

Functions

Model Answers

For more help, please visit our website www.exampaperspractice.co.uk

Find

(a) gf(x),

[2]

$$g(f(x)) = 2((x+2)^3 - 5) + 10$$

Now, substitute the expression for $f(x)$:
 $g(f(x)) = 2((x+2)^3 - 5) + 10$
Expand and simplify:
 $g(f(x)) = 2(x+2)^3 - 10 + 10$
The -10 and +10 cancel out:
 $g(f(x)) = 2(x+2)^3$
So, $gf(x) = 2(x+2)^3$.

(b) f^{-1} The instruction lacks clarity and needs further elaboration to be easily understood. [3] (c) $gh(-\frac{1}{5})$. [2] Steps to solve: 1. Reorder terms so constants are on the left: $-\frac{1}{5}gh$ 2. Combine multiplied terms into a single fraction: $-\frac{-gh}{5}$

Answer:

 $\frac{-gh}{5}$

$$f(x) = (x-1)^3$$
 $g(x) = (x-1)^2$ $h(x) = 3x + 1$

(a) Work out fg(-1). Steps to solve: 1. Multiply the polynomials: $f(-1)g(-1) = (x - 1)^3(x - 1)^2$ 2. Simplify the expression: $(x - 1)^3(x - 1)^2 = (x - 1)^5$ Answer: $(x - 1)^5$

(b) Find gh(x) in its simplest form.

 $g(h(x)) = (h(x) - 1)^2$ Now, substitute the expression for h(x): $g(h(x)) = (3x + 1 - 1)^2$ Simplify the expression inside the parentheses: $g(h(x)) = (3x)^2$ Expand and simplify: $g(h(x)) = 9x^2$ So, $gh(x) = 9x^2$, and that is the simplest form.

(c) Find $f^{-1}(x)$.

1. Start with the original function: **SPECICE** $f(x) = (x - 1)^3$ 2. Swap x and y: $x = (y - 1)^3$ 3. Solve for y: $\sqrt[3]{x} = y - 1$ 4. Add 1 to both sides to isolate y: $y = \sqrt[3]{x} + 1$ So, the inverse function $f^{-1}(x)$ for $f(x) = (x - 1)^3$ is: $f^{-1}(x) = \sqrt[3]{x} + 1$ Therefore, $f^{-1}(x) = \sqrt[3]{x} + 1$.

For more help, please visit our website www.exampaperspractice.co.uk

[2]

[2]

[2]

(a)
$$f(x) = 1 - 2x$$
.
(i) Find $f(-5)$.
To find $f(-5)$ for the function $f(x) = 1 - 2x$, you substitute -5 for x in the expression: $f(-5) = 1 - 2(-5)$
Now, perform the calculations:
 $f(-5) = 1 + 10$
 $f(-5) = 11$
So, $f(-5) = 11$.
[1]

(ii) g(x) = 3x - 2.

Find gf(x). Simplify your answer.

[2]

To find gf(x), you need to substitute the expression for f(x) into the function g(x). Given that f(x) = 1 - 2x and g(x) = 3x - 2, the composition is as follows: gf(x) = g(f(x))Substitute f(x) into g(x): gf(x) = g(1 - 2x)Now, replace x in g(x) with 1 - 2x: gf(x) = 3(1 - 2x) - 2Distribute and simplify: gf(x) = 3 - 6x - 2Combine like terms: gf(x) = -6x + 1So, gf(x) = -6x + 1.

(b) $h(x) = x^2 - 5x - 11$. Solve h(x) = 0.

Show all your working and give your answer correct to 2 decimal places.

To solve the quadratic equation $h(x) = x^2 - 5x - 11$ for x, you can use the quadratic formula: $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

 $x = \frac{1}{2a}$ Here, a, b, and c are the coefficients of the quadratic equation $ax^2 + bx + c = 0$. For $h(x) = x^2 - 5x - 11$, we have:

$$a = 1, \quad b = -5, \quad c = -11$$

Now, substitute these values into the quadratic formula:

$$x = rac{-(-5)\pm \sqrt{(-5)^2 - 4(1)(-11)}}{2(1)}$$

Simplify further:

$$x = rac{5 \pm \sqrt{25 + 44}}{2}$$

 $x = rac{5 \pm \sqrt{69}}{2}$

So, the solutions are:

$$x=rac{5+\sqrt{69}}{2} \ x=rac{5-\sqrt{69}}{2}$$

These solutions are approximately:

 $xpprox 6.82 ext{ or } xpprox -1.82$

Therefore, the solutions to h(x) = 0 are $x \approx 6.82$ and $x \approx -1.82$, rounded to two decimal places.

f:
$$x \rightarrow 1 - 2x$$
 and g: $x \rightarrow \frac{x}{2}$.
(a) Find fg(7). [2]
1. First, find $g(7)$ by substituting $x = 7$ into the function $g(x)$:
 $g(7) = \frac{7}{2}$
2. Now, take the result from step 1 and substitute it into the function $f(x)$:
 $f(\frac{7}{2}) = 1 - 2 \cdot \frac{7}{2}$
3. Simplify the expression:
 $f(\frac{7}{2}) = 1 - 7$
 $f(\frac{7}{2}) = 1 - 7$
 $f(\frac{7}{2}) = -6$
Therefore, $f \circ g(7) = -6$.
(b) (i) Solve $f(x) = g(x)$. [2]
 $1 - 2x = \frac{\pi}{2}$
To get rid of the fraction, you can multiply both sides of the equation by 2:
 $2(1 - 2x) = x$
Distribute on the left side:
 $2 - 4x = x$
Now, isolate x by moving all the x terms to one side of the equation:
 $2 = 5x$
Divide both sides by 5 to solve for x :
 $x = \frac{2}{5}$
So, the solution to $f(x) = g(x)$ is $x = \frac{2}{5}$. **Protocolog**
(i) The graphs of $y = f(x)$ and $y = g(x)$ meet at M .
Find the coordinates of M . [1]

To find the coordinates of the point M, where the graphs of y = f(x) and y = g(x) meet, you need to set the two functions equal to each other and solve for x : f(x) = g(x)

Given that f(x) = 1 - 2x and $g(x) = \frac{x}{2}$, set them equal to each other: $1 - 2x = \frac{x}{2}$ To solve for x, first, get rid of the fraction by multiplying both sides of the equation by 2 : 2(1 - 2x) = xDistribute on the left side: 2 - 4x = xNow, isolate x : 2 = 5x $x = \frac{2}{5}$ Now that you have the value of x, plug it back into either f(x) or g(x) to find the corresponding value. Let's use f(x) : $y = f\left(\frac{2}{5}\right) = 1 - 2\left(\frac{2}{5}\right)$ $y = 1 - \frac{4}{5} = \frac{1}{5}$ So, the coordinates of point M are $\left(\frac{2}{5}, \frac{1}{5}\right)$.

f(x) = 2x + 3
$$g(x) = x^2$$

(a) Find fg(6). $f(x) = 2x + 3$, $g(x) = x^2$ [2]
To find $f \cdot g(6)$:
1. Evaluate $g(6) = 36$.
2. Evaluate $f(6) = 15$.
3. Multiply: $f \cdot g(6) = 15 \cdot 36 = 540$.
So, $f \cdot g(6) = 540$.

(b) Solve the equation gf(x) = 100.

Let's solve the equation g(f(x)) = 100 using the given functions f(x) = 2x + 3 and $g(x) = x^2$: $g(f(x)) = (2x + 3)^2 = 100$ [3] Expanding and simplifying: $4x^2 + 12x + 9 = 100$ Subtracting 100 from both sides: $4x^2 + 12x - 91 = 0$ Now, you can solve this quadratic equation. The solutions are: $x = \frac{-12 \pm \sqrt{12^2 - 4(4)(-91)}}{2(4)}$ After solving, you'll get two values for x.

(c) Find f⁻¹(x). 1. Replace
$$f(x)$$
 with $y : y = 2x + 3$.
2. Swap x and $y : x = 2y + 3$.
3. Solve for $y : 2y = x - 3$.
4. Divide by $2 : y = \frac{1}{2}(x - 3)$.
So, $f^{-1}(x) = \frac{1}{2}(x - 3)$.

(d) Find ff $^{-1}(5)$.

To find $f^{-1}(x)$, we switch the roles of x and y in the equation y = 2x + 3 and solve for x: x = 2y + 3Now, solve for y: $y = \frac{x-3}{2}$ So, $f^{-1}(x) = \frac{x-3}{2}$. Now, find $f(f^{-1}(5))$: $f(f^{-1}(5)) = f(\frac{5-3}{2}) = f(1) = 2 \times 1 + 3 = 5$ Therefore, $f(f^{-1}(5)) = 5$. [1]

$$f(x) = 5x + 4$$
 $g(x) = \frac{1}{2x}, x \neq 0$ $h(x) = \left(\frac{1}{2}\right)^x$

Find

(a) fg(5), To find
$$f(g(5))$$
, first, evaluate $g(5)$: [2]
 $g(5) = \frac{1}{2 \times 5} = \frac{1}{10}$
Now, substitute this result into $f(x)$:
 $f(g(5)) = f(\frac{1}{10}) = 5 \times \frac{1}{10} + 4 = \frac{1}{2} + 4 = \frac{9}{2}$
Therefore, $f(g(5)) = \frac{9}{2}$.

(b) gg(x) in its simplest form,

The composition $g \circ g(x)$ means applying g to the result of applying g to x. Let's find it step by step: $g(g(x)) = g\left(\frac{1}{2x}\right)$ Now, substitute this into the definition of g(x): $g(g(x)) = \frac{1}{2 \cdot \frac{1}{2x}} = \frac{1}{\frac{1}{x}} = x$ So, $g \circ g(x) = x$ in its simplest form. (c) f⁻¹(x), To find $f^{-1}(x)$ for f(x) = 5x + 4, switch the roles of x and y in the equation and solve for x: y = 5x + 4[2]

$$y = 5x + 4$$

$$x = \frac{y-4}{5}$$
So, $f^{-1}(x) = \frac{x-4}{5}$.
(d) the value of x when $h(x) = 8$. **Ders Practice**[2]

To find the value of x when h(x) = 8, set $\left(\frac{1}{2}\right)^x$ equal to 8 and solve for x: $\left(\frac{1}{2}\right)^x = 8$ Take the reciprocal of both sides: $2^x = \frac{1}{8}$ Now, express both sides with the same base: $2^x = 2^{-3}$ Since the bases are the same, the exponents must be equal: x = -3Therefore, the value of x when h(x) = 8 is x = -3.

$$f(x) = x + \frac{2}{x} - 3, x, 0$$
 $g(x) = \frac{x}{2} - 5$

Find

To find $g^{-1}(x)$, switch the roles of x and y in the equation $y = \frac{x}{2} - 5$ and solve for x: $x = \frac{y}{2} - 5$ Now, solve for y: y = 2x + 10So, $g^{-1}(x) = 2x + 10$.

Exam Papers Practice

(a) Write down the value of x when f(x) = 2. To find the value of x when $f^{-1}(x) = 2$, set 4(x + 1) equal to 2 and solve for x : 4(x + 1) = 2Simplify the equation: 4x + 4 = 2Subtract 4 from both sides: 4x = -2Divide both sides by 4 : $x = -\frac{1}{2}$ Therefore, the value of x when $f^{-1}(x) = 2$ is $x = -\frac{1}{2}$.

(b) Find fg(x). Give your answer in its simplest form.

To find fg(x), simply multiply the expressions for f(x) and g(x):

$$fg(x) = f(x) \cdot g(x) = 4(x+1)\left(\frac{x^3}{2} - 1\right)$$

Distribute and simplify:
$$fg(x) = 4 \cdot \frac{x^3}{2} + 4 \cdot (x+1) \cdot (-1)$$

Simplify further:
$$fg(x) = 2x^3 - 4x - 4$$

So, $fg(x) = 2x^3 - 4x - 4$.
[2]

(c) Find g⁻¹ (x). The instruction lacks clarity and needs further elaboration to be easily understood.

$$f(x) = x^2 + 1$$
 $g(x) = \frac{x+2}{3}$

(a) Work out ff(-1).

To find ff(-1), first find f(-1) and then apply f(x) to that result. 1. Find f(-1): $f(-1) = (-1)^2 + 1 = 1 + 1 = 2$ 2. Apply f(x) to the result: $f(2) = 2^2 + 1 = 4 + 1 = 5$ Therefore, ff(-1) = 5.

[2]

(b) Find gf(3x), simplifying your answer as far as possible.

To find gf(3x), first evaluate f(3x) and then substitute the result into g(x): $f(3x) = (3x)^2 + 1 = 9x^2 + 1$ Now, substitute this into g(x): $gf(3x) = g(f(3x)) = g(9x^2 + 1)$ $gf(3x) = \frac{9x^2 + 1 + 2}{3} = 3x^2 + \frac{1}{3}$. (c) Find $g^{-1}(x)$, switch the roles of x and y in the equation $y = \frac{x+2}{3}$ and solve for x: $x = \frac{y+2}{3}$ Now, solve for y: y = 3x - 2So, $g^{-1}(x) = 3x - 2$. [3]

EXAM PAPERS PRACTICE

Now, find g(g(3)): $g(g(3)) = g(11) = 4 \cdot 11 - 1 = 43$ Therefore, the value of gg(3) is 43.

(b) Find fg(x), giving your answer in its simplest form.

To find fg(x), multiply the expressions for f(x) and g(x): $fg(x) = f(x) \cdot g(x) = (3x+5)(4x-1)$ Distribute and simplify: $fg(x) = 12x^2 - 3x + 20x - 5$ Combine like terms: $fg(x) = 12x^2 + 17x - 5$ So, $fg(x) = 12x^2 + 17x - 5$.

(c) Solve the equation. $\bar{f}^{1}(x) = 11$

To solve the equation $\overline{f^{-1}}(x) = 11$ for x, we need to find the value of x that makes $f^{-1}(x) = 11$. Given that f(x) = 3x + 5, to find $f^{-1}(x)$, switch the roles of x and y and solve for x : y = 3x + 5[1] Switching x and y: x = 3y + 5Now, solve for y: $y = \frac{x-5}{3}$ So, $f^{-1}(x) = \frac{x-5}{3}$. Now, set $\frac{x-5}{3} = 11$ and solve for x: $\frac{x-5}{3} = 11$ Multiply both sides by 3: x - 5 = 33Add 5 to both sides: x = 38

Therefore, the solution to the equation $\overline{f^{-1}}(x) = 11$ is x = 38.

Question 10

(a) Find the value of gg(3).

 $g(3) = 4 \cdot 3 - 1 = 11$

[2]

[2]

Page 11

$$f(x) = \frac{1}{x+4} \quad (x \neq -4)$$
$$g(x) = x^{2} - 3x$$
$$h(x) = x^{3} + 1$$

(a) Work out fg(1).

[2]

[3]

To find fg(1), we need to evaluate f(1) and g(1) and then multiply the results.

 $f(x) = \frac{1}{x+4}$ $g(x) = x^2 - 3x$ First, find f(1): $f(1) = \frac{1}{1+4} = \frac{1}{5}$ Now, find g(1): $q(1) = 1^2 - 3 \times 1 = 1 - 3 = -2$ Multiply f(1) and g(1): [2] $fg(1) = \frac{1}{5} \times (-2) = -\frac{2}{5}$ Therefore, $fg(1) = -\frac{2}{5}$.

(b) Find $h^{-1}(x)$.

To find $h^{-1}(x)$, switch the roles of x and y in the equation $y = x^3 + 1$ and solve for x : $x = y^3 + 1$ Now, solve for y: $y^3 = x - 1$ $y = (x - 1)^{\frac{1}{3}}$ Papers Practice So, $h^{-1}(x) = (x-1)^{\frac{1}{3}}$.

(c) Solve the equation g(x) = -2.

To solve the equation g(x) = -2 for x, set the expression for g(x) equal to -2 and solve: $x^2 - 3x = -2$ Move all terms to one side of the equation: $x^2 - 3x + 2 = 0$ Now, factor the quadratic: (x-2)(x-1) = 0Set each factor equal to zero and solve for x: x - 2 = 0 or x - 1 = 0Solving each equation gives: x = 2 or x = 1

Therefore, the solutions to the equation g(x) = -2 are x = 2 and x = 1.

[3] [2]

$$f(x) = x^3 \qquad g(x) = 2x - 3$$

(a) Find

(i) g(6),

$$g(6) = 2 \times 6 - 3 = 12 - 3 = 9$$

(ii) f(2x).
 $f(2x) = (2x)^3 = 8x^3$
[1]

(b) Solve fg(x) = 125.

To solve fg(x) = 125, substitute the expressions for f(x) and g(x) and set the equation equal to 125: $(x^3)(2x-3) = 125$ Simplify the expression and solve for x: $2x^4 - 3x^3 - 125 = 0$ This is a polynomial equation. The solutions for x may involve complex numbers.

(c) Find the inverse function $\overline{g}^{-1}(x)$.

To find the inverse function $g^{-1}(x)$ for g(x) = 2x - 3, switch the roles of x and g(x) and solve for x: y = 2x - 3Swap x and y: x = 2y - 3Solve for y: $y = \frac{x+3}{2}$ So, the inverse function $g^{-1}(x)$ is $g^{-1}(x) = \frac{x+3}{2}$.

$$f(x) = x^{2}$$
 $g(x) = 2^{x}$ $h(x) = 2x - 3$

(a) Find g(3).

$$g(3) = 2^3 = 8$$

(b) Find hh(x) in its simplest form.

To find
$$h \circ h(x)$$
, first find $h(h(x))$:
 $h(h(x)) = h(2x - 3) = 2(2x - 3) - 3 = 4x - 6 - 3 = 4x - 9$
So, $h \circ h(x) = 4x - 9$.
[2]
(c) Find $fg(x + 1)$ in its simplest form.
[2]
 $f(x) = x^2, \quad g(x) = 2^x, \quad h(x) = 2x - 3$
To find $fg(x + 1)$, first evaluate f and g at $x + 1$:
 $f(x + 1) = (x + 1)^2 = x^2 + 2x + 1$
 $g(x + 1) = 2^{x+1} = 2 \cdot 2^x$
Now, multiply $f(x + 1)$ and $g(x + 1)$:
 $fg(x + 1) = (x^2 + 2x + 1) \cdot (2 \cdot 2^x)$
Simplify further if needed.

Page 14

The function f(x) is given by

$$\mathbf{f}(x) = 3x - 1$$

Find, in its simplest form,

(a) $f^{-1}f(x)$, To find $f^{-1}f(x)$, first substitute $f^{-1}(x)$ into f(x): $f^{-1}f(x) = f^{-1}(3x - 1)$ Now, replace x in $f^{-1}(x)$ with 3x - 1: $f^{-1}f(x) = f^{-1}(3(3x - 1) - 1)$ Simplify the expression: $f^{-1}f(x) = f^{-1}(9x - 4)$ Now, use the fact that $f^{-1}(f(x)) = x$: $f^{-1}f(x) = x$

(b) ff(x).

[2]

$$f(x) = 3x - 1$$

To find $ff(x)$, substitute $f(x)$ into itself:
 $ff(x) = f(f(x)) = f(3x - 1)$
Now, replace x with $3x - 1$ in the expression for $f(x)$:
 $f(3x - 1) = 3(3x - 1) - 1 = 9x - 3 - 1 = 9x - 4$
So, $ff(x) = 9x - 4$.

f: $x \mapsto 5 - 3x$. (a) Find f(-1). [1] f(x) = 5 - 3xTo find f(-1), substitute -1 for x in the function: f(-1) = 5 - 3(-1)Simplify: f(-1) = 5 + 3 = 8So, f(-1) = 8. (b) Find $f^{-1}(x)$. [2] f(x) = 5 - 3xTo find the inverse function $f^{-1}(x)$, swap x and f(x) and solve for x: y = 5 - 3xSwap x and y: x = 5 - 3ySolve for y: $y = \frac{5-x}{3}$ So, the inverse function $f^{-1}(x)$ is $f^{-1}(x) = \frac{5-x}{3}$. (c) Find $ff^{-1}(8)$. [1] Given the function f(x) = 5 - 3x, let's find $f^{-1}(x)$ and then evaluate $f(f^{-1}(8))$: 1. Find $f^{-1}(x)$: apers Practice y = 5 - 3xSwap x and y: x = 5 - 3ySolve for y: $y = \frac{5-x}{3}$ So, $f^{-1}(x) = \frac{5-x}{3}$. 2. Evaluate $f(f^{-1}(8))$: Substitute $f^{-1}(x)$ into f(x): $f\left(f^{-1}(x)\right) = f\left(\frac{5-x}{3}\right)$ Now substitute x = 8: $f(f^{-1}(8)) = f(\frac{5-8}{3}) = f(-\frac{3}{3}) = f(-1)$ Substitute -1 into f(x): f(-1) = 5 - 3(-1) = 5 + 3 = 8So, ff⁻¹(8) = 8.

(a) Calculate f $(\frac{1}{4})$.

$$f(x) = \frac{x+3}{x}, x \neq 0.$$

$$f(x) = \frac{x+3}{x}, x \neq 0$$

To find $f(\frac{1}{4})$, substitute $\frac{1}{4}$ into $f(x)$:
 $f(\frac{1}{4}) = \frac{\frac{14}{4} + \frac{3}{4}}{\frac{1}{4}}$
Simplify the expression:
 $f(\frac{1}{4}) = \frac{\frac{14}{4}}{\frac{1}{4}} = \frac{13}{1} = 13$
So, $f(\frac{1}{4}) = 13$.
(b) Solve $f(x) = \frac{1}{4}$ for the given function $f(x) = \frac{x+3}{x}$ with $x \neq 0$:
 $\frac{x+3}{x} = \frac{1}{4}$
Cross-multiply to get rid of the fraction:
 $4(x + 3) = x$
Distribute the 4:
 $4x + 12 = x$
Subtract x from both sides:
 $3x + 12 = 0$
Subtract 12 from both sides:
 $3x = -12$
Divide by 3 :
 $x = -4$
So, the solution is $x = -4$.

f(x) =
$$10^x$$
.
(a) Calculate f(0.5).
For the function $f(x) = 10^x$, to calculate $f(0.5)$:
 $f(0.5) = 10^{0.5}$

$$f(0.5) = \sqrt{10}$$

So, $f(0.5) = \sqrt{10}$.

(b) Write down the value of f(1).

For the given function $f(x) = 10^x$, to find $f^{-1}(1) : f^{-1}(1)$ is the value of x such that f(x) = 1. $10^x = 1$ Since any number raised to the power of 0 is 1 : x = 0Therefore, $f^{-1}(1) = 0$.

Exam Papers Practice

$$f(x) = \frac{x+1}{2}$$
 and $g(x) = 2x+1$

(a) Find the value of gf(9).

To find gf(9) where $f(x) = \frac{x+1}{2}$ and g(x) = 2x + 1: gf(9) = g(f(9))First, find f(9) by substituting 9 into f(x): $f(9) = \frac{9+1}{2} = 5$ Now, substitute this result into g(x): g(f(9)) = g(5) = 2(5) + 1 = 11So, gf(9) = 11.

(b) Find gf(x), giving your answer in its simplest form.

To find gf(x) (the composition of g and f), substitute f(x) into g(x): $gf(x) = g\left(\frac{x+1}{2}\right)$ Now, replace x with $\frac{x+1}{2}$ in the expression for g(x): $g\left(\frac{x+1}{2}\right) = 2\left(\frac{x+1}{2}\right) + 1$ Simplify: gf(x) = x + 1 + 1 = x + 2So, gf(x) = x + 2.

(c) Solve the equation $g(x)^{-1} = 1$.

To solve
$$g(x)^{-1} = 1$$
 for the given function $g(x) = 2x + 1$:
 $g(x)^{-1} = 1$
This equation is asking for the value of x such that $g(x) = 1$.
 $2x + 1 = 1$
Subtract 1 from both sides:
 $2x = 0$
Divide by 2:
 $x = 0$
So, the solution is $x = 0$.

[1]

[2]

f: $x \rightarrow 2x - 1$ and g: $x \rightarrow x^2 - 1$. Find, in their simplest forms, (a) $f^{-1}(x)$, [2] Given the function $f: x \to 2x - 1$, to find $f^{-1}(x)$, switch the roles of x and f(x) and solve for x : y = 2x - 1Swap x and y: x = 2y - 1Solve for y: $y = \frac{x+1}{2}$ So, $f^{-1}(x) = \frac{x+1}{2}$. **(b)** gf(*x*). [2] Given the functions f(x) = 2x - 1 and $g(x) = x^2 - 1$, to find gf(x) (the composition of g followed by f), perform the following steps: gf(x) = g(f(x))1. Substitute the expression for f(x) into g(x): $gf(x) = (g \circ f)(x) = g(2x-1)$ 1. Replace x in the expression for g(x) with 2x - 1: $gf(x) = (2x - 1)^2 - 1$ 1. Expand and simplify: $gf(x) = 4x^2 - 4x + 1 - 1$ apers Practice Combine like terms: $gf(x) = 4x^2 - 4x$ So, in its simplest form, $gf(x) = 4x^2$