Q1.

(b)

- (a) apparatus diagram to show:
 - aluminium block (surrounded by insulation)
 - thermometer and immersion heater inside (or in contact with) aluminium
 - joulemeter connected to immersion heater or ammeter and voltmeter connected correctly around immersion heater
 - full credit can be given for a correct alternative method ignore position or absence of stopclock ignore position or absence of electric balance

•	

1

Level 3: The design/plan would lead to the production of a valid outcome. All key steps are identified and logically sequenced.	5-6
Level 2: The design/plan would not necessarily lead to a valid outcome. Most steps are identified, but the plan is not fully logically sequenced.	3-4
Level 1: The design/plan would not lead to a valid outcome. Some relevant steps are identified, but links are not made clear.	1-2
No relevant content	0
Indicative content	
measurements:	
 energy (transferred) using joulemeter or ammeter, voltmeter and stopclock 	
mass using electric balance	
 temperature change using thermometer 	
SHC calculation:	
E = mcθ	
or	
$c = \frac{E}{m\theta}$	
valid results:	
 repeat practical and calculate a mean 	
plot a graph of temperature against time and use linear	

	section of graph for temperature change	7
	 small (eg 10 °C) temperature change (so cylinder isn't significantly hotter than surroundings) 	
	safety:	
	immersion heater gets very hot so avoid touching (heating element) with bare hand	
(c)	some thermal energy transferred to the surroundings (not to the metal block) <i>allow not all of the energy (as measured by the joulemeter)</i> <i>transferred to the block</i>	6 <i>i</i> s 1
	(so) temperature increase not as high as it should be for the total energy transferred	
	allow justification using the equation: $C = \frac{E}{m\theta}$	1
		[11]
02		
QZ. (a)	0.1 (°C)	1
(b)	power = energy transferred / time allow $P = E / t$	
	allow $E = P \times t$	1
(C)	1050 / 300	1
	3.5 (W)	
	accept 3.5 (W) with no working shown for 2 marks	1
(d)	$1050 = m \times 4200 \times 0.6$	
		1
	$m = 1050 / (4200 \times 0.6)$	1
	m = 0.417 (kg)	1
	accept 0.417 (kg) with no working shown for 3 marks	Ĩ
(e)	any one from:	
	 energy used to heat metal pan (as well as the water) energy transfer to the surroundings (through the insulation) angle of solar radiation will have changed during investigation 	

angle of solar radiation will have changed during investigation
intensity of solar radiation may have varied during investigation

[8]

[6]

1

Q3.			
(a)	it would	d decrease the time	1
(b)	720 (J)	allow 1 mark for correct substitution ie 12×60 provided no subsequent step	2
(c)	decrea	ses	1
	decreas	Ses	1
	decreas	Ses	
		more than one tick in any row negates the mark	1
0 4			
Q4. (a)	energy	required to raise the temperature of a substance by 1 °C accept heat for energy	
	unit ma	ss / 1 kg	1
(b)	(i) 7	140 000 (J) allow 2 marks for a correct substitution, ie $E = 20 \times 420 \times 850$ provided no subsequent step 850 gains 1 mark if no other mark awarded	3
	(ii) pa st	articles in the air have more (kinetic) energy than the particles in the teel	c
		allow particles in the air have a greater speed.	1
	st pa	t eel articles vibrate (about fixed positions)	1
	ai pa	ir articles move freely	1
	(ii) th	e most energetic particles accept molecules for particles throughout accept the fastest particles	

C

		have enough energy to escape from (the surface of) the water	1
		therefore the mean energy of the remaining particles decreases accept speed for energy	1
		as energy decreased, temperature has decreased	1 [12]
05			
(a)	anv	r two from:	
()	•	wood falls off ropes	
	•	child falls off	
	•	wood hits child standing at side.	
		accept any reasonable suggestion	2
(b)	(i)	7 77	
(0)	(1)	1.11	1
		0.78	
		0.777 or 0.77 gain 1 mark	
		their mean value / 10 gains 1 mark	2
			-
	(ii)	use longer lengths (so longer times)	
		or do both with the same lengths (so comparison can be made)	
		timing more than 10 cycles is insufficient	
			1
	(:::)	A value of k from table A	
	(111)	k values 3 969	
		4.056	
		4.05	
		$k = T^2 / l$	
		allow full credit for an equivalent correct method	
		eg. allow inverse of	
		$k = l / T^2 = 0.25$	1
			1
		1 value of k from table 5	
		k values 4	
		4.046	
		allow if average time for 10 cycles used	
			1
		conclusion that matches student's results	
			1
	_		
(c)	720) N	

180 = F × 0.25 gains **2** marks

Q6.

(a)	20 790 (J)			
		an answer of 21 000 (J) (2 s.f.) gains 2 marks		
		allow 1 mark for correct		
		substitution:		
		ie $E = 0.33 \times 4200 \times 15$ provided no subsequent step shown	2	
(b)	temperatu	re	1	
			1	
(c)	(top pan) I	palance		
		accept scales		
		do not accept a scale		
		do not accept weighing scales		
		do not accept newtonmeter		
		do not accept spring balance	1	
			-	
(d)	dark / blac	ck / (dark) grey		
			1	
	convectior	1		
		correct order only		
			1	
(\mathbf{a})	(i) oroo	tod		
(e)	(I) crea			
		accept made	1	
	(ii) incre	ases		
			I	101
				١Ŏ

Q7.

(a) 4200

allow **2** marks for correct substitution ie $6930 = 0.330 \times c \times 5.0$ answers of 1050 or 840or correctly calculated answer from correct substitution of incorrect temperature change or identification of temperature change ie 5 °C gain **1** mark

J / kg°C

accept J / kg K

(b)	(in a metal) free electrons	
	to gain full credit the answer must be in terms of free electrons	
		1
	gain kinetic energy	
	accept move faster	1
		1
	(free electrons) transfer energy to other electrons / ions / atoms	
		1
	by collision	
	allow a maximum of 2 marks for answers in terms of atoms / ions / particles	
	gaining kinetic energy or vibrating faster / more	
	transferring energy by collisions	1
(\mathbf{c})	(air) particles spread out	
(0)		1
	(which causes the) air to become less dense / expand	
	do not accept particles become less dense	1
		1
	(so the) warm air rises	
	particles rise is insufficient	
		1
(d)	large surface area	
	ignore references to type of metal or external conditions	1
	black / dark (colour)	
		1
		[13]
^ °		
Qo. (a)	dark matt	
()		1
	light shiny	
		1
(b)	B A C	1
		Ŧ
	biggest temperature difference (80 °C) dependent on first mark	
		1
(c)	(i) (the can that is) dark matt	

			1	
		best absorber (of infra	red radiation)	
	(ii)	any three from:		
		 same area / sha surrounding tem same surface ur same position in 	pe of can perature is the same for all cans nderneath cans i the room	
			3	
(d)	fox			
	sma	er ears	1	
	thick	er fur		
			1	
	thes	minimise energy trans	sfer ret 2. marks	
		dependent on m	1	[4:0]
				[12]
Q9.				
(a)	(i)	70 accent + half a s	sauara	
		(69.8 to 70.2)	1	
	(ii)	15	1	
	(11)	accept 14.6 to 1	5.4 for 2 marks	
		allow for 1 mark	70 - 55 holf a agruption	
		$eci nom (D)(I) \pm 1$	nali a square 2	
	(iii)	С		
		biggoot drop in tompo	roturo durina o civon timo	
		accept it has the	esteepest gradient this is a dependent	
			1	
	(iv)	starting at 70 °C and b must be a curve up to	elow graph for C at least 8 minutes	
			1	
	(v)	because 20 °C is roon accept same ter	n temperature	
			1	
(b)	(i)	6720	with an without working sains 2 marks	
		6 720 000 gains	an or without working gains 3 marks	

	correct substitution of $E = 0.2 \times 4200 \times 8$ gains 2 marks	
	correct substitution of $E = 200 \times 4200 \times 8$ gains 1 mark	3
(ii)	the fastest particles have enough energy	
	accept molecules for particles	1
	to escape from the surface of the water	
		1
	therefore the mean energy of the remaining particles decreases	
	accept speed for energy	1
	the lower the mean energy of particles the lower the temperature (of the water)	
	accept speed for energy	1
		 [14]

Q10.

 Marks awarded for this answer will be determined by the Quality of Written Communication (QWC) as well as the standard of the scientific response. Examiners should also refer to the information in the <u>Marking guidance</u>.

0 marks

No relevant content.

Level 1(1-2 marks)

There is a basic explanation of **one** feature **or**

a simple statement relating reduction in energy transfer to **one** feature.

Level 2(3-4 marks)

There is a clear explanation of **one** feature **or** a simple statement relating reduction in energy transfer to **two** features.

Level 3(5-6 marks)

There is a detailed explanation of at least **two** features or a simple statement relating reduction in energy transfer to all **four** features.

Examples of the points made in response

extra information

accept throughout: heat for energy loss for transfer

plastic cap:

- plastic is a poor conductor
 accept insulator for poor conductor
- stops convection currents forming at the top of the flask so stopping

energy transfer by convection

- molecules / particles evaporating from the (hot) liquid cannot move into the (surrounding) air so stops energy transfer by evaporation
- plastic cap reduces / stops energy transfer by conduction / convection / evaporation

glass container:

- glass is a poor conductor so reducing energy transfer by conduction
- glass reduces / stops energy transfer by conduction

vacuum:

- both conduction and convection require a medium / particles
- so stops energy transfer between the two walls by conduction and convection
- vacuum stops energy transfer by conduction / convection

silvered surfaces:

- silvered surfaces reflect infrared radiation
 accept heat for infrared
- silvered surfaces are poor emitters of infrared radiation
- infrared radiation (partly) reflected back (towards hot liquid)
- silvered surfaces reduce / stop energy transfer by radiation

(b)	(the ears have a) small <u>surface</u> <u>area</u>	
	ears are small is insufficient	1
	as reducing an arguing distant (transformed (from the four)	-

so reducing energy radiated / transferred (from the fox) accept heat lost for energy radiated do **not** accept stops heat loss

[8]

6

1

Q11.

(a)	conduction	1
(b)	(i) there is a bigger temperature difference between the water and the surrounding air <i>accept the water is hottest / hotter</i>	1
	so the transfer of energy (from hot water) is faster	

accept heat for energy

1

	(ii)	120			
		allow 1 mark for converting kJ to J correctly, le 4 032 000			
		or			
		correctly calculating temperature fall as 8°C			
		or			
		allow 2 marks for correct substitution, ie 4 032 000 = $m \times 4200 \times 8$			
		answers of 0.12, 19.2 or 16.6 gain 2 marks			
		answers of 0.019 or 0.017 gain 1 mark		2	
	(:::)	water stove bet for longer		3	
	(111)	water stays not for longer		1	
		so heater is on for less time			
		accept so less energy needed to heat water		1	
		so cost of the jacket is soon recovered from) lower energy costs / bills			
		accept short payback time		1	
					[9]
2					
∠. (a)	(i)	2.1			
		correct answer only	1		
	(ii)	3 15	-		
	(11)	or			
		their (a)(i) \times 1.5 correctly calculated			
		$ie 2.1 \times 1.5$			
		or			
		their (a)(i) \times 1.5	2		
		kilowatt-bour	4		
		accept kWh			
		or			
		a substitution 2100 × 5400 scores 1 mark			
		2100 × 5400 incorrectly calculated with answer in joules			
		scores 2 marks			
		scores 2 marks an answer of 11 340 000 scores 2 marks			

Q12.

- (iii) most (input) energy is usefully transformed accept does not waste a lot of energy accept most of the output / energy is useful do **not** accept it does not waste energy
- (b) the room is losing energy / heat

at the same rate as the heater supplies it this mark only scores if the first is scored do **not** accept heater reaches same temperature as room / surroundings rate of heat gain = rate of heat loss scores both marks

[7]

1

1

1

1

2

1

1

Q13. (a)

$-(\times)-$	

accept 'the humpback bridge' symbol accept circle with cross but no lines if more than one symbol drawn, no mark unless lamp is labelled

(b) (i) 24

2800

- allow **1** mark for correct substitution ie 120 allow **1** mark for an answer 1440 ignore any unit
- (ii) watt

larger than accept correct indication inside the box accept an answer meaning larger than ie greater than

Q14.

(c)

newton or N

metre **or** m

joules **or** J

all three correct 2 marks two or one correct 1 mark[2]

[5]