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1 Hyperbolic functions

Definitions and graphs

. 1 _ 1 _ sinh x (e¥—e™)
sinhx = -(e*—e™* coshx= =(e*+e™* tanhx = =
2 ( ) 2 ( + ) cosh x (eX+e™X)
31y y 3ry
4
2 2
; =sinhx 3 . y=tanhx
X 2 X
-2 -1 1 2 y=coshx -2 - 1 2
-1 X -1
2 12

You should be able to draw the graphs of cosech x, sech x and coth x from the above:

cosech X sech X coth x

37y
y=cosechx 2 ) y=cothx
y=sechx
1 / 1

X

N

Addition formulae, double angle formulae etc.

The standard trigonometric formulae are very similar to the hyperbolic formulae.

Osborne’s rule

If a trigonometric identity involves the product of two sines, then we change the sign to write
down the corresponding hyperbolic identity.

Examples:

sin(A+B) = sinAcosB + cosAsinB
= sinh(4 + B) = sinhAcoshB + coshAsinhB no change
but cos(A+ B) = cosAcosB — sinAsinB

= cosh(A+ B) = coshAcoshB + sinhAsinh B
and 1+tan’A = sec’A

product of two sines, so change sign

— 1-tanh?A = sech’A tan? A = %, product of two sines, so change sign



Inverse hyperbolic functions

Graphs

Remember that the graph of y = f~1(x) is the reflection of y = f(x) in y = x.

y = arsinh x y = arcosh x y = artanh x
_ \ 31y = 31y K
’ )}/=sinh y=x \\ = y=x
2 it N 2 s 2 ’
Ve \ / Ve
[ h . / s
1 4~ y=arsinhx y=coshx ] // =arcoshx " S=tanhx
X X
-3 -2 -1 1 2 3 -3 -2 -1 // 1 2 3 -3 -2 -1 1
7/ -1 7 - 77 -1
7/ /7 /
7/ Ve 7/
// -2 // -2 // -2
s 7 7 y=artanhx
s -3 Vs -3 ' .
Notice arcosh x is a function defined so that arcosh x > 0.
= there is only one value of arcosh x.

However, the equation cosh z = 2, has two solutions, +arcosh 2 and —arcosh 2.

Logarithmic form

1)

U

U

But

U

2)

b Ul

=

y = arsinh x
sinhy = %(ey —eY)=x
e?y —2xe¥ —1=0

2x+VaxZ+4
ey = TR — 4 VX241 or

2

e¥>0 and x—Vx2+1 <0
y = arsinh x = In(x + Vx2 + 1)

x—vVx2+1
= e¥=x+Vx2+1

only

y = arcosh x
coshy = %(ey+e‘y) =X
e?y —2xe¥ +1=0

2x+Vax2—4
eV = - = x++Vx2-1

y =arcoshx = In(x +Vx2—1) or In(x —Vx%—1)

both roots are positive

It can be shown that In(x — Vx2 —1) = —In(x + Vx2 - 1)

=

y =arcoshx = +In(x +Vx2 —1)

But arcosh x is a function and therefore has only one value (positive)

= y = arcosh x = ln(x+\/x2—1) (x=1)
3) Similarly artanx = %ln (i—i) (Ix] < 1)



Equations involving hyperbolic functions

It would be possible to solve 6sinhx — 2coshx = 7 usingthe Rsinh(x — )
technique from trigonometry, but it is easier to use the exponential form.

Example:

Solution:

=

Solve 6sinhx — 2coshx = 7

6sinhx — 2coshx = 7

6 X%(ex —e™) -2 x%(ex +e*)=7
2e?* — 7e¥* — 4 =0
Re*+1)(e*—4)=0

e* = —% (not possible) Or 4

Xx=1In4

In other cases, the ‘trigonometric’ solution may be preferable

Example:
Solution:
=

=

Solve cosh 2x+5sinhx-4=0

cosh 2x +5sinhx-4 =0

1+2sinh®x +5sinhx — 4=0 note use of Osborn’s rule
2sinh®x +5sinhx - 3=0

(2sinh x = 1)(sinhx + 3) =0

sinhx = % or —3

x =arsinh 0.5 or arsinh (-3)

x = ln(O.S +v0.5%2 + 1) or ln((—S) +./(=3)% + 1) using log form of inverse

x=In(22) or In(vi0 - 3)



2  Further coordinate systems

Ellipse
Cartesian equation
xZ y2

_ b _
—+ =1 xlaz+y?lb?=1

Parametric equations

x=acosf@, y= bsinf -a a

(ae*,O)

T
8*
(=]

-

Fociat S (ae, 0) and S’ (-ae, 0)
a x=—ale -b x=ale
Directrices at x = + -

Eccentricity e <1, b%=a?(1-¢?)

An ellipse can be defined as the locus of a point P which moves so that PS = e PN,
where S is one of the foci, e <1 and N lies on the corresponding directrix.

%
S\

x=-ale x=ale

This is true for either focus with the corresponding directrix.
= PS = ePN and PS’= ePN”

= PSS+ PS"=¢e(PN + PN”) =eNN”

= PS+PS’=e=~=2a

This justifies the “string method’ of drawing an ellipse.



Hyperbola

Cartesian equation \\x=—bx/a

~

x2 2
r_Y 1 ~

a? b2

‘y

x?/a?=y?/b?=1

Parametric equations

x =acoshf@, y= bsinhf
(x=asecf, y= btan6 also work)

X 47
Asymptotes —= + ”

Foci at S (ae, 0) and S’ (-ae, 0)

[y

x?/a?=y?/b?=1

P

x

71}

Directricesat x = + %

Eccentricity e >1, b®=a?e?-1)

x=—-ale

A hyperbola can be defined as the locus of a
point P which moves so that PS = e PN,
where S is the focus, e > 1 and N lies on the directrix.

2 x2

x=ale

y _
-zl

is a hyperbola with foci on the y-axis,

Parabola N
Cartesian equation

y? = 4ax

Parametric equations
x = at? y= 2at
Focusat S (a, 0)

Directrixat x=—a

A parabola can be defined as the locus of a point P which moves so that PS = PN,

where S is the focus, N lies on the directrix and the eccentricity e = 1.

w*



Parametric differentiation

d d dx
From the chain rule v _ Y =
ag dx dao

dy dy

dx dx dx dx

do dt

Tangents and normals

It is now easy to find tangents and normals.
Example:

using any parameter.

T

. 1 . 3
Solution: When 6 = g cos6 = ~ and sin6 = g
5
= X=2 ¥y= 4v3
d dy 8 cos 0 8
30 CoS -
and =< = 40— ~— = — when =12
dx = —5sin @ 5v3 3

= gradient of normal is 53

5V3

= equation of normal is y — 43 = 5
39v3

= 5\/§x—8y+T—O

=

Sometimes normal, or implicit, differentiation is (slightly) easier.

Example:
where t =3.
Solution:  When t =3, x=18and y=2.

d .
ﬁ can be found in two (or more!) ways:

—6t72

dy
dy _ ar  _
dx dx 6
dt

dy -1 -1
—_— == when t = 3
dx t2 9

= equation of tangentis y—2 = %1 (x — 18)

= x+9 -3 =0

Xy = 36 =
dy _ -36
dx  x2
dy _ -36 _ -1
dx 182 9 '

Find the equation of the normal to the curve given by the parametric equations
Xx=5cos 8, y= 8sin @ atthe point where 6

Find the equation of the tangent to xy =36, or x=6t, y = % , at the point

when x = 18



Finding a locus

First find expressions for x and y coordinates in terms of a parameter, t or &, then
eliminate the parameter to give an expression involving only x and y, which will be the
equation of the locus.

2 2
Example: The tangent to the ellipse % + % = 1, at the point P, (3 cos @, 4sin @),
crosses the x-axis at A, and the y-axis at B.

Find an equation for the locus of the mid-point of AB as P moves round the
ellipse, or as @ varies.

a 4 4cos 0
.. 4y G _ cos
Solution: dx dx —3sin @
dae
. . . 4cos @
= equation of tangentis y —4sinf = EPyen (x —3cos0)

=  3ysinf + 4xcosf = 12 cos’d +12sin’0 =12

Tangent crosses x-axisat A when y=0, = Xx =

cos 6’
and crosses y-axisat B when x=0, = y = =y
. . . 4
= mid-point of AB is (2cose’ ZSinG) < (XY)
Here X = > and Y = _2
2cos@ sin @
6 5 d siné :
- = — -
Ccos 2X an Sin %
. . 9 4
= equation of the locusis — + — =1 since cos?@ + sin?@ = 1
4X2 Y?

o —+ = =1



3 Differentiation

Derivatives of hyperbolic functions

. 1 _
y =sinhx = E(e" —e™)
W o_ liox 4 omx) =
= == 2(e + e *) = cosh x
.. d(coshx) .
and, similarly, ——— = sinh x
dx
Also =tanhx = sinh x
Y coshx
d cosh x cosh x—sinh x sinh x 1
2 = = = sech? x
dx cosh? x cosh? x

In a similar way, all the derivatives of hyperbolic functions can be found.

fx) ()

sinh x cosh x 3\
cosh x sinh x all positive
tanh x sechx

coth x — cosech®x _
cosech x — cosech x coth x all negative
sech x —sech x tanh x

Notice: these are similar to the results for sin x, cos x, tan x etc., but the minus signs do not
always agree.

- - '] b 1
The minus signs are ‘wrong’” only for cosh x and sech x (= coshx).

Derivatives of inverse functions

y = arsinh x

. dy
= sinhy = x = COShya= 1
N dy 1 _ 1

dx  coshy J1+sinh?y

d(arsinh x) 1
— —

dx T V1+xZ



The derivatives for other inverse hyperbolic functions can be found in a similar way.

You can also use integration by substitution to find the integrals of the f'(x) column

f(x) f'(x) substitution needed for integration
. 1 , ) .
arcsin x > 1-sin“u=cos“u = use x=sinu
1-x
—1 2 i02
arccos x 1-cos“u=sin“u = use X=cosu
1—x2
1 2 2
arctan x s 1+tan“u=sec°u = use Xx=tanu
1+x2
arsinh x ! 1+sinh®u=cosh’u = use x=sinhu
V1+x2
1 2 k2
arcosh x 7 cosh“u—1=sinh“u = use x=coshu
x2_
1 2 2
artanh x 122 1-tanh“u= sech“u = use x=tanhu
-x
1 1+x 1 ) .
=In (—) partial fractions, see example below
2 1-x 1-x2

Ntthtf ! d—lfl + ! d—ll 1+x+
otethat J T 2 = 2] Txx T1=x ¥ 2™M1=x)" €

With chain rule, product rule and quotient rule you should be able to handle a large variety of
combinations of functions.



4 Integration

Standard techniques

Recognise a standard function

Examples: [secxtanx dx = secx +c

[sechxtanhx dx = —sechx +c

Using formulae to change the integrand

Examples: [tan’x dx = [sec’x—1dx = tanx—x+¢
[cos?x dx = = [1+4cos2x dx = l(x+lsin2x) +c
2 2 2

[sinh?x dx = %fcosth— ldx = %Gsinth — x) +c

Reverse chain rule

Notice the chain rule pattern, guess an answer and differentiate to find the constant.

Example: [ cos? xsinx dx “looks like’ uZZ—Z sotry u® < cos®x
% = 3c0s? X (-sinx) = —3cos?x sin X so divide by -3
=  [cos?xsinx dx = —%cos3x +c
Example: [ x% (2x3 — 7)* dx “looks like’ u‘*j—z sotry v < (2x3— 7)°
d(2x3-7)°

— = 512x3 — 7)* x 6x?% =30x%2(2x3 — 7)* sodivide by 30

= [x?2(2x3— 7)* dx = %(Zx3 -7’ +c

Example: [sech*xtanhx dx

= [ sech? x (sech x tanh x) dx “looks like’ u3Z—Z sotry u* =sech?x
d(sech* x
% = —4sech® x sechx tanhx so divide by -4
X

1
=  [sech®xtanhx dx = —sech®x+ c



Standard substitutions

f m dx bx =atanu better than bx = a sinh u when thereisno v
fﬁ dx bx = asinhu better than bx = a tan u when there is v

f az—:ozxz dx bx = atanhu or use partial fractions

f ﬁ dx bx = acoshu better than bx = a sec u when there is v

For more complicated integrals like
1 1
——— dx o |———— dx
fpx2+qx+r f\/px2+qx+r

complete the square to give p(x +a)? + b and then use a substitution similar to one of the
four above.

1
Example: fm dx 4x2 —8x—5 = 4(x2 —2x+1)—9 =4(x—1)2-9

f; dx
J4(x-1)2-9
Substitute 2(x-1) =3coshu = 2dx = 3sinhu du

3sinhu

1
f J9(cosh?2u-1) 2 du

1 1 2x—2
= =fdu =u+c :—arcosh(x—)+c
2 2 3

Nice trick

Example: dx

I—f L
) J@x—3)2 + 25

Solution: Substitute u=2x-3, = dx= % du

u
= % arsinh (—) +c, using standard formula

1,
[ = | ——— 14
- fmz“ 5

_ 1 . 2x_3
= Earsmh( c >+c

Important tip

dx, etc., is best done with the substitution

xn
/ Jaztx?
(i) u (or u?) = a® £ x% when n is odd,

or (ii) a trigonometric or hyperbolic function when n is even.



Integration inverse functions and In x

To integrate inverse trigonometric or hyperbolic functions and In x we use integration by parts

. dav
with —=0
dx
Example: Find [arctanx dx
. du 1
Solution: | = [arctanx dx take u =arctan x = — = 5
dx 1+x
dv
and — =1 = V=X
dx
= I:xarctanx—fxxL dx
1+4x2
1
= = [arctanx dx = xarctanx — Eln(1+x2)+c
Example: Find [arcoshx dx
. du 1
Solution: | = [arcoshx dx take u=arcoshx = — = —
dx xc=1
dv
and — =1 = V=X
dx
= I:xarcoshx—fxx; dx
Vx2—1

=  |I= [arcoshx dx = xarcoshx — Vvx2—-1 +¢



Reduction formulae

The first step in finding a reduction formula is often (but not always) integration by parts
(sometimes twice). The following examples show a variety of techniques.

Example 1: I, = [x"e* dx.

(@) Find a reduction formula,

(b) Find I,
(©) Find I,
Solution:

(@) Integrating by parts

u=x" = — = nx"1!
dx
d
and = = ¢ = v=eg’
dx
= L, = x"™e* — [nx"e* dx
= I, = x"e* — nl,_4
(b) Iy = [e* dx =¢" +¢C
(©) Using the reduction formula
I, = x*e* — 4I; = x%*e* — 4(x3e* — 3I,)

= x*e* — 4x3e*+ 12(x%e* — 2I))

= x%*e* — 4x3e* + 12x%e* — 24(xe* — 1)

= x%*e¥ — 4x3e* + 12x%e* — 24xe* + 24e* + ¢ since Iy = e* + ¢
Example 2: Find a reduction formula for I, = [tan"x dx.
Solution: I, = [tan"x dx = [tan" ?xtan®x dx
= I, = [tan™2x(sec’x — 1)dx

= [tan™?xsec’x dx — [tan" % x dx

1 _
= I, = — tan' % — s,



Example 3

Solution:

(i)

Example 4:

Solution:

() Find a reduction formula for 1, = f;/z sin®x dx.

(ii)  Use the formulato find I, = f;/zsinex dx

(i) By splitting sin"x = sin"™x sin x, we can differentiate sin"x reducing
the power, and we can integrate sin x

T T
I, = fo/zsin"x dx = fo/zsin"_lx sinx dx
. _ d . _
take u=sin""'x = d—l;:(n—l)smn %X €OS X
d .
and =~ = SinX = V = —COSX
dx
T[ b1
I, =[-cosx sin"‘lx]o/2 - fo/z—cosx (n —1) sin™ 2 x cos x dx

= 0+(n—1)f;/2c052x sin® ~2 x dx
= (n—l)f:/z(l—sinzx) sin "2 x dx
= (n—l)foﬂ/2 sin® "2 x dx — (n—l)f;/z sin™ x dx

L =(M-1)lh2 - (n-1)In

n—-1

Ih = Ino.
n
e = 21, = 2x31, = 2x3x2)
6 4 < 2 pRabn 0
5 (T 5T

le = —[721 dx = —.

6 16f0 32

Find a reduction formula for I, = [sec"x dx.

By splitting sec"x = sec"?x sec? x, we can differentiate sec"x reducing the
power, and we can integrate sec’ x

I, = [sec"x dx = [sec™ %x sec’x dx
n-2 du n-3
take u = sec’ " x = = (n—2) sec” ~°x sec x tan x

dv
and — = sec’X = V = tanx

I, = sec" *tanx — [tanx (n—2)sec™ 3xsecxtanx dx
= sec" *tanx — (n—2) [tan? x sec™ 2x dx
= sec" Xtanx — (n—2) [(sec? x — 1) sec™ %x dx
= sec" Xtanx — (n-2),, + (n—2)I,_,

(n—1DI, = sec" *xtanx + (n—2)1L,_,



Example 5: Find a reduction formula for 1, = f_Ol x™ (1 + x)? dx.

Solution:  We can differentiate X" reducing the power, and we can integrate (1 + x)?

d _
I, = [ x"(1+x)?dx ke u= ' = %= e

aw _ 2 -1 3
and ™ =(1+x)° = v—3(1+x)

0
= I, [x" X §(1 + x)3] - f_01 nx™1 x% (1 + x)3dx.
-1
Writing (1 + x)* = (1 + x)?(1 + x) allows us to write the integral in terms of 1,1 and I,.
3 1
Many reduction formulae need a fiddle like this —e.g. (1 — x2)z = (1 — x2)z (1 — x?)

= I, = 0 — gf_olx"_l (1 + %)% (14 x)dx

_ ne0 ,_ 2 n 0 2

= I, ——;f_lx”1(1+x) dx—;f_lx”(1+x) dx

n n
= Inz_gln—l —g[n

n+3 n
= g~ L, = - 3 I,_4
n
= In Y 4 n+3 1
i
Example 6: Find a reduction formula for I, = fo /2 xmcosx dx

Solution:  We can differentiate X" reducing the power, and we can integrate cos x

n:/z n n du n-1

I, = [,’% x"cosx dx take U= X" = — = nx

X

dv .

and —=cosx = Vv = sinx
dx
s s
= I, = [x"sinx]o/2 - nfo/z sinx X x™1 dx

Integrating by parts again will change the sin x to cos x, and reduce the power further.

take u= x"' = & = (n1)x"?
dx
dv .
and —=sinx = V = —COSX
dx
n Y T
= I, = (g) - n{[x"‘l(—cosx)]o/2 - fo/z—cosx X (n—1)x"2 dx}

= I, = (g)n — n{O + (n—1) fon/z x""2cos x dx}

= I, = (g)n =11,



Example 7: Find a reduction formula for I, = f S;?nrlx
Solution: I, = IM dx
sinx
_ fsin(n—Z)xcost+cos(n—2)xsin2x dx

sinx

_ f sin(n—2)x (1-2sin? x) +cos(n—2)x x2sinx cos x dx
B sinx
sin(n—2)x . .
= f EEre— dx + 2f cos(n — 2)x cosx — sin(n — 2)xsinx dx
= lh_2 + 2fcos(n—1)x dx using cos(A + B) = cos A cos B —sin A sin B
I I + = sin(n — 1)x
:> n - n-2 n—-1 A
Arc length
All the formulae you need can be remembered from this
diagram Q /

arc PQ ~ line segment PQ

oy
= (5s)° = (5%)* + (3Y)? 5s
os 2 Sy 2 /P
= (3) ~1+(3) Sx

andas ox —> 0
= (E)2=1+(dy)2 = o - 1+(d—y)2

dx E

= arclength = s = f 1+ (—) dx



Similarly (g—;)z ~ (%)2 + 1 = S = (E)z + 1 dy

nd (5) =~ () + (B

dx\? dy z
= [— - — v 2 2
= s f\/<dt) + (dt) dt or s j X4+ y4 dt

for parametric equations.

4

Example 1: Find the length of the curve y = gxg/z , from y ;
18 7
the point where x =3 to the point where x = 8. © y=(2/3)x"(3/2)//
Solution:  The equation of the curve is in Cartesian form so we use
12
_ dy\?
S = f 1+ (a) dx . 10
8
= 2, &y _ :
y = Bx 2 = dx \/E 4
= 5 = f38\/1+x dx | x
2 4 6 8 10
8
- Fa+o%] = Zxoyk - Zx @
3 3 3 3
= s = 122,
3
Example 2: Find the length of one arch of the cycloid x=a(t-sint), y=a(l - cost).

Solution:  The curve is given in parametric form so

weuse s = [/x2+ y? dt y

x=a(t-sint), y=a(1-cost)

x=a(t—sint), y=a(l-cost)

dx _ ay _ . ‘
= ” =a(l--cost), and " asint t=0 t=21

= %24 y% = a’(1-2cost+cos’t + sin’t) = 2a%(1 - cos t)
= JEF5E = af2(1-[1-zem2 (Y)]) = 2asin(E)

= s = fOZHZasin(%) dt

U
11

[—4a cos G)]zn = 4a - - 4a = 8a.



Area of a surface of revolution

A curve is rotated about the x-axis.

To find the area of the surface formed gs

between x =a and x = b, we consider a
small section of the curve, &, at a distance
of y from the x-axis.

When this small section is rotated about the a b
x-axis, the shape formed is approximately a
cylinder of radius y and length ¢.

The surface area of this (cylindrical) shape
~ 2m YOS

= The total surface area ~ Y2 2n yds

and, as & — 0, the area of the surface is A = f: 2ny ds.

And so A:f; ZnyS—idx or A:f(ony%dt

2 2 2
as _ d_y) 5 . (E) (d_y) -
We can use ™ 1+ (dx or - \/ N Rk =) as appropriate,

remembering that  (85)* = (5X)> + (8Y)?

Example 1: A sphere has radius r. Find the surface area of the sphere between the planes

Xx=a and x=h.

Y |
Solution:  The Cartesian form is most suitable here. X2+y?=r2 i I
|
A= f: 2ny % dx I I
X2+ 2 = 2 : : y
| |
dy _ dy  -x | I
= 2x+2ya—0 = _dx__y : !
| |
ds dy 2 |
and - o= 1 (E) x=a x=b

= A = f:27cy ’1+§—zdx = f:2n y2 4+ x2% dx

b
= fa 27r dx  since X2 +y*=r?

= A = [2mrx]% = 2mr(b—a) since r is constant

Notice that the area of the whole sphere is from a=-r to b =r giving
surface area of a sphere is 471



Historical note.

Archimedes showed that the area of a sphere is equal to
the area of the curved surface of the surrounding cylinder.

Thus the area of the sphere is

A =2xrh =4rr? since h=2r.

A

h=2r

=
S

r

Example 2: The parabola, x = at?, y = 2at, between the origin (t = 0) and P (t = 2) is rotated

about the x-axis.

Find the surface area of the shape formed.

Solution:  The parametric form is suitable here.

ds

A=) 2y = dt
w2 (&) + (&)
dx dy

—=2at and —= = 2a
dt dt

= == JQa)?+ 2a)? = 2aV7+1
= A = [’2n2atx2aVtZ+1 dt

= 8mlx [t + 1)3/2]2

> oA = ZE(5% )

A} y
P, (t=2)

v
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Vectors

Vector product

The vector, or cross, product of aand b is

=)
1o

axb = absind n

where 1 is a unit (length 1) vector which is
perpendicular to both aand b, and & is the angle
between a and b.

1

The direction of n is that in which a right hand corkscrew would move when turned
through the angle ¢ from a to b.

b
Notice that b x a = absind(—n), where —n is in the )
opposite direction to 7@, since the corkscrew would move in 0
the opposite direction when moving from b to a. a
Thus bxa = —axh. —n
The vectors i, | and kK
For unit vectors, i, ] and k, in the directions of the axes "
ixj=k jxk=i kxiz=]j
ixk=-, ixi=-k kxj=-i 1
i
Properties
axa=20 since 6 =0
axb =0 = aisparalleltob since sin@ =0 = #=0o0r x
or aorb=0
ax( +c) = axb + axc remember the brilliant demo with the straws!

a x b is perpendicular to both a and b from the definition



Component form

Using the above we can show that
ay b, azbs — azb, i l k
Q,X D = (a2> X (bz) = <—a1b3 + a3b1> = a, a, as
a’3 b3 albz - azbl bl bz b3

Applications of the vector product

Area of triangle OAB = %ab sin 6

—  areaoftriangle OAB = = |axb]|

N |-

Area of parallelogram OADB is twice the area B
of the triangle OAB

— area of parallelogram OADB = |axb|

Example: A'is (-1,2,1), B is (2,3,0) and C is (3, 4, -2).
Find the area of the triangle ABC.

C
Solution:  The area of the triangle ABC = EE X A_C>|
. 3 _ 4 A
AB:Q—g:<1>and AC:g—g:<2> B
-1 -3
. ij k -1
= ABXAC =3 1 -1 =<5>
4 2 -3 2

= area ABC = |§EXA_C>|= §\/12 +52+32 = §\/35



Volume of a parallelepiped

In the parallelepiped,

the base is parallel to b and ¢
n is a unit vector perpendicular to the base h

and the heighth=hn,

whereh = tacosg=+ta.n
+ because ¢ might be obtuse

The area of base = bc sin @
= volume V =xhxbhcsiné

= +V = acos ¢xbcsin

1

.(bxc) =a.(bcsindn) =a.n(bcsing)

U
©

a.(bxc) =acosgxbcsingd =+V

= volume of parallelepiped = \g.(g X g)|

Triple scalar product

a, b,c3 — bsc,
‘é (b x E)' <a2> : <—b1C3 + b3C1>
a3 b1C2 7, b2C1

a;(byc3 — bscy) + ax(—bycs + bscy) + az(bicy — bycy)

a, a; as
= bl bz b3
1 C C3

By expanding the determinants we can show that

a.(bxc)=(@xDhb).c keep the order of a, b, ¢ but change the order of the x and .

For this reason the triple scalar product is written as {a, b, c}
{abct=a.bxg=@xb.c

It can also be shown that a cyclic change of the order of a, b, ¢ does not change the
value, but interchanging two of the vectors multiplies the value by —1.

= {Q, Dl 9} = {gl a, D} = {Dl C, g} = _{gl C, D} = _{9! Q! g} = _{Q! a, 9}



Volume of a tetrahedron

The volume of a tetrahedron is
é Area of base X h

The height of the tetrahedron is the same as
the height of the parallelepiped, but its base
has half the area

= volume of tetrahedron = % volume of parallelepiped

= volume of tetrahedron = %l{a, b, c}|

Example: Find the volume of the tetrahedron ABCD,
giventhat Ais (1,0,2),Bis(-1,2,2),Cis(1,1,-3)and D is (4, 0, 3).

Solution: Volume = <|{AD, AC, AE}|
6

3 0 1
= {AD, AC, 4B} = [0 1 -5| = 3 x10+2 = 32
-2.2 0

= volume of tetrahedron is % x 32 = 5§

Equations of straight lines

Vector equation of a line

r =a+ Ab istheequation of a line through

the point A and parallel to the vector D,

<§-()6)




Cartesian equation of a line in 3-D
Eliminating 4 from the above equation we obtain

x—1 y-m _ z-n

a

a
is the equation of a line through the point (I, m, n) and parallel to the vector (,3) :
14

This strange form of equation is really the intersection of the planes

xX—

3
3

-m z-n -1 —
and 4 = — (and = = u)
Y a 14

*|

Vector product equation of a line

—

AP = r—a and is parallel to the vector b

= AP xb =10

= (r—a)xb = 0 isthe equation of a line
through A and parallel to b.

or rxb = axb = ¢ isthe equation of a
line parallel to b.

Notice that all three forms of equation refer to a line through the point A and parallel to the
vector b.

Example: A straight line has Cartesian equation

2y+4 _ 3~z
5 2

Find its equation (i) inthe form r = a + Ab, (ii)intheform rxb = c.
Solution:

First re-write the equation in the standard manner

x—0 y——2 z—-3
- = =
1 2.5 -2

1 2
= the line passes through A, (0, -2, 3), and is parallel to b, (2.5) or ( 5 )
-2 —4



Equation of a plane

Scalar product form

VA

n
L p

A

Let n be a vector perpendicular to the plane 7. af7 /
)2

I d

/ [

Let A be a fixed point in the plane, and P be a
general point, (XY, z), in the plane.

Then AP is parallel to the plane, and therefore 0
perpendicularto n

— AP.n=0 = (r-a).n=0
= r.n=a.n=aconstant, d

=

1=

n = d isthe equation of a plane perpendicular to the vector n .

Cartesian form

a X a
IfQ:<b) then r.n = <y> <b> = axtby+cz

4 Z c

a
= ax+tby+cz= d is the Cartesian equation of a plane perpendicular to (b) .
c



Example: Find the scalar product form and the Cartesian equation of the plane through the

points A, (3,2,5), B,(-1,0,3) and C, (2, 1, -2).

Solution:  We first need a vector perpendicular to the plane.
A (3,2,5), B,(-1,0,3) and C, (2,1, -2) liein the plane

—

= AB

—4 IS |
<—2) and AC = <—1> are parallel to the plane
-2 -7

— 4B x AC is perpendicular to the plane

. i j k 12 6
AB x AC = |=4 —2 2| =(-26] = 2x(-13 using smaller numbers
-1 -1 -7 2 1

= 6x-13y+z =d
but A, (3, 2,5) liesin the plane = d=6x3-13x2+5=-3

= Cartesian equationis 6x—13y+z = -3

6
and scalar product equation is r . (-13) = -3
1

Vector equation of a plane n "
L p
A
r =a+Ab+ uc isthe equation of a plane, 7,
a
through A and parallel to the vectors b and c. /-
I
r

log

0 ¢

Example: Find the vector equation of the plane through the points A, (1, 4, -2), B, (1,5, 3)
and C, (4,7, 2).

. 0 —, 3
Solution:  We want the plane through A, (1, 4, -2), parallelto AB = (1) and AC = (3)

5 4
o 1 0 3
= vector equationis r = (4) + /1(1) + u<3>.
-2 5 4



Distance from a point to a plane

Example: Find the distance from the point P (-2, 3, 5) to
the plane 4x -3y + 12z = 21.

Solution: Let M be the foot of the perpendicular from P
to the plane. The distance of the origin from the plane is
PM.

We must first find the intersection of the line PM with
the plane.

PM is perpendicular to the plane

4
and so is parallelto n = <—3>.
12

) _ -2 4 -2+44
= theline PM is r = (3) + l(—s) = <3—3/1>,
5 12 5+ 124
and the point of intersection of PM with the plane is given by
4(-2+44) — 3(3-34) +12(5+122) = 21

= -8+164-9+94+60+1444 =21

—22
169

= A=

4
s — —22
= PM = m<—3)
12

= distance = [PM| ==+47+32+127 = =

The distance of the P from the plane is % :

Distance from any point to a plane

The above technique can be used to find the formula:-
distance, s, from the point P (o, B, v) to the plane
niX + nyy + ngz +d = 0 is given by

_|ma+nf+nzy+d

\/nlz + ny2 + ng?

S

This formula is in your formula booklets, but not in your
text books.




Reflection of a point in a plane

3
Example: Find the reflection of the point A (10, 1, 7) in the plane 7, r. <—2> =7.
1

Solution:  Find the point of intersection, P, of the line through A and perpendicular to 7z with
the plane 7 Then find AP, to give 0A’' = OA + 24P .

Line through A perpendicular to zis

() i

This meets the plane 7z when

P B

3(10+34) — 2(1-24) + (7+A) = 7 .

= 30+91-2+41+7+1=7 |

= A==2 i
® A’

!
S
1

(5ol

L 3 —6
= AP = 0P—0A=(—2)<—2> =<4>
1

. q10 —6 —2
= O0A=0A+2AP = (1 |+2(4) =109
7 ~2 3

= the reflection of Ais A’, (-2, 9, 3)



Distance between parallel planes

Example: Find the distance between the parallel planes T

P
w1, 2X—6y+3z =9 and 7z, 2x-6y+3z =5 U!'

Solution:  Take any point, P, on one of the planes, and
then use the above formula for the shortest distance,
PQ, between the planes. L@

By inspection the point P (0, 0, 3) lieson m

na+nf+ny+d

\/nlz + n,2 + ng?

= shortest distance s from P to the plane m, is

2><0—6><0+3><3—5|_ 4
7

— shortest distance s =

27 + 62 + 32

The distance between the planes is % :

Shortest distance from a point to a line

Example: Find the shortest distance from the point

-2 2
P (3,-2,4) tothelinel, [:( 3 )+A<—3>
0 6

Solution:  Any plane 2x —3y + 6z =d must be
perpendicular to the line I. If we make this plane pass
through P and if it meets the line | in the point X,
then PX must be perpendicular to the line I, and so
PXis the shortest distance from P to the line I.

Plane passes through P (3, -2, 4)

= 2X-3y+62=2x3-3x(-2)+6x4=36

= 2x-3y+6z=36

| meets plane =  2(-2+24) —-3(3-31) +6(64) =36
= —4+41-9+941+364=36 = A=1

= Xis the point (-2, 0, 6)

B3

= shortest distance is PX = /32 + 22 + 22 = /17



Projections — an alternative approach

Imagine a light bulb causing a rod, AB, to make a shadow, A'B’, on the line I. If the light bulb is
far enough away, we can think of all the light rays as parallel, and, if the rays are all
perpendicular to the line I, the shadow is the projection of the rod onto | (strictly speaking an
orthogonal projection).

The length of the shadow, B'A", is | BA cos 6| = |BA .| , where 7 is a unit vector parallel to
the line |.
Modulus signs are needed in case 7 is in the opposite direction.

Shortest distance from a point from a plane. T

To find AM, the shortest distance from A to the plane =,

For any point, B, on 7  AM is the projection of AB onto the Vo M
line AM \

= AM =|4B .7

|

Example: Find the shortest distance from the point A (-2,
3,5)
to the plane 4x — 3y + 12z = 21.

Solution: By inspection B (0, -7, 0) lies on the plane

- (30 (3

4
ﬂ=<—3> = N=v42+32+122 = 13
12

. 2 1 /4
= shortestdistance = |4B.A| = |[-10] . 13( -3

-5




Distance between parallel planes

Example: Find the distance between the parallel planes

T
1 2X—6y+3z =9 and 7y 2x-6y+3z =5 A X
Solution:  Take any point, B, on one of the planes, 7, and then R |
consider the line BX perpendicular to both planes; BX is then \ n -
2
the shortest distance between the planes. g
B

Then choose any point, A, on 71, and BX is now the |

projection of AB onto BX
— shortest distance = BX = |4B .|

or shortest distance = |(b — a). 7|, for any two points A and B, one on each plane, where
1 is a unit vector perpendicular to both planes.

By inspection the point A (0, 0, 3) lies on m, and the point B (2-5, 0, 0) lieson 7,

() ()

2
ﬂ=<—6> = n=v2Z2+62+32 = 7
3

) —2:5 1/2
= shortest distance = ‘( 0 ) 7 (—6)
3 3

7




Shortest distance between two skew lines

It can be shown that there must be a line
joining two skew lines which is
perpendicular to both lines.

This line is XY and is the shortest
distance between the lines.

The vector n =b x d is perpendicular
to both lines

bxd

= the unit vector n = Toxd]

Now imagine two parallel planes 71 and 7z, both perpendicular to 7, one containing the line
I, and the other containing the line I,.

A and C are pointson |; and I, and thereforeon 7; and 7.

We now have two parallel planes with two points, A and C, one on each plane, and the planes

P

are both perpendicular to 7n.

As in the example for the distance between parallel planes,

the shortest distance d = |AC .|
= d= [(c-

This result is not in your formula booklet, SO LEARN IT — please



Shortest distance from a point to a line

In trying to find the shortest distance from a point P to a
linel, r=a+ Ab, we do not know i, the direction of
the line through P perpendicular to I.

Some lateral thinking is needed.

We do know A, a point on the line, and b , the direction
of the line |

= |AP.b| = AX, the projection of AP onto |

and we can now find PX = VAP2 — AX?, using Pythagoras

Example: Find the shortest distance from the point P (3, -2, 4)

-2 2
tothe linel, r= ( 3 >+/1<—3>
0 6

2
Solution: If lis [=g+/lg,theng=(3> and Q=<—3>
I
= b=+v224+324+62=7, = b= 7(—3)
. 3 -2 5
and 4P = ()(3) (5)
4 0 4
5 1 /2
(2 ()
4 6

= PX = VAPZ — AX? = /(52 + 52 + 42) — 72

= V17

10+15+24
= = 7

= AX = |AP.b| = >




Line of intersection of two planes

Example: Find an equation for the line of intersection of the planes
X+y+2z =4 |

4 1

and 2X—y + 3z

Solution:  Eliminate one variable —
l+1l = 3x+52=28

We are not expecting a unique solution, so put one variable, z say, equal to A and find
the other variables in terms of A.

8-51
=1 = X=T
8-51 4-2

= y:4—x—2224—T_2,1 ==

X 8/3 _5/3
= y| = 4/3 + 1 —1/3

z 0 1

X 8/3 5
or Y] =14 + (-1 making the numbers nicer in the direction vector only

z /3 3

0

-5
which is the equation of a line through (g,%, O) and parallel to (—1) :
3



Angle between line and plane

Let the acute angle between the line and the plane be ¢.
First find the angle between the line and the normal vector, 6.

There are two possibilities — as shown below:

0/6 -
(i) n and the angle ¢ are on the same (i)  n and the angle ¢ are on opposite
side of the plane sides of the plane
= ¢ =90-0 = ¢ = 60-90
. . +1 -2 -3
Example: Find the angle between the line x2 = yl = Z_2
and the plane 2x+ 3y —7z = 5.
- - - 2 - 2
Solution:  The line is parallel to ( 1 ) and the normal vector to the plane is ( 3 )
-2 -7

a.b=abcosd = 21=+22+12+22+22+32+72 cos O
C0s 6 = — 0= 27.3°
= " = 0=

= the angle between the line and the plane, ¢ =90 - 27.3 = 62.7°



Angle between two planes

If we look ‘end-on’ at the two planes, we can see
that the angle between the planes, 6, equals the angle
between the normal vectors.

Example: Find the angle between the planes plane 1

2x+y+3z =5 and 2x+3y+z =7

2 2
Solution:  The normal vectors are (1) and (3)
3 1

a.b=abcosd = 10 = V22 +12+32 x+/22+ 12+ 32 cos &

= cosé?:2 = 0= 44.4°
14



6 Matrices

Basic definitions
Dimension of a matrix
A matrix with r rows and ¢ columns has dimension r x C.

Transpose and symmetric matrices

The transpose, AT, of a matrix, A, is found by interchanging rows and columns

a b c a d g
A=(d e f = A'=|b e h
g h i c f i

(AB)" = B'AT - note the change of order of A and B.

A matrix, S, is symmetric if the elements are symmetrically placed about the leading
diagonal,

orif S=8".

Thus, S = (

a o Q
Q QS

) is a symmetric matrix.

N0 O

Identity and zero matrices

1
The identity matrix | = (0
0

0
1
0
0 0O
and the zero matrixis 0 = (0 0 0)
0 0

Determinant of a 3 x 3 matrix

The determinant of a 3 x 3 matrix, A, is

a
d
g

b ¢
det(A) = A = e f
hoi

= aly Ty

+’de
Cgh

= A = aei —afh —hbdi + bfg + cdh —ceg



Properties of the determinant

. . + -+
1) A determinant can be expanded by any row or column using ‘— + —‘
+ - +

using the middle row and
-leaving the value unchanged

a b c
29 Azl e /| = -, Trelg -7l

2) Interchanging two rows changes the sign of the determinant

a b c d e f
d e fl ==la b ¢ which can be shown by evaluating both determinants
g h i g h i

3) A determinant with two identical rows (or columns) has value O.

a b c
A =la b c interchanging the two identical rows gives A= -A = A=0
g h i
4) det(AB) = det(A) x det(B) this can be shown by multiplying out

Singular and non-singular matrices

A matrix, A, is singular if its determinant is zero, det(A) =0

A matrix, A, is non-singular if its determinant is not zero, det(A) # 0

Inverse of a 3 x 3 matrix

This is tedious, but no reason to make a mistake if you are careful.

Cofactors
a b c
In|d e f| thecofactorsof a,b,c, etc. are A, B, C etc., where
g h i
d f d e
A:"“e f‘, B = - .‘, C:+‘
h i g i g h
_ |b ¢ _,|a c _ |la b
D‘_|h i|’ E‘+gi| F__|g Al
_.|p c _ |a c _.la b
A BT i R

These are the 2 x 2 matrices used in finding the determinant, together with the correct

) + - +
sign from |- + -

+ - +




Finding the inverse

1) Find the determinant, det(A).
If det(A) =0, then A issingular and has no inverse.

A B C
2) Find the matrix of cofactors C = (D E F)
G H 1

A D G
3) Find the transpose of C, C' = (B E H)
Cc F 1

A D G
. T . a1
4) Divide C' by det(A) togive A" = det (4) (? E H)

See example 10 on page 148.

Properties of the inverse

1) ATA = AAT = |

2) (AB)* = B*A™? - note the change of order of A and B.
Proof (AB)™AB = I from definition of inverse
=  (AB)*AB(B'ATY) = I (B'AY
= (AB*ABBHAT = BA™ = (AB'AIAT = BAT
= (AB)*AAT = BA™ = (AB)*=B’A™"

3) det(A™) = et @)



Matrices and linear transformations

Linear transformations

T is a linear transformation on a set of vectors if

() TX1+X2) = T (X)) +T(x2) for all vectors x and y
(i) T (kx) =KT (x) for all vectors x
x 2x - - -
Example: Show that T (y) = <x+y> is a linear transformation.
z -z

X1 X X1+ x2
Solution: M TXi+X) =T ((y1> + (y2>> =T <y1+y2>
Z Z3 Zq +Z2

2(x1 +X2) le ZXZ
= (xitxty +y, | = |ty |+ nty, | ST X))+ T (X2)

—Z1— 23 —Z —Z3

= TX+Xx) =TX)+T(x)

() Tko) =T <k G)) T (E;) _ (kxi—lllzxky> . k<xgy1> - KT ()

= Tk = kT

Both (i) and (ii) are satisfied, and so T is a linear transformation.

All matrices can represent linear transformations.

Base vectors i, j, k

RO

a b c
Under the transformation with matrix (d e f)
g h i

1 a
(0) - <d) the first column of the matrix
0 g

0 b
(1) - <e) the second column of the matrix
0 h

0 c
(0) - (f> the third column of the matrix
1 i

This is an important result, as it allows us to find the matrix for given transformations.



Example: Find the matrix for a reflection in the plane y = x

0 0
Solution:  The z-axis lies in the plane y =x so (0) - <0>
1 1

0
= the third column of the matrix is (0)

1
1 0 0
Also (0) - <1> = the first column of the matrix is (1)
0 0 0
0 1 on
(1) - (0) = the second column of the matrix is (0)
0 0 0

0 10
= the matrix for a reflection in y =x is (1 0 0) :
0 0 1

Example:  Find the matrix of the linear transformation, T, which maps (1, 0, 0) — (3, 4, 2),
(1,1,0) > (6,1,5) and (2,1,-4)— (1, 1,-1).

Solution:

1 3 3
Firstly 0] — (4) = first column is (4)
0 2

2

) -0 B0 )
) ()0 (2) = s (3
<
<

1
Secondly <1
0

2
Thirdly ( 1 ) —
—4

e ()=56)0) ) - () 6

0 2 2
= T (0) = (1) = third column is (1)
1 2 2

3 3 2
= T=<4 -3 1).
2 3 2



Image of a line

2 3
Example: Find the image of the line r = <0> +,1<—2> under T,

-3 1
3 -2 1
whereT:<1 3 4).
2 -1 1

Solution:  As T is a linear transformation, we can find
2 3 2 3
TM =T (o) + A(—z) = T(o>+;tT<—2>
-3 1 -3 1
3 =2 1\ /2 3 -2 1\ /3
= T([)=<1 3 4)(0>+}t<1 3 4)(—2)
2 -1 1/ \-3 2 -1 1/ \1
3
= TN = (—10 /1<
1
3 14
r= (—10) + /1<1>.
1 9

Image of a plane 1

14
) + 1 > and so a vector equation of the new line is
9

Similarly the image of aplane r = a+ Ab + xc, under alinear transformation, T, is

TO =T@+Ab+ug) =T@ + ATWO) + 4T (9.

Image of a plane 2

To find the image of a plane with equation of the form ax + by + ¢z = d, first construct a
vector equation.

Method 1

Example 1: Find the image of the plane 3x — 2y + 4z = 6 under a linear
transformation, T.

Solution:  First construct a vector equation,
Q) Putx=z=0 =y=-3 = (0,-3,0) is apoint on the plane

3
(i) To find vectors parallel to the plane, they must be perpendicular to n = (-2). By

4
2

inspection, using the top two coordinates, (3) and, using the bottom two
0

0 0
coordinates, (4) or <2> must be L to n (look at the scalar products), and so are
2 1

parallel to the plane.



0 2 0
=  The vector equation of the plane is r = (—3) + /”t<3> + <2>
0 0 1

0 2 0
= The image under the matrix M isMr=M <—3> + AM (3) + uM (2)
0 0 1

2
Example 2: Find the image of the plane r. (—5) = 8 under a linear transformation T.
0

Solution:  The equation can be written as 2x — 5y = 8

(1) Puty=0 =x=4 = (4,0,0)isapoint on the plane z could be anything
2
(i)  To find vectors parallel to the plane, they must be perpendicular to n = (-5). By
0
5 0
inspection, using the top two coordinates, (2) and, using the 0 z-coordinate, (0)
0 1

must be 1 ton (look at the scalar products), and so are parallel to the plane.
Continue as in Example 1.

Method 2, as in the book

Fine until the vector n has a zero coordinate, then life is a bit more complicated.
Example: Find the image of the plane 3x — 2y + 4z = 6 under a linear transformation, T.

Solution:  To construct a vector equation, put x =4, y=x andfind z interms of A and z.

6—314+2u
4

x A 0 1 0
= (y) = u = 0 + 2 0 + u 1
7 6—3i+2p. 6/4 —3/4 1/2

x 0 4 0
= (y) = <6? + A( 0 ) + u(z) making the numbers nicer in the ‘parallel” vectors
VA 4 -3 1

and now continue as in method 1.

= 3A-2u+4z7 =6 = Z =

NOTE that M (b x ¢) is not equal to M (b) x M (c), since this does not follow the
conditions of a linear transformation, so you must use one of the methods above.



7 Eigenvalues and eigenvectors

Definitions

1) An eigenvector of a linear transformation, T, is a non-zero vector whose direction is
unchanged by T.

So, if e isan eigenvector of T thenitsimage e’ is parallelto e, or ¢’ =1¢e
= & =T( = 1e
e defines a line which maps onto itself and so is invariant as a whole line.

If A =1 each point on the line remains in the same place, and we have a line of invariant
points.

2) The characteristic equation of a matrix A is det(A—-A41) =0

Ae = 1e

(A-=A1)e=0 has non-zero solutions eigenvectors are non-zero
A — A1 isasingular matrix

det(A = 21) = 0

U Ul

the solutions of the characteristic equation are the eigenvalues.

2 X 2 matrices

Example: Find the eigenvalues and eigenvectors for the transformation with matrix

A= (—12 1)

Solution:  The characteristic equation is dettA— A1) = 0

)
= 1—2 41/1| =0

=  (1-AD@-2+2=0
=  A2-51+6=0 = 4 =2and A =3

For A1 =2
(5 )6) =20)
= X+y = 2X = X=y
and -2x+4y=2y = X=y
= eigenvector g; = (i) we could use (g;) but why make things nasty



For 4,=3

(% 26) =30)

= X+y = 3X = 2X =y
and -2x+4y=3y = 2X =y
= eigenvector g, = (;) choosing easy numbers.

Orthogonal matrices

Normalised eigenvectors

A normalised eigenvector is an eigenvector of length 1.

4
In the above example, the normalized eigenvectors are e; = (1 ﬁ), and e, = (

Orthogonal vectors

A posh way of saying perpendicular, scalar product will be zero.

Orthogonal matrices

If the columns of a matrix form vectors which are

(1) mutually orthogonal (or perpendicular)
(i)  eachof length 1

then the matrix is an orthogonal matrix.

Example:

1 -2
<2/ \/§> and < . / \/§> are both unit vectors, and
/J5 /5

1 -2
<2/\/§> . (1/\@) =2 + 2 = 0, = the vectors are orthogonal
/ / 5 5

V5. V5

= M= :/\/E _12/\/3
NN

) is an orthogonal matrix



Notice that

wtv = () (e - (9
/s s \\g /s 0 1

and so  the transpose of an orthogonal matrix is also its inverse.

This is true for all orthogonal matrices think of any set of perpendicular unit vectors
Another definition of an orthogonal matrix is

M is orthogonal s M™™ = | s MtT=MT

Diagonalising a 2 x 2 matrix

Let A bea 2 x 2 matrix with eigenvalues A; and A,

u u
and eigenvectors e = (vi) and g, = (vz)
Uy (A _(U2\ _ Azu2>
then Agl = (vl) = </11U1) and Agz - ('Uz) 9 (12172
U, Uy _ /11u1 lzuz) _ Uy Uy <Al 0 )
- A (vl vz) - </11v1 szz X (‘Ul 172) 0 A’Z ---------- I

Define P as the matrix whose columns are eigenvectors of A, and D as the diagonal
matrix, whose entries are the eigenvalues of A

_ U, Uy _ Al 0
| = P = (vl vz) and D = (O lz)
— AP=PD = P!AP=D

The above is the general case for diagonalising any matrix.

In this course we consider only diagonalising symmetric matrices.



Diagonalising 2 x 2 symmetric matrices

Eigenvectors of symmetric matrices

Preliminary result:
x=(y) ad y=())

The scalar product x .y = (i;) : (;;) = Xay1 + XoYo
but (X1 x2) (;I;) = Xiy1 Xy

= x'y=x.y

This result allows us to use matrix multiplication for the scalar product.

Theorem: Eigenvectors, for different eigenvalues, of a symmetric matrix are orthogonal.
Proof: Let A be a symmetric matrix, then A" = A

Let Aes=A1e1, and Ae, =1 e, M % Ao

el =(he) =(Ae) =el' AT=e, A since AT=A, and (AB)'=B'A"
el =el A

hei'e =6 Ag =6 he = hel e

Aoer

el e

R

(- A)ei'e =0
But A4-4L#0 = &'&=0 < e.&=0

the eigenvectors are orthogonal or perpendicular

y

Diagonalising a symmetric matrix

The above theorem makes diagonalising a symmetric matrix, A, easy.
1) Find eigenvalues, A4; and A, and eigenvectors, e; and e,
2) Normalise the eigenvectors, to give &; and &, .

3) Write down the matrix P with &; and &, as columns.
P will now be an orthogonal matrix since &, and &, are orthogonal
= P*t=pT

4) PTA P will be the diagonal matrix D = (101 /{) )
2



6 —2).

Example: Diagonalise the symmetric matrix A = (_2 9

6—-4 =2 |

2 9= 0

Solution:  The characteristic equation is |
= 6-4)09-4) -4 =0
=  1-15A+50=0 = (1-5)(A-10) =0
= A=50r10
For 4, = 5
(& )6 = 56)
= 6Xx —2y = 5X = X =2y

and -2x +9y = 5y = X =2y

== ()
.. Y <2/\/§>
and normalising — &; = (,
/\s
For 4, = 10
(& 96 = 16)
= 6x — 2y = 10x = —2X =y
and -2x +9y = 10y = -2x=y
= &2 = (_12)

1
and normalising = &, = (_2/‘/§>
/s

Notice that the eigenvectors are orthogonal
2 1
N

I
NN

- D:PTAP:(’h 0):

0 2 ((5) 100)'



3 x 3 matrices

All the results for 2 x 2 matrices are also true for 3 x 3 matrices (or n x n matrices). The
proofs are either the same, or similar in a higher number of dimensions.

Finding eigenvectors for 3 x 3 matrices.

Example: Given that 4 =5 is an eigenvector of the matrix

3 -1 2
M = <—2 1 —1>, find the corresponding eigenvector.
4 -1 =2

Solution:  Consider Me = 5e

= (22 )0)-s0)

= 3X-y+2z = 5X = -2X-y+22 =0 |
-2X+y-z = 5y = -2Xx-4y-z =0 1
4x-y—-27 = 52 = 4x-y-7z =0 i

Now eliminate one variable, say x:

-1l = 3y+3z =0 = y=-2

We are not expecting to find unique solutions, so put z = 1, and then find x and y.
= y=-1, and,

from |1, 2x=22-y=2+1=3

= Xx= 15
1-5 3
= e=1-1 or | -2 as any multiple will also be an eigenvector
1

checkin Il and 111, O.K.



Diagonalising 3 x 3 symmetric matrices

2 -2 0
Example: A = (—2 1 2).
0 2 0

Find an orthogonal matrix P such that P TAP is a diagonal matrix.

Solution:

1) Find eigenvalues

The characteristic equation is det(A— A1) =0

2—2 -2 0
= -2 1-12 21=0

0 2 -1
= Q-D[-1(1-2) —4] + 2x[24-01 +0=0
= AB-32-61+8=0

By inspection 41 =-2 isaroot = (1+2) isa factor

= (A+2)(WP-51+4)=0
= A+2)(A1-1)(1-4) =0
= A=-21o0r4

2) Find normalized eigenvectors

2 -2 0\ x

Mh=-2 = (—2 1 2><y>= —2(
0 2 0/\z
= 2X—2y = =2X

—2X+y+2z7 = -2y
2y = -2z

|l = y=2x, andIlll = y=-z

1
= §1=<2> and |§1|=91_

-2

2 =2 0\ /x X
L=l = <—2 1 2)(}’)2 1(3’)
0 2 0/ \z z

= 2X—2y = X

—2Xx+y+2z =y
2y =12

y



| = x=2y,and Il = z=2y choose y = 1 and find x and z

2
= g2:<1) and |e)] =e, = V9 =3
2

2/3
= & = |14
2/3

2 =2 0\ /x X
=4 = (—2 1 2)(3’)2 4(3’)
0 2 0/ ‘\z z

= 2X — 2y = 4X |

—2X +y +2z = 4y 1
2y = 4z i
| = x=-y,and Il = y=2z choose z= 1 and find x and y

—2
= g3:<2) and |es] =e; = V9 =3
1

_2/3
= & = | %4
1/3

3) Find orthogonal matrix, P

= P=(&1 & &)
s %5 T

= P = 2/3 1/3 2/3 is required orthogonal matrix
“2f3 23 Y3

4) Find diagonal matrix, D
. 4 0 0 -2 0 0
= P'AP =D = (0 Az 0>= (0 1 0)
0 0 /A 0 0 4

A nice long question! But, although you will not be asked to do a complete
problem, the examiners can test every step above!
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