frac{x-4}{5}$.
(d) the value of x when $\mathrm{h}(x)=8$.

To find the value of x when $h(x)=8$, set $\left(\frac{1}{2}\right)^{x}$ equal to 8 and solve for x :
$\left(\frac{1}{2}\right)^{x}=8$
Take the reciprocal of both sides:
$2^{x}=\frac{1}{8}$
Now, express both sides with the same base:
$2^{x}=2^{-3}$
Since the bases are the same, the exponents must be equal:
$x=-3$
Therefore, the value of x when $h(x)=8$ is $x=-3$.

$$
\mathrm{f}(x)=x+\frac{2}{x}-3, x, 0 \quad \mathrm{~g}(x)=\frac{x}{2}-5
$$

Find
(a) $\operatorname{fg}(18)$,

To find $f(g(18))$, first find $g(18)$ and then substitute the result into $f(x)$:
$g(18)=\frac{18}{2}-5=9-5=4$
Now, substitute this into $f(x)$:
$f(g(18))=f(4)=4+\frac{2}{4}-3=4+\frac{1}{2}-3=\frac{9}{2}$
Therefore, $f(g(18))=\frac{9}{2}$.
(b) $\mathrm{g}^{-1}(x)$.

To find $g^{-1}(x)$, switch the roles of x and y in the equation $y=\frac{x}{2}-5$ and solve for x : $x=\frac{y}{2}-5$
Now, solve for y :
$y=2 x+10$
So, $g^{-1}(x)=2 x+10$.

Exam Papers Practice

$$
\mathrm{f}(x)=4(x+1) \quad \mathrm{g}(x)=\frac{x^{3}}{2}-1
$$

(a) Write down the value of x when $\mathrm{f}(x)=2$.

To find the value of x when $f^{-1}(x)=2$, set $4(x+1)$ equal to 2 and solve for x :
$4(x+1)=2$
Simplify the equation:
$4 x+4=2$
Subtract 4 from both sides:
$4 x=-2$
Divide both sides by 4 :
$x=-\frac{1}{2}$
Therefore, the value of x when $f^{-1}(x)=2$ is $x=-\frac{1}{2}$.
(b) Find $\operatorname{fg}(x)$. Give your answer in its simplest form.

To find $\mathrm{fg}(x)$, simply multiply the expressions for $f(x)$ and $g(x)$:
$f g(x)=f(x) \cdot g(x)=4(x+1)\left(\frac{x^{3}}{2}-1\right)$
Distribute and simplify:
$f g(x)=4 \cdot \frac{x^{3}}{2}+4 \cdot(x+1) \cdot(-1)$
Simplify further:
$f g(x)=2 x^{3}-4 x-4$
So, $f g(x)=2 x^{3}-4 x-4$.
(c) Find g^{-1}
(x).

The instruction lacks clarity and needs further elaboration to be easily understood.
[3]
$\mathrm{f}(x)=x^{2}+1 \quad \mathrm{~g}(x)=\frac{x+2}{3}$
(a) Work out ff(-1).

To find $\mathrm{ff}(-1)$, first find $f(-1)$ and then apply $f(x)$ to that result.

1. Find $f(-1)$:
$f(-1)=(-1)^{2}+1=1+1=2$
2. Apply $f(x)$ to the result:
$f(2)=2^{2}+1=4+1=5$
Therefore, $\mathrm{ff}(-1)=5$.
(b) Find $\operatorname{gf}(3 x)$, simplifying your answer as far as possible.

To find $g f(3 x)$, first evaluate $f(3 x)$ and then substitute the result into $g(x)$:
$f(3 x)=(3 x)^{2}+1=9 x^{2}+1$
Now, substitute this into $g(x)$:

$$
\begin{aligned}
& g f(3 x)=g(f(3 x))=g\left(9 x^{2}+1\right) \\
& g f(3 x)=\frac{9 x^{2}+1+2}{3}=3 x^{2}+\frac{1}{3}
\end{aligned}
$$

$$
\text { So, } g f(3 x)=3 x^{2}+\frac{1}{3}
$$

(c) Find $\mathrm{g}^{-1}(x)$.

To find $g^{-1}(x)$, switch the roles of x and y in the equation $y=\frac{x+2}{3}$ and solve for x :

$$
x=\frac{y+2}{3}
$$

Now, solve for y :
$y=3 x-2$
So, $g^{-1}(x)=3 x-2$.

$$
\mathrm{f}(x)=3 x+5 \quad \mathrm{~g}(x)=4 x-1
$$

(a) Find the value of $\operatorname{gg}(3)$.

To find $g g(3)$, first find $g(3)$, and then substitute that result into $g(x)$ again.
$g(3)=4 \cdot 3-1=11$
Now, find $g(g(3))$:
$g(g(3))=g(11)=4 \cdot 11-1=43$
Therefore, the value of $g g(3)$ is 43 .
(b) Find $\mathrm{fg}(x)$, giving your answer in its simplest form.

To find $f g(x)$, multiply the expressions for $f(x)$ and $g(x)$:
$f g(x)=f(x) \cdot g(x)=(3 x+5)(4 x-1)$
Distribute and simplify:
$f g(x)=12 x^{2}-3 x+20 x-5$
Combine like terms:
$f g(x)=12 x^{2}+17 x-5$
So, $f g(x)=12 x^{2}+17 x-5$.
(c) Solve the equation. $\quad \mathrm{f}^{-1}(x)=11$

To solve the equation $\overline{f^{-1}}(x)=11$ for x, we need to find the value of x that makes $f^{-1}(x)=11$.
Given that $f(x)=3 x+5$, to find $f^{-1}(x)$, switch the roles of x and y and solve for x :
$y=3 x+5$
Switching x and y :
$x=3 y+5$
Now, solve for y :
$y=\frac{x-5}{3}$
So, $f^{-1}(x)=\frac{x-5}{3}$.
Now, set $\frac{x-5}{3}=11$ and solve for x :
$\frac{x-5}{3}=11$
Multiply both sides by 3 :
$x-5=33$
Add 5 to both sides:
$x=38$
Therefore, the solution to the equation $\overline{f^{-1}}(x)=11$ is $x=38$.

$$
\begin{gathered}
\mathrm{f}(x)=\frac{\mathrm{I}}{x+4}(x \neq 4) \\
\mathrm{g}(x)=x^{2}-3 x \\
\mathrm{~h}(x)=x^{3}+1
\end{gathered}
$$

(a) Work out $\mathrm{fg}(1)$.

To find $f g(1)$, we need to evaluate $f(1)$ and $g(1)$ and then multiply the results.
$f(x)=\frac{1}{x+4}$
$g(x)=x^{2}-3 x$
First, find $f(1)$:
$f(1)=\frac{1}{1+4}=\frac{1}{5}$
Now, find $g(1)$:
$g(1)=1^{2}-3 \times 1=1-3=-2$
Multiply $f(1)$ and $g(1)$:

(b) Find $\mathrm{h}^{-1}(x)$.

To find $h^{-1}(x)$, switch the roles of x and y in the equation $y=x^{3}+1$ and solve for x :
$x=y^{3}+1$
Now, solve for y :
$y^{3}=x-1$
$y=(x-1)^{\frac{1}{3}}$
So, $h^{-1}(x)=(x-1)^{\frac{1}{3}}$.
(c) Solve the equation $\mathrm{g}(x)=-2$.

To solve the equation $\mathrm{g}(x)=-2$ for x, set the expression for $g(x)$ equal to -2 and solve: $x^{2}-3 x=-2$
Move all terms to one side of the equation:
$x^{2}-3 x+2=0$
Now, factor the quadratic:
$(x-2)(x-1)=0$
Set each factor equal to zero and solve for x :
$x-2=0 \quad$ or $\quad x-1=0$
Solving each equation gives:
$x=2 \quad$ or $\quad x=1$
Therefore, the solutions to the equation $\mathrm{g}(x)=-2$ are $x=2$ and $x=1$.

$$
\mathrm{f}(x)=x^{3} \quad \mathrm{~g}(x)=2 x-3
$$

(a) Find

$$
\text { (i) } g(6)
$$

$$
g(6)=2 \times 6-3=12-3=9
$$

(ii) $\mathrm{f}(2 x) . \quad \quad f(2 x)=(2 x)^{3}=8 x^{3}$
(b) Solve $\operatorname{fg}(x)=125$.

To solve $f g(x)=125$, substitute the expressions for $f(x)$ and $g(x)$ and set the equation equal to 125 : $\left(x^{3}\right)(2 x-3)=125$
Simplify the expression and solve for x :
$2 x^{4}-3 x^{3}-125=0$
This is a polynomial equation. The solutions for x may involve complex numbers.
(c) Find the inverse function $\mathrm{g}^{-1}(x)$.

To find the inverse function $g^{-1}(x)$ for $g(x)=2 x-3$, switch the roles of x and $g(x)$ and solve for x :
$y=2 x-3$
Swap x and y :
$x=2 y-3$
Solve for y :
$y=\frac{x+3}{2}$
So, the inverse function $g^{-1}(x)$ is $g^{-1}(x)=\frac{x+3}{2}$.
$\mathrm{f}(x)=x^{2} \quad \mathrm{~g}(x)=2^{\mathrm{x}} \quad \mathrm{h}(x)=2 x-3$
(a) Find $g(3)$.

$$
\begin{equation*}
g(3)=2^{3}=8 \tag{1}
\end{equation*}
$$

(b) Find $\operatorname{hh}(x)$ in its simplest form.

To find $h \circ h(x)$, first find $h(h(x))$:
$h(h(x))=h(2 x-3)=2(2 x-3)-3=4 x-6-3=4 x-9$
So, $h \circ h(x)=4 x-9$.
$f(x)=x^{2}, \quad g(x)=2^{x}, \quad h(x)=2 x-3$
To find $f g(x+1)$, first evaluate f and g at $x+1$:
$f(x+1)=(x+1)^{2}=x^{2}+2 x+1$
$g(x+1)=2^{x+1}=2 \cdot 2^{x}$
Now, multiply $f(x+1)$ and $g(x+1)$:
$f g(x+1)=\left(x^{2}+2 x+1\right) \cdot\left(2 \cdot 2^{x}\right)$
Simplify further if needed.

The function $\mathrm{f}(x)$ is given by

$$
\mathrm{f}(x)=3 x-1
$$

Find, in its simplest form,
(a) $\mathrm{f}^{-1} \mathrm{f}(x)$,

To find $\mathbf{f}^{-1} \mathbf{f}(x)$, first substitute $f^{-1}(x)$ into $f(x)$:
$f^{-1} f(x)=f^{-1}(3 x-1)$
Now, replace x in $f^{-1}(x)$ with $3 x-1$:
$f^{-1} f(x)=f^{-1}(3(3 x-1)-1)$
Simplify the expression:
$f^{-1} f(x)=f^{-1}(9 x-4)$
Now, use the fact that $f^{-1}(f(x))=x$:
$f^{-1} f(x)=x$
(b) $\mathrm{ff}(x)$.

$f(x)=3 x-1$
To find $f f(x)$, substitute $f(x)$ into itself:
$f f(x)=f(f(x))=f(3 x-1)$
Now, replace x with $3 x-1$ in the expression for $f(x)$: $f(3 x-1)=3(3 x-1)-1=9 x-3-1=9 x-4$ So, $f f(x)=9 x-4$.

Question 15

f: $x \mapsto 5-3 x$.
(a) Find $f(-1)$.
$f(x)=5-3 x$
To find $f(-1)$, substitute -1 for x in the function:
$f(-1)=5-3(-1)$
Simplify:
$f(-1)=5+3=8$
So, $f(-1)=8$.
(b) Find $\mathrm{f}^{-1}(x)$.
$f(x)=5-3 x$
To find the inverse function $f^{-1}(x)$, swap x and $f(x)$ and solve for $x: y=5-3 x$
Swap x and y :
$x=5-3 y$
Solve for y :
$y=\frac{5-x}{3}$
So, the inverse function $f^{-1}(x)$ is $f^{-1}(x)=\frac{5-x}{3}$.
(c) Find $\mathrm{ff}^{-1}(8)$.

Given the function $f(x)=5-3 x$, let's find $f^{-1}(x)$ and then evaluate $f\left(f^{-1}(8)\right)$:

1. Find $f^{-1}(x)$:
$y=5-3 x$
Swap x and y :
$x=5-3 y$
Solve for y :
$y=\frac{5-x}{3}$
So, $f^{-1}(x)=\frac{5-x}{3}$.
2. Evaluate $f\left(f^{-1}(8)\right)$:

Substitute $f^{-1}(x)$ into $f(x)$:
$f\left(f^{-1}(x)\right)=f\left(\frac{5-x}{3}\right)$
Now substitute $x=8$:
$f\left(f^{-1}(8)\right)=f\left(\frac{5-8}{3}\right)=f\left(-\frac{3}{3}\right)=f(-1)$
Substitute-1 into $f(x)$:
$f(-1)=5-3(-1)=5+3=8$
So, $\mathrm{ff}^{-1}(8)=8$.

Question 16

$$
\mathrm{f}(x)=\frac{\mathrm{x}+3}{\mathrm{x}}, x \neq 0 .
$$

(a) Calculate $\mathrm{f}\left(\frac{1}{4}\right)$.

$$
f(x)=\frac{x+3}{x}, \quad x \neq 0
$$

To find $f\left(\frac{1}{4}\right)$, substitute $\frac{1}{4}$ into $f(x)$:
$f\left(\frac{1}{4}\right)=\frac{\frac{1}{4}+3}{\frac{1}{4}}$
Simplify the expression:
$f\left(\frac{1}{4}\right)=\frac{\frac{13}{4}}{\frac{1}{4}}=\frac{13}{1}=13$
So, $f\left(\frac{1}{4}\right)=13$.
(b) Solve $\mathrm{f}(x)=\frac{1}{4}$.

To solve $f(x)=\frac{1}{4}$ for the given function $f(x)=\frac{x+3}{x}$ with $x \neq 0$: $\frac{x+3}{x}=\frac{1}{4}$
Cross-multiply to get rid of the fraction:
$4(x+3)=x$
Distribute the 4:
$4 x+12=x$
Subtract x from both sides:
$3 x+12=0$
Subtract 12 from both sides:
$3 x=-12$
Divide by 3 :

$$
x=-4
$$

So, the solution is $x=-4$.

$$
\mathrm{f}(x)=10^{\mathrm{x}} .
$$

(a) Calculate $\mathrm{f}(0.5)$.

For the function $f(x)=10^{x}$, to calculate $f(0.5)$:

$$
\begin{aligned}
& f(0.5)=10^{0.5} \\
& f(0.5)=\sqrt{10}
\end{aligned}
$$

$$
\text { So, } f(0.5)=\sqrt{10}
$$

(b) Write down the value of $\mathrm{f}^{-1}(1)$.

For the given function $f(x)=10^{x}$, to find $f^{-1}(1): f^{-1}(1)$ is the value of x such that $f(x)=1$. $10^{x}=1$
Since any number raised to the power of 0 is 1 :
$x=0$
Therefore, $f^{-1}(1)=0$.

ㄴ)
 1051030

$f(x)=\frac{x+1}{2}$ and $g(x)=2 x+1$.
(a) Find the value of $g f(9)$.
[1]
To find $g f(9)$ where $f(x)=\frac{x+1}{2}$ and $g(x)=2 x+1$: $g f(9)=g(f(9))$
First, find $f(9)$ by substituting 9 into $f(x)$:
$f(9)=\frac{9+1}{2}=5$
Now, substitute this result into $g(x)$:
$g(f(9))=g(5)=2(5)+1=11$
So, $g f(9)=11$.
(b) Find $\operatorname{gf}(x)$, giving your answer in its simplest form.

To find $g f(x)$ (the composition of g and f), substitute $f(x)$ into $g(x)$:
$g f(x)=g\left(\frac{x+1}{2}\right)$
Now, replace x with $\frac{x+1}{2}$ in the expression for $g(x)$:
$g\left(\frac{x+1}{2}\right)=2\left(\frac{x+1}{2}\right)+1$
Simplify:
$g f(x)=x+1+1=x+2$
So, $g f(x)=x+2$.
(c) Solve the equation $\mathrm{g}(x)^{-1}=1$.

To solve $\mathrm{g}(x)^{-1}=1$ for the given function $\mathrm{g}(x)=2 x+1$: $g(x)^{-1}=1$
This equation is asking for the value of x such that $g(x)=1$.
$2 x+1=1$
Subtract 1 from both sides:
$2 x=0$
Divide by 2:
$x=0$
So, the solution is $x=0$.
$\mathrm{f}: x \rightarrow 2 x-1$ and $\mathrm{g}: x \rightarrow x^{2}-1$.
Find, in their simplest forms,
(a) $\mathrm{f}^{-1}(x)$,

Given the function $\mathrm{f}: x \rightarrow 2 x-1$, to find $\mathrm{f}^{-1}(x)$, switch the roles of x and $f(x)$ and solve for x :
$y=2 x-1$
Swap x and y :
$x=2 y-1$
Solve for y :
$y=\frac{x+1}{2}$
So, $\mathrm{f}^{-1}(x)=\frac{x+1}{2}$.
(b) $\operatorname{gf}(x)$.

Given the functions $\mathrm{f}(x)=2 x-1$ and $\mathrm{g}(x)=x^{2}-1$, to find $g f(x)$ (the composition of g followed by f), perform the following steps: $g f(x)=\mathrm{g}(\mathrm{f}(x))$

1. Substitute the expression for $\mathrm{f}(x)$ into $\mathrm{g}(x)$: $g f(x)=(g \circ f)(x)=\mathrm{g}(2 x-1)$
2. Replace x in the expression for $\mathrm{g}(x)$ with $2 x-1$: $g f(x)=(2 x-1)^{2}-1$
3. Expand and simplify:
$g f(x)=4 x^{2}-4 x+1-1$
Combine like terms:
$g f(x)=4 x^{2}-4 x$
So, in its simplest form, $g f(x)=4 x^{2}-4 x$.
