

- 1 During the electrolysis of molten potassium chloride, what is made at the cathode?
 - A chlorine
 - B hydrogen
 - C potassium
 - D potassium hydroxide

Your answer	

2(a) Meena electrolyses copper sulfate using copper electrodes.

Look at the diagram. It shows the apparatus she uses.

She investigates the change in mass at each electrode before and after the electrolysis.

Look at Meena's method.

[1]

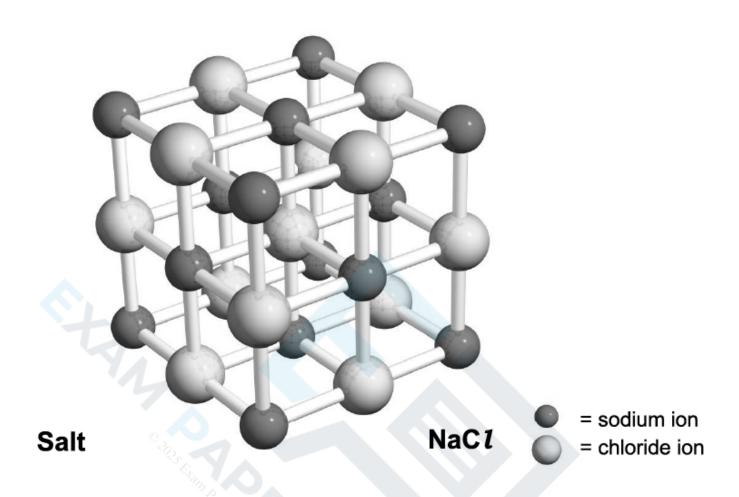
- 1. Using a balance, measure the mass of the copper cathode and copper anode.
- 2. Set up the apparatus and run the electrolysis for 30 seconds.
- 3. Remove the copper cathode and the copper anode and immediately place them on the balance and measure their masses again.

	What improvements could you make to Meena's experiment?	
	Explain your answers.	
		[4]
(b)	Meena finds that	
	 the cathode gains mass the anode loses mass. 	
	Explain these observations in terms of the reactions at each electrode.	
		<u>[2]</u>

3	Molten aluminium oxide contains A^{3+} and O^{2-} ions.
	EXAM DADEDS DDACT

The electrolysis of molten aluminium oxide makes aluminium and oxygen.

(i)	Write the balanced symbol equation for the electrode reaction that happens at the cathode.	
	Use the symbol e ⁻ to represent an electron.	
		_[1]
(ii)	Solid aluminium oxide cannot be electrolysed.	
	Explain why.	
		_[1]


4(a) Javier is electrolysing a solution of sodium chloride, NaCl, in water, H₂O.

Complete the list of ions present in sodium chloride solution.

Positive ions (cations)	Negative ions (anions)
Na [†]	
**************************************	OH⁻

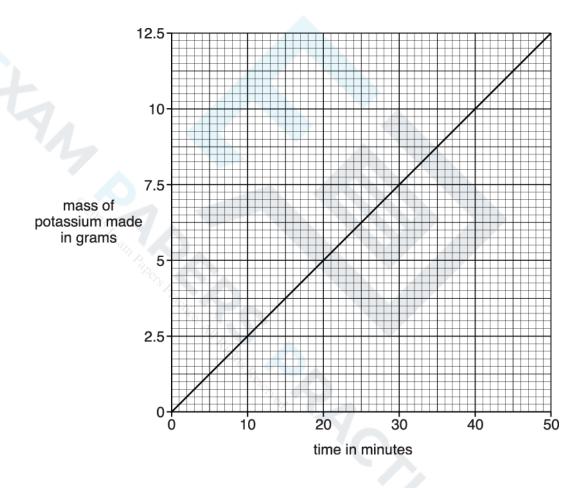
[2]

The CI-Na-CI length in a crystal of sodium chloride is 0.564 nm.

What is the volume of this cube in nm³? Give your answer to 3 significant figures.

5(a) Molten (liquid) salts can be electrolysed.

Molten (liquid) potassium chloride can be electrolysed.


It makes potassium.

Sanjay investigates the mass of potassium made when molten potassium chloride is electrolysed.

He always uses a current of 10.3 amps.

He changes how long, in minutes, he does the electrolysis.

Look at the graph of his results.

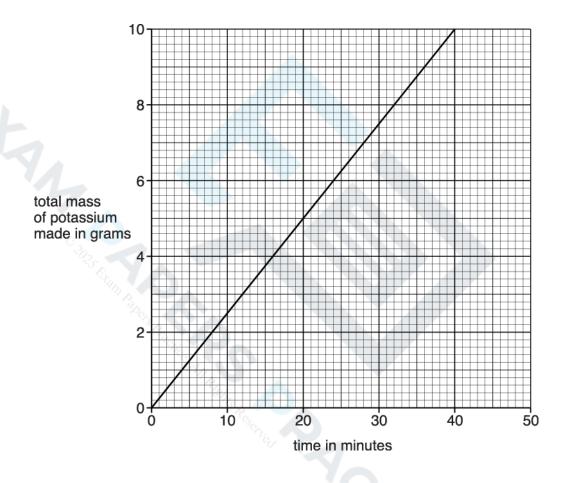
(i	i)	What mass	of	potassium	is	made	after	30	minutes	s?

							(ı
_								

[1]

	(ii) Sanjay electrolyses molten potassium chloride for 300 minutes.	
	EXAM PAPERS PRACTICE	
	Predict the mass of potassium made.	
		[1]
		1.1
(b)	Sanjay does an electrolysis experiment using potassium bromide.	
	Solid potassium bromide cannot be electrolysed.	
	Molten (liquid) potassium bromide can be electrolysed. It makes two products.	
	(i) Write down the names of the two products made during this electrolysis.	
		<u>[2]</u>
	(ii) Explain why molten (liquid) potassium bromide can be electrolysed.	
		[1]

EXAM PAPERS PRACTICE

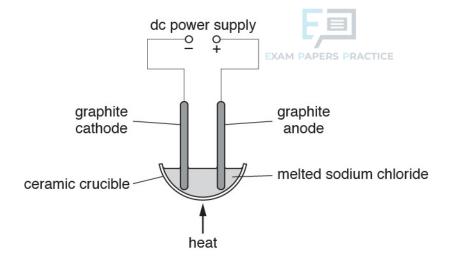

Potassium is made.

Manjit investigates the mass of potassium made when molten potassium chloride is electrolysed.

She always uses a current of 10.3 amps.

She does the electrolysis for different lengths of time.

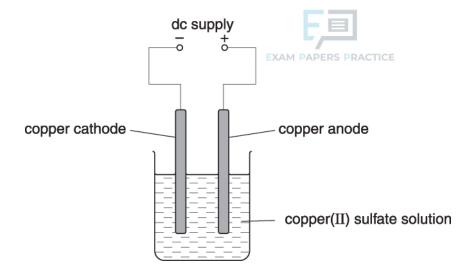
Look at the graph of her results.



What is the total mass of potassium made in 30 minutes?

_____9

[1]


(b)	Manjit electrolyses molten potassium chloride for 120 minutes.	
	She uses a current of 20.6 rather than 10.3 amps.	
	Predict the mass of potassium made.	
		<u>[2]</u>
7	Ethanol, propanol and butanol are alcohols.	
	Look at the displayed formula of ethanol.	
	H—C—C—O—H 	
	Ethanol is made by the hydration of ethene, C ₂ H ₄ .	
	Write the word equation for this reaction.	F 4 7
		[1]
8(a)	This question is about electrolysis.	
	Joel's teacher investigates the electrolysis of melted sodium chloride.	
	Look at the apparatus he uses.	

Sodium chloride contains sodium ions, Na^+ , and chloride ions, $\mathrm{C}\varGamma$.

(b) Joel passes an electric current through copper(II) sulfate solution.

(i) Chl	loride ions, $C\varGamma$, react at the anode.	
Ch	nlorine gas, Cl_2 , and electrons are the products.	
Wı	rite a balanced symbol equation for the electrode process at the anode.	
Us	se e ⁻ to show an electron.	
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	[2]
(ii) Sol	lid sodium chloride does not conduct electricity, but melted sodium chloride does conduct electricity.	
Ex	xplain why.	
	We have	[2]

Joel does four experiments.

Joel changes either the time or the current.

Copper is made at the cathode.

He measures how much copper is made in each experiment.

Experiment	Current in amps	Time in minutes	Mass of copper made in g
1 °20	0.15	5	0.20
2	0.30	5	0.40
3	0.15	10	0.40
4	0.60	10	1.60

Joel concludes that the amount of copper made is **proportional** to both the current and to the time.

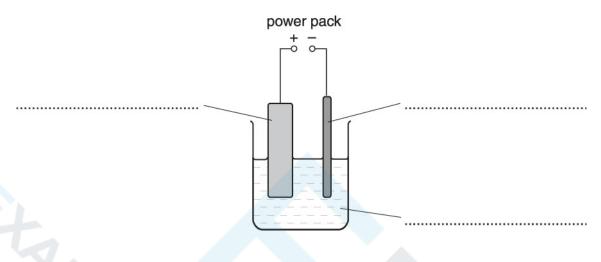
Show how the results support this conclusion.	
	 [2]

9(a) During the electrolysis of sodium bromide solution, bromide ions make bromine molecules.

EXAM PAPERS PRACTICE

Complete the equation for this reaction.

......
$$Br^- - \dots e^- \rightarrow Br_2$$


(b)	Explain why this reaction is an example of oxidation .	[1]
		 [1]

10 Pure copper is used for electrical wiring.

The copper is purified by electrolysis.

The diagram shows the apparatus used to purify copper.

Complete the labels on the diagram.

Choose your answers from the list.

copper sulfate solution

dilute sulfuric acid

impure copper anode

impure copper cathode

pure copper anode

pure copper cathode

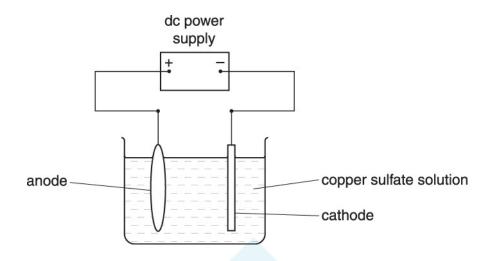
11	Explain one advantage and one problem of recycling copper.	[2]
		 [2]

Electrolysis of sodium chloride solution involves these particles:

$$C\hat{I}'$$
 CI_2 H^+ H_2

Some of the particles are ions.

Some of the particles are molecules.


Finish the table.

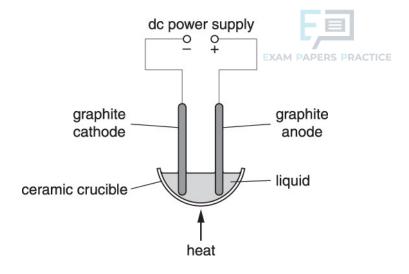
Two particles have been done for you.

lons	Molecules
OH?	H ₂
CA AND THE STATE OF THE STATE O	

Look at the diagram. It shows the apparatus used to purify copper.

thermal decomposition

What is the name of the process used to purify copper?


Choose from the list.

crystallisation
electrolysis
eutrophication
neutralisation

14(a) Joel's teacher investigates the electrolysis of four liquids.

The first liquid he uses is melted sodium chloride.

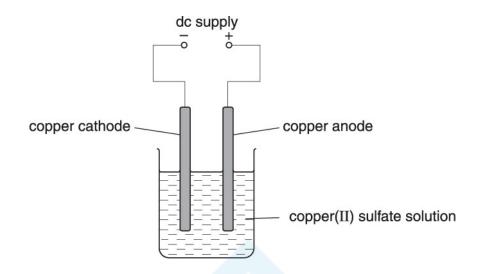
Look at the apparatus he uses.

The table shows the products made.

Liquid	Product at cathode	Product at anode
lead bromide	lead	bromine
lead iodide	lead	iodine
sodium chloride	sodium	
potassium iodide		iodine

[2]

- (i) Complete the table.
- (ii) Sodium chloride contains sodium ions, Na+, and chloride ions, Cl –.


 Solid sodium chloride does not conduct electricity, but melted sodium chloride does conduct electricity.

 Explain why.

(b) Joel passes an electric current through copper(II) sulfate solution.

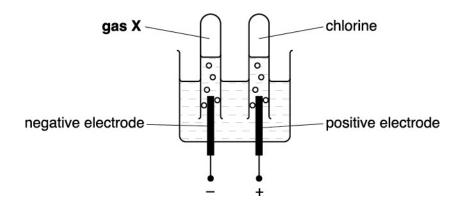
EXAM PAPERS PRACTICE

Joel does four experiments.

Joel changes either the time or the current.

Copper is made at the cathode.

He measures how much copper is made in each experiment.


Experiment	Current in amps	Time in minutes	Mass of copper made in g
1	0.15	5	0.20
2	0.30	5	0.40
3	0.15	10	0.40
4	0.60	10	1.60

Joel concludes that the amount of copper made is **proportional** to both the current and to the time.

onow now the results support this conclusion.	
	[2]

EXAM PAPERS PRACTICE

Look at the diagram. It shows the apparatus she uses.

	What is the name of gas X?	
	Choose your answer from the list.	
	carbon dioxide	
	hydrogen	
	hydrogen chloride	
	oxygen	
	answer	[1]
(b)	It is important to use inert electrodes in the electrolysis of sodium chloride solution.	
	Explain why.	
		 [1]

16	Durii	ng the electrolysis of molten lead bromide, bromine is made at the anode.	
		EXAM PAPERS PRACTICE	
	Whic	ch half equation shows that bromine is made at the anode?	
	Α	$2Br^- \rightarrow Br_2 + 2e^-$	
	В	$Br^- \rightarrow Br + e^-$	
	С	$Br_2 + 2e^- \rightarrow 2Br^-$	
	D	$2Br^- \rightarrow Br_2 - 2e^-$	
	Your	r answer	[1]
17	Duri	ng the electrolysis of molten copper chloride, what is made at the positive electrode (anode)?	
	Α	Chloride	
	В	Chlorine	
	С	Copper	
	D	Hydrogen	
	Your	r answer	[1]
18	An a	aqueous solution of concentrated sodium chloride is electrolysed. Bubbles are seen at the positive electrod	de.
	Wha	at is the name of the substance produced at the positive electrode?	
	^	Chloring	
	A	Chlorine	
	В	Hydrogen	
	С	Sodium	

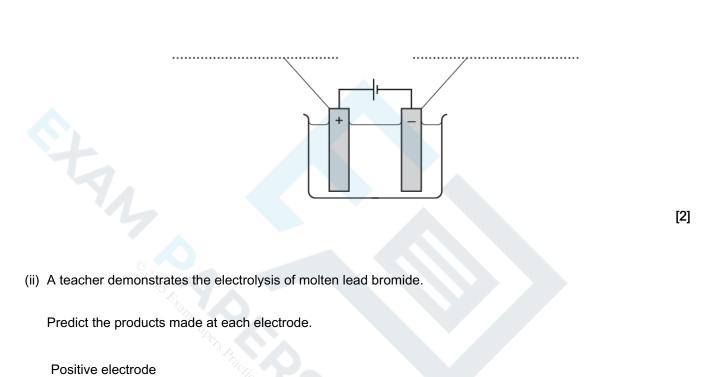
[1]

D

Oxygen

Your answer

EXAM DADEDS DDACTICE


anode

(i) Look at the diagram of an electrolysis experiment.

Complete the diagram using the words in the list.

cathode

You may use each word once, more than once or not at all.

battery

[2]

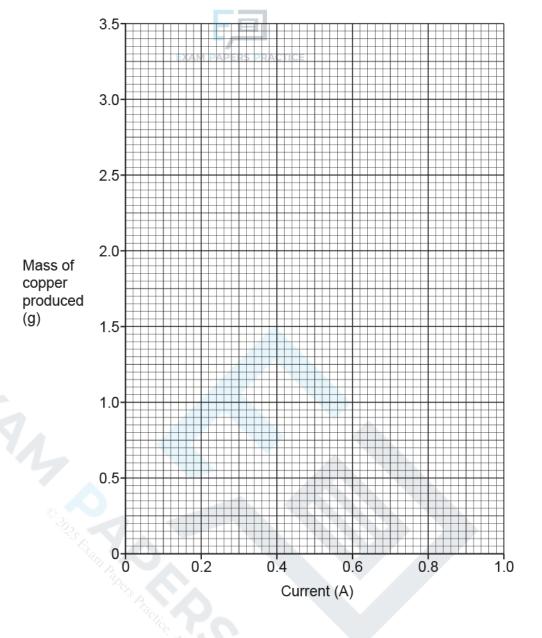
(iii) Molten lead bromide contains lead ions, Pb2+, and bromide ions, Br-.

What is the formula for lead bromide?

Tick (✓) one box.

Negative electrode

PbBr	EXAM PAPERS PRACTICE
PbBr ₂	
Pb ₂ Br	
Pb ₂ Br ₂	


[1]

(b) The student investigates the mass of copper made during the electrolysis of aqueous copper chloride.

The student varies the electric current and passes the current for the same time in each experiment. Here is a table of their results.

Current (A)	Mass of copper produced (g)
0.2	0.6
0.4	1.3
0.6	1.8
0.8	2.5
1.0	3.1

(i) Plot a graph of the student's results and draw a line of best fit.

(ii) Use your graph to estimate the current needed to make 2.25 g of copper.

Current = A [1]

[3]

Mass	s of copper produced = g [2]
This question is about structure and bonding.	
Look at the two structures, A and B , in Fig. 22.1 .	
Cation	
- + - + - + - + - + - + - + - + - + - +	Atom
A THE STATE OF THE	Fig. 22.1
(i) Identify the bonding in structure A.	
Explain your answer.	
Bonding	
Explanation	

(iii) Use your graph, and a calculation, to find the mass of copper that would be produced using 15 A.

Give your answer to 2 significant figures.

20

EXAM PAPERS PRACTICE

	(ii) Explain why structure B has a high melting point.	
		[2]
	(iii) Explain why structure B does not conduct electricity.	
		[1]
21	This question is about structure and bonding.	
	Cation Anion Fig. 16.1. Fig. 16.1	
	(i) Identify the bonding in structure A . Explain your answer.	
	Bonding	

[2]

(ii) Explain why structure B has a high melting point.

[2]

(iii) Explain why structure **B** does **not** conduct electricity.

Explain why metals are malleable.

(b) Look at the structure of a metal in Fig. 16.2. Metals are malleable, which means they can be hammered or pressed into shape without breaking or cracking.

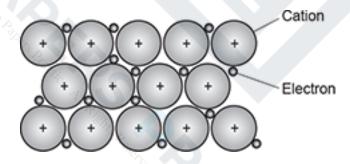
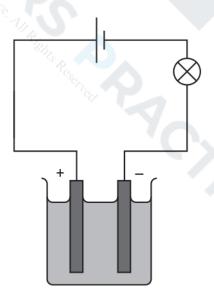


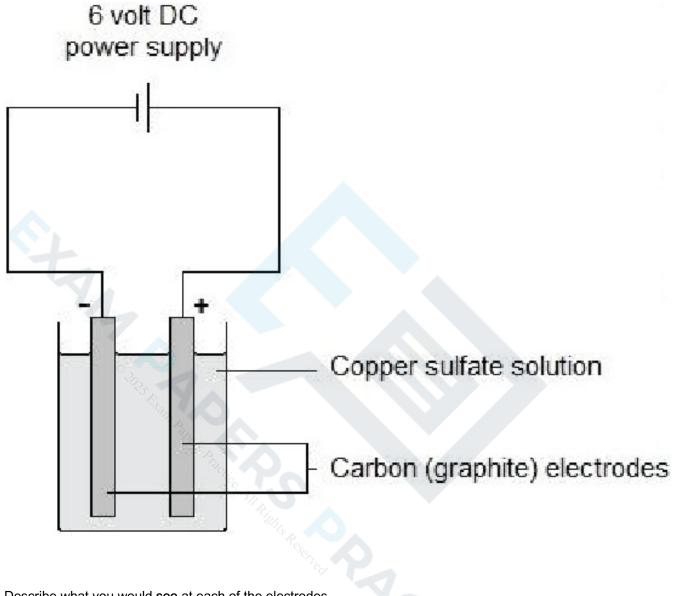
Fig. 16.2


The electrolysis products of ionic	compounds can be different in th	e molten or aqueous states.	
Suggest why.			
A student investigates the closes.			
A student investigates the electro	lysis of aqueous solutions of ionic	compounds.	
		 	
Aqueous solution	Product at cathode	Product at anode	
Copper sulfate	Copper	Oxygen	
Zinc bromide	Hydrogen	Bromine	
Zino bronniac			
Copper chloride	Copper	Chlorine	
	Copper Hydrogen	Chlorine Oxygen	
Copper chloride			
Copper chloride	Hydrogen	Oxygen	
Copper chloride Sulfuric acid	Hydrogen	Oxygen	
Copper chloride Sulfuric acid	Hydrogen	Oxygen	
Copper chloride Sulfuric acid	Hydrogen	Oxygen	
Copper chloride Sulfuric acid Write the formulae of the ions tha	Hydrogen t are present in aqueous copper s	Oxygen sulfate solution.	
Copper chloride Sulfuric acid	Hydrogen t are present in aqueous copper s	Oxygen sulfate solution.	
Copper chloride Sulfuric acid Write the formulae of the ions tha	Hydrogen t are present in aqueous copper s	Oxygen sulfate solution.	
Copper chloride Sulfuric acid Write the formulae of the ions tha	Hydrogen t are present in aqueous copper s	Oxygen sulfate solution.	
Copper chloride Sulfuric acid Write the formulae of the ions tha	Hydrogen t are present in aqueous copper s	Oxygen sulfate solution.	
Copper chloride Sulfuric acid Write the formulae of the ions tha	Hydrogen t are present in aqueous copper s	Oxygen sulfate solution.	
Copper chloride Sulfuric acid Write the formulae of the ions tha	Hydrogen t are present in aqueous copper s	Oxygen sulfate solution.	

(d)	Electroplating is used to cover a metal with another metal.
	(i) Which aqueous solution would you use to electroplate a metal spoon with copper using a safe method?
	Tick (✓) one box.
	Copper sulfate
	Zinc bromide
	Copper chloride Copper chloride
	Sulfuric acid
	[1]
	(ii) Give two reasons for your answer to (i).
	1
	2
	Teta Pictoria Pictori
	[2]

	EXAM PAPERS PRACTICE	
(i)	Predict the product made at the anode when sodium sulfate solution is electrolysed.	
		F41
		[1]
(ii)	Hydrogen gas is made at the cathode instead of sodium metal.	
	Explain why.	
		F 4 1
		[1]
(iii)	Write the balanced half equation for the formation of hydrogen gas.	
	Use e ⁻ to represent an electron.	

[2]


23 * A student investigates the electrolysis of potassium bromide solution.

He notices that different products are formed at each electrode.
EXAM PAPERS PRACTICE
Explain the formation of the products during the electrolysis of potassium bromide solution.
·
·

[6]

EXAM PAPERS PRACTICE

Look at the diagram of the apparatus used in this electrolysis.

Describe what you would see at each of the electrodes.

At the anode:	
At the cathode:	

[2]

END OF QUESTION PAPER