

Factorising & Expanding Model Answers

Factorise completely.

$$kp + 3k + mp + 3m$$

Answer:

First, we can group the terms: (kp + 3k) + (mp + 3m). Then, we can factor out the common factors in each group: k(p + 3) + m(p + 3).

Finally, we can factor out the common binomial: (k + m)(p + 3). So, the factorised form of the expression is (k + m)(p + 3).

Question 2

Factorise completely.

EXAM PAPERS PRACTICE

Answer:

To factorize the expression 2 15p + 24pt, we can first factor out the greatest common factor (GCF) of 15p and 24pt, which is 3p. This gives us:

$$215p + 24pt = 3p(2*5p + 8t)$$

Therefore, the completely factored form of 2 15p + 24pt is 3p(10p + 4t).

(a) Find the value of 7p - 3q when p = 8 and q = -5

Answer:

First, substitute the given values of p and q into the equation. So, 7p - 3q becomes 7*8 - 3*(-5)This simplifies to 56 + 15. So, 7p - 3q = 71 when p = 8 and q = -5.

(b.)Factorise completely.

3uv + 9v

Answer:

To factorise 3uv + 9vw completely, we can first factor out the greatest common factor, which is 3v. This gives us: 3uv + 9vw = 3v(u + 3w)

Therefore, 3uv + 9vw can be factored completely as 3v(u + 3w).

Question 4

Factorise completely ax + bx + ay + by

Answer:

First, we can group the terms that have common factors. In this case, we can group the terms with 'x' and the terms with 'y': (ax + bx) + (ay + by)

Next, we can factor out the common factors. For the first group, 'x' is the common factor. For the second group, 'y' is the common factor: x(a + b) + y(a + b)

Finally, we can see that (a + b) is a common factor for both groups. So, we can factor out (a + b): (a + b)(x + y) So, ax + bx + ay + by is completely factorised as (a + b)(x + y)

Factorise completely

$$p^2 x - 4q^2 x$$

Answer:

To factorise the expression $p^2 x - 4q^2 x$, we can take out the common factor x to get $x(p^2 - 4q^2)$.

The expression p^2 - $4q^2$ is a difference of squares, which can be factored as (p - 2q) (p + 2q) 1. Therefore, the complete factorisation of $p^2x - 4q^2x$ is x(p - 2q)(p + 2q).

Question 6

Factorise completely.

$$2xy - 4yz$$

Answer:

First, we can see that both terms have a common factor of 2y. So, we can factor out 2y from both terms. 2xy - 4yz = 2y(x - 2z) So, the factorised form of 2xy - 4yz is 2y(x - 2z).

Question 7

Factorise

(a) $4x^2 - 9$

Answer:

First, we can see that this is a difference of squares. The difference of squares is a special case in factoring and it follows this rule: $a^2 - b^2 = (a - b)(a + b)$. In this case, a^2 is $4x^2$ and b^2 is 9.

Therefore, a is 2x (since $(2x)^2 = 4x^2$) and b is 3 (since $3^2 = 9$). So, we can factorise $4x^2 - 9$ as (2x - 3)(2x + 3).

(b)
$$4x^2 - 9x$$

Answer:

First, we can see that both terms have a common factor of 'x'. So, we can factor out 'x' from both terms.

 $4x^{2}-9x = x(4x - 9)$ So, the factorised form of $4x^{2}-9x$ is x(4x - 9).

(c)
$$4x^2 - 9x + 2$$
.

Answer:

First, we need to find two numbers that multiply to (4*2)=8 and add to -9. Those numbers are -7 and -1.

Next, we rewrite the middle term of the quadratic, -9x, as -7x - 1x. So, $4x^2 - 9x + 2$ becomes $4x^2 - 7x - 1x + 2$. Now, we factor by grouping. The first two terms, $4x^2 - 7x$, have a common factor of x, and the last two terms, -1x + 2, have no common factors. So, $4x^2 - 7x - 1x + 2$ becomes x(4x - 7) - 1(4x - 7).

Finally, we factor out the common binomial term, (4x - 7), to get the final factored form of the quadratic: (4x - 7)(x - 1).

Question 8

7ac + 14a,

Answer:

First, we can see that both terms in the expression have a common factor of 7a. So, we can factor out 7a from both terms.

This gives us: 7a(c + 2). So, 7ac + 14a = 7a(c + 2).

(b) $12ax^3 + 18xa^3$

Answer:

First, we can see that both terms have common factors. These are 6, x, and a^3 . So, we can factor out these common factors:

 $6xa^{3}(2x^{2} + 3)$ So, $12ax^{3} + 18xa^{3}$ simplifies to $6xa^{3}(2x^{2} + 3)$.

Question 9

(a) Factorise completely 12x ²- 3y²

Answer:

To factorize $12x^2$ - $3y^2$ completely, we can first factor out the greatest common factor (GCF) of the two terms, which is 3. This gives us:

$$12x^2 - 3y^2 = 3(4x^2 - y^2)$$

Next, we can use the difference of squares formula to factor the expression $4x^2 - v^2$:

$$= (2x + y)(2x - y)$$

Therefore, the complete factorization of $12x^2 - 3y^2$ is:

$$12x^2 - 3y^2 = 3(2x + y)(2x - y)$$

- (b)
 - (i) Expand $(x 3)^2$

Answer:

First terms: $x * x = x^2$ Outer terms: x * -3 = -3x Inner terms: -3 * x = -3x Last terms: -3 * -3 = 9 Now, combine like terms: $x^2 - 3x - 3x + 9 = x^2 - 6x + 9$ So, $(x - 3)^2$ expands to $x^2 - 6x + 9$

(ii) $x^2 - 6x + 10$ is to be written in the form $(x - p)^2 + q$. Find the values of p and q.

Answer:

First, we need to complete the square for the given quadratic equation. The general form of a quadratic equation is $ax^2 + bx + c$. In this case, a = 1, b = -6, and c = 10. The formula to complete the square is $(x - h)^2 + k$, where h = -b/2a and $k = c - (b^2/4a)$. So, let's calculate h and k. $h = -(-6)/2*1 = 3 k = 10 - ((-6)^2/4*1) = 10 - 9 = 1$

Therefore, the equation x^2 - 6x + 10 can be written in the form $(x - p)^2$ + q as $(x - 3)^2$ + 1. So, p = 3 and q = 1.

Question 10

Factorise completely

 $2x - 4x^2$

Answer:

First, we can factor out the common factor of 2x from both terms

Question 11

Expand and simplify.

$$x(2x + 3) + 5(x - 7)$$

Answer:

First, distribute x across the terms in the first parentheses: $x * 2x = 2x^2 x * 3 = 3x$ So, x(2x + 3) simplifies to $2x^2 + 3x$.

Next, distribute 5 across the terms in the second parentheses: 5 * x = 5x 5 * -7 = -35 So, 5(x - 7) simplifies to 5x - 35.

Finally, combine like terms: $2x^2 + 3x + 5x - 35 = 2x^2 + 8x - 35$. So, x(2x + 3) + 5(x - 7) simplifies to $2x^2 + 8x - 35$.

Factorise completely.

$$9x2 - 6x^2$$

Answer:

First, we can factor out the common factor of $3x^2$ from both terms:

$$3x^2(3-2)=3x^2$$
.

Question 13

Factorise

$$2x^2 - 5x - 3$$

Answer:

We rewrite the middle term of the quadratic as the sum of the terms -6x and x. So, $2x^2 - 5x - 3$ becomes $2x^2 - 6x + x - 3$. Now, we can factor by grouping. The first two terms have a common factor of 2x, and the last two terms have a common factor of 1. So, $2x^2 - 6x + x - 3$ becomes 2x(x - 3) + 1(x - 3).

Finally, we can factor out the common binomial term (x - 3) to get the final factored form of the quadratic: $2x^2 - 5x - 3 = (2x + 1)(x - 3)$.

Factorise

14p2 +21pq

Answer:

First, we can see that both terms in the expression have a common factor of 7p. So, we can factor out 7p from both terms to get:

7p(2p + 3q) So, $14p^2 + 21pq$ factorises to 7p(2p + 3q).

Question 15

Factorise completely

(a)
$$ax + ay + bx + by$$

Answer:

First, we can factor out x from the first two terms and y from the last two terms: ax + ay + bx + by = x(a + b) + y(a + b)

Then, we can see that (a + b) is a common factor in both terms, so we can factor that out: x(a + b) + y(a + b) = (a + b)(x + y) So, the complete factorisation of ax + ay + bx + by is (a + b)(x + y).

(b)
$$3(x-1)2^2+(x-1)$$

Answer:

First, we can see that (x - 1) is a common factor in both terms. So, we can factor out (x - 1) from both terms. This gives us: (x - 1)(3(x - 1) + 1)

Next, we can simplify the expression inside the parentheses. This gives us: (x - 1)(3x - 3 + 1)

Finally, we simplify the expression inside the parentheses to get the final answer. So, the factorized form of the expression is: (x - 1)(3x - 2)

Factorise Completely.

$$15a^3 - 5ab$$

Answer:

First, we can see that both terms have a common factor of 5a. So, we can factor out 5a from both terms.

 $15a^3 - 5ab = 5a(3a^2 - b)$ So, the factorised form of $15a^3 - 5ab$ is $5a(3a^2 - b)$.

Question 17

Factorise completely.

(a)
$$a + b + at + bt$$

Answer:

Finally, we can factor out the common factor (1 + t) from the whole expression. So, the completely factorised form of the expression a + b + at + bt is: (a + b)(1 + t).

(b)
$$x^2 - 2x - 24$$

Answer:

First, we need to find two numbers that multiply to -24 and add to -2. Those numbers are -6 and 4. So, we can rewrite the expression as: x^2 - 6x + 4x - 24 Then, we can factor by grouping: x(x - 6) + 4(x - 6)

Finally, we can factor out the common binomial term to get the final answer: (x - 6)(x + 4)

Factorise completely.

$$12xy - 3x^2$$

Answer:

First, we can see that both terms have a common factor of 3x. So, we can factor out 3x from both terms to get:

3x(4y - x) So, the factorised form of $12xy - 3x^2$ is 3x(4y - x).

Question 18

Factorise completely.

$$ap + bp - 2a - 2b$$

Answer:

First, we can group the terms: (ap + bp) - (2a + 2b). Then, we can factor out common factors from each group: p(a + b) - 2(a + b).

Finally, we can factor out the common binomial (a + b) to get: (p - 2)(a + b). So, ap + bp - 2a - 2b = (p - 2)(a + b).