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1 Inequalities

Algebraic solutions
Remember that if you multiply both sides of an inequality by a negative number, you must turn
the inequality signround: 2x > 3 = -2x < -3.

A difficulty occurs when multiplying both sides by, for example, (x — 2); this expression is
sometimes positive (x > 2), sometimes negative (X < 2) and sometimes zero (x = 2). In this case
we multiply both sides by (x — 2)?, which is always positive (provided that x # 2).

2
Example 1:  Solve the inequality 2x + 3 < xxTZ X #2

Solution: Multiply both sides by (x — 2)? we can do this since (x - 2) #0
= (x+3)(x—2)?<x%(x-2) DO NOT MULTIPLY OUT
= (2x+3)(x—2)?—x%2(x—-2)<0 B /
= (x-2)2x?2—-x-6—x%)< 0 12 =) (x-2)(x-3)
= (-2)x-3)x+2)<0 :
= x< =2, or 2<x <3, below x-axis :
7’2 -1 s 1 2 3 4 :
Note — care is needed when the inequality is < or >.
. . x 2
Example 2:  Solve the inequality oy, = o3’ X #-1, x#-3
Solution: Multiply both sides by (x + 1)%(x + 3)? which cannot be zero
=  x(x+Dx+3)? =2(x+3)(x+ 1)? DO NOT MULTIPLY OUT
= x(x+DE+3)2-2(x+3)x+1D? =0 oV
= (x+Dx+3)x?>+3x—2x—-2)=0 y=0c+3)0c+2)(cr 1) (x1) i
2
= x+Dx+3)x+2)(x—1)=0 T - X
from sketch it looks as though the solution is _i
x<—-3 or —2<x<-1or x2=1 :2

BUT since x# -1, x+ -3,

the solution is x< -3 or —2<x<-1 or x=1, above the x-axis



Graphical solutions

Example 1:  On the same diagram sketch the graphs of y = xz—x and y = x — 2.

+3
Use your sketch to solve the inequality % > xX-2
Solution: First find the points of intersection of the two graphs
= Z_x = x=2 / 107y
x+3 8
=2x/(x+3)
= 2x=x24+x—-6 e 6 /
/ 4 y=x_2
= 0=(x—-3)(x+2) R /
X
= x=-2or 3 -10 -8 -6 -4 -2 /2 4 6 8
From the sketch we see that »
x<—3 or —2<x<3. Notethat x=-3 / -6

For inequalities involving |2x — 5| etc., it is often essential to sketch the graphs first.
Example 2:  Solve the inequality |x*—19| < 5(x — 1).
Solution: It is essential to sketch the curves first in order to see which solutions are needed.

To find the point A, we need to solve

—(x?-19)=5x—5 = x’>+5x—24=0 \ w0}’
= (x+8)x®-3)=0 = x=-8or3 J=h 1ol B
From the sketch x#-8 = x=3 A
~10 -5 // 5 1)(()
To find the point B, we need to solve y=5/(x-1_)20

+(x?—-19)=5x—-5 = x?-5x—-14=0
= (x-7)x+2)=0 = x=-2o0r7
Fromthe sketch x#-2 = x=7

— the solution of [x*-19| < 5(x—1) is 3<x<7




2 Series — Method of Differences

The trick here is to write each line out in full and see what cancels when you add.

Do not be tempted to work each term out — you will lose the pattern which lets you cancel when
adding.

Example 1:  Write in partial fractions, and then use the method of differences to find

r(r+1)
1

n 1 1 1 1
the sum E bt .
r=1 r(r+1) 1x2  2X3  3%x4 n(n+1)

. 1 1 1
Solution: = - = —
r(r+1) r r+1

1 1 1

put r=1 = T = 2 _/ﬂ s

4 R VI

put r =255 2X3 2 713

_ e

put r=3 = by = @ a7

etc. L=

1 1 & 1
put r=n = =h= = —
n(n+1) n n+1




. 2 : . . .
Example 2:  Write —————— in partial fractions, and then use the method of differences to

r(r+1)(r+2)
n
. 1 1 1 1 1
find the sum z = + + +o .
r=1 rr+1)(r+2) 1X2X3  2%X3%X4  3X4X5 n(n+1)(n+2)
. 2 1 2
Solution: — = - - = 4+ —
r(r+1)(r+2) T r+1 r+2
2 1 2 1
putr=1 = o5 T 1 T 3 4:,775
L
2 1 2 1
put r=2 = P = 3 —’ 75 _|_/7/Z
5 1 ‘:/ 2 ‘:/ 1
put r=3 = e = 3 " 4:,775
_ 2 1 i 2 1
put g =4 = 4X5%6 T4 715 -l:f776
4 L’
etc.
/ﬂ /ﬂ
ut.r-n 1> —2 = L‘:_—;Z‘: ,
P - (n-1)n(n+1) T on-1 ,”n n+1
- oz tpglo 2o 1
put r=n = n(n+1)(n+2) N n n+1 n+2
n
ddi Z; LSz, 1, 1 W 1
WA T L+ Dr+2) 1272 n+l n+l n+2
= 1_3 &
B 2 n+1 n+2
_ n?+3n+2-2n—4+2n+2
a 2(n+1)(n+2)
n
Z 2 B n? + 3n
- rr+1Dr+2) 2m+1D(n+2)

1

n

1 n%+3n

- Zr(r+1)(r+2) T 4Am+D(n+2)




3  Complex Numbers

Modulus and Argument

A
The modulus of z=x+1y isthe length of z r

= r=|z] =x%+y? z

and the argument of z is the angle made by z r
with the positive x-axis, -z < argz < .

X
N.B. arg z is not always equal to tan™?! (f)

Properties
z=rcosé@+irsiné

VA

w

_ 2l

|zw| = |z||w]|, and
(w|

arg (zw) = argz + argw, and arg (%) = argz — argw

Euler’s Relation e’

z=e"” = cosf +isind
i =e " =cos@ - ising
Eal :
Example: Express 5e\+/ inthe form x +iy.
Solution: Se(BTn) = 5(cos (3—n) + i sin (3—n))
' 4 4
= __Sﬁ + l5_\/§
2 2

Multiplying and dividing in mod-arg form

rel® x sei® = rsei@+d)

= (rcosf+irsinf) x(scos¢p +issing) = rscos(0 + ¢) + irssin(f + ¢)

and

ret® = sei® = L oi0-9)
S

= (rcos@+irsinf) +~ (scos¢ +issing) = Ecos(9—¢)+ i Esin(@—q’))

v



De Moivre’s Theorem
(re®®)" = rme® = (rcosf+irsinf)" = (r"cosnd + i r" sinnf)
Applications of De Moivre’s Theorem
Example: Express sin 5@ interms of sin @ only.
Solution: From De Moivre’s Theorem we know that
cos 50 + isin560 = (cos @+ isin 6)°
= €0s°0 +5i cos’@ sin@ + 10i° cos> @ sin*0 + 10i° cos?@ sin’0 + 5i* cosd sin*O + i° sin°@
Equating imaginary parts
=  sin50 = 5c0s*@ sind — 10 cos?0 sin®0 + sin°@
= 5(1 -sin’0)?sind — 10(1 —sin?d) sin*@ + sin° @
= 16sin°0 — 20sin’0 + 5sind
z" +Zln = 2cosnf and z" —Zln =2isinnf
Z = cos@ +isind
= z™ = (cos@ +isinfB)" = (cosnf +i sinnb)
and - = z" = (cos@ +isinf) ™™ = (cosnf — i sinnbh)

from which we can show that
(z+§) =2cosf and (Z—é) = 2isin@

1 1 ..
z”+z—n=2003n9 and z”—z—n=2|smn0

Example: Express sin°6 intermsof sin56, sin36 and sind.

Solution: Here we are dealing with siné@, so we use

(2isin§)°> = (z — ;)5

- e = - () ¢ 02 () 102 (2) () ()
= 32isin°f = <Z5— 2—15) —5(23— Zig)+ 10(2_ i)

= 32isin®0 = 2isin50 - 5x2isin39 +10 x 2ising

= sinfg = 1—16 (sin50 — 5sin 30 + 10 sin 8)



n™ roots of a complex number

The technique is the same for finding n™ roots of any complex number.

Example: Find the 4™ roots of 8v2 + 8v2i, and show the roots on an Argand Diagram.

Solution: We need to solve the equation  z*= 8v2 + 8v2i

1. Let z = rcosd +irsind
= ' = r*(cos40 +isin46)

. |8V2+8V2i|=8V2+2=16 and arg (8V2 +8V2i) :%
= 8/2+8V2i= 16(cos7 +isin?)

3. Then z*=8V2 +8V2i

N

becomes r*(cos40 +isin46) = 16(cos’ +isin7)
= 16(cos = +isin = adding 2z
4 4
= 16 (cos T+ isin 2= adding 27
4 4
= 16 (cos 2T 4isinZE adding 27
4 4

4, = r*=16 and 49 =%, X X BT
) 4’ 4 4 ' 4
- r =2 and @ =ZL,6 E UE_Ir  DT_ZIM.  _cagr<onx
16 16 16 16 16 16
5. =  rootsare z7=2(cos = +isin=) = 1.962 + 0390 i
16 16
,=2(cos = +isinX) = —0.390 + 1962
16 16
25=2 (cos = +isin—/X) = -1.962 —0-390i
16 16
22=2(cos == +isin==) = 0-390-1.962 i
16 16
y
Zyt 2
Notice that the roots are symmetrically placed around
the origin, and the angle between roots is %T” = g z4
-2
The angle between the n™ roots will always be 27” : %3
=1
Za
-2 o

For sixth roots the angle between roots will be 2?” = g , and so on.



Roots of polynomial equations with real coefficients

1. Any polynomial equation with real coefficients,
ApX™ + Ay 1 X"+ @ x™ %+ apx?+ agx+ ag=0, ... (1)
where all a; are real, has a complex solution

2. = any complex n" degree polynomial can be factorised into n linear factors over the
complex numbers

3. If z=a+ib isarootof (I), then its conjugate, a—ib is also a root — see FP1.

4. By pairing factors with conjugate pairs we can say that any polynomial with real
coefficients can be factorised into a combination of linear and quadratic factors over the
real numbers.

Example: Giventhat 3—-2i isarootof z°—572+7z+13=0
(@) Factorise over the real numbers
(b) Find all three real roots

Solution:
(@ 3—2i isaroot = 3+ 2i Iisalso aroot
=  (z-(B-2i)(z-(B+2i) = (Z-6z +13) isa factor
= Z3 - 522 +7z+13 = (22 -6z + 13)(2 + 1) by inspection

(b) = rootsare z = 3-2i, 3+2i and -1

Loci on an Argand Diagram

Two basic ideas

1. |z—wl isthe distance from w to z.
2. arg (z— (1 +1)) isthe angle made by the half line joining (1+i) to z, with the x-axis.

Example 1:
|z—2—-il =3 isacircle with centre (2 + i) and radius 3
Example 2:
y
lz +3-i| = [z-2+i]

o lz -3+ = lz-2-)]

is the locus of all points which are equidistant from
the points

A (-3,1) and B (2, -1), and so is the perpendicular
bisector of AB.




Example 3:

arg (z —4) :5?” is a half line, from (4, 0),

making an angle of 5?” with the x-axis.

N/w B

Example 4: -4 -3 -2 -1 1 2

|z—3] = 2| z+2i| isacircle
(Apollonius’s circle).

To find its equation, put z=x + iy

= |(x=3)+iyl = 2|x+i(y+2)] square both sides
= (x=3+y* = 4(x+(y+2)?) leading to

= 3 +6x+3y*+16y+7 = 0

~ e (pe Y =2

which is a circle with centre (-1, _?8 ), and radius @ :

Example 5:
z—2\ _ n
g (55) = %
= arg(z—2) —arg(z+5) = g

=X 9—¢:§

which gives the arc of the circle as shown.

N.B.

The corresponding arc below the x-axis

would have equation

z—=2\ _ T
A\~ T %

as 6 — ¢ would be negative in this picture.

(@1is a ‘larger negative number’ than ¢.)



Transformations of the Complex Plane

Always start from the z-plane and transform to the w-plane, z=x+ iy and w=u + iv.

Example 1:  Find the image of the circle |z—5| =3
under the transformation w = — .

z—2
Solution: First rearrange to find z

1 1 1
W= — = 7-2=— = 1=—+2
2 w w

Z—

Second substitute in equation of circle

=  [F+2-5|=3 = |[E¥=3
= |1-3w=3w = 3fi-w|=3wl
= o=

which is the equation of the perpendicular bisector of the line joining 0 to %

= the image is the line u ==
Always consider the ‘modulus technique’ (above) first;
if this does not work then use the u + iv method shown below.
Example 2:  Show that the image of the line x + 4y = 4 under the transformation

1 . . . R .
w=-— isa circle, and find its centre and radius.

Solution: Firstrearrangetofindz = z= % +3

The ‘modulus technique’ is not suitable here.

z=x+iy and w=u+iv

1 1 1 u—iv
= - = — X ——
u+iv u+iv  u-iv

u—iv
u2+v?

+ 3

= X+iy =

u
uZ+p?2

—v
u2+v?

Equating real and imaginary parts X = +3and y =

+3 -2 =4

+4y = _—
= x+4y=4 becomes ——; o

= W—u+V+4 =0

= (u—%)2+(v+2)2=14—7

which is a circle with centre G —2) and radius \%_7 .

There are many more examples in the book, but these are the two important techniques.



Loci and geometry

It is always important to think of diagrams.

Example: z lies on the circle |z - 2i| = 1.
Find the greatest and least values of arg z.

Solution: Draw a picture!

The greatest and least values of arg z
will occur at B and A.

Trigonometry tells us that

0=

o8

and so greatest and least values of

v

21T T
argz are — and 3




4  First Order Differential Equations

Separating the variables, families of curves
Example: Find the general solution of

ay _ v
dx  2x(x+1)’

for x>0,

and sketch some of the family of solution curves.

S ay _ ¥ 2 _ 1 - i__1
Solution: dx 2x(x+1) = fy dy fx(x+1) dx J-x x+1 dx
= 2lny = Inx = In(x+1) + InA
2 _ Ax
= Y =

Thus for varying values of A and for x>0, we have

y
y2E=TXI(x+1)
2 N
y?=3x/(x+1)
1 y2=x/(x+1)

Exact Equations

In an exact equation the L.H.S. is an exact derivative (really a preparation for Integrating
Factors).

Example: Solve sin x 3—3: + ycosx = 3x?
Solution: Notice that the L.H.S. is an exact derivative
. dy — .
sinx — +ycosx = dx(ysmx)
2

d : _
= a(ysmx) = 3X

= ysinx =3¢ dx = x* +¢

x3+c

= y - sin x



Integrating Factors

2 +Py = Q

™ where P and Q are functions of x only.

In this case, multiply both sides by an Integrating Factor, R = e/Pdx.
The L.H.S. will now be an exact derivative, ;—x (Ry).

Proceed as in the above example.

Example: Solve xz—z +2y =1
Solution: First divide through by x
= v + Ey = 1 now in the correct form
dx X X

Integrating Factor, I.F.,is R = e/Pd*

2
— ef;dx = e2lnx — XZ

d
= Xzﬁ +2Xy = X multiplying by x?
d , o _ . o
= a(x y) = X, check that it is an exact derivative
2 x?
=  Xy=Jxde=-+c¢
_ 1, c
= y = 2 +x2

Using substitutions

Example 1:  Use the substitution y =vx (where v is a function of x) to solve the equation
dy _ 3yx%+y3
dx  x3+xy? '
. d a
Solution: y=w = Z=v+x=
dx dx
N dy _ 3yx2+y3 — v+ Xd_v 4 3(vx)x%+ (vx)3 _ 3v+ v3
dx x3+ xy? dx x3+ x(vx)? 1+v2
and we can now separate the variables
dv _ 3v+v3 v+ vi-v-v3 _ 20w
= X— = - v = =
dx 1+v2 1+v2 1+v2
1+v2 dv 1
= —_— = =
2v dx x
= [=+Zdv = [Zdx
2v 2 x
1 2
= Zlnv+ = =Inx+c
2 4
1 2
But v=2 = -InZ+ 2 =Ihx+c
X 2 X 4x
= 2¢Iny +y?=6x¢Inx + ¢’x c’is new arbitrary constant

and | would not like to find y!!!

If told to use the substitution v = % rewrite as y = vx and proceed as in the above example.



Example 2:  Use the substitution y = i to solve the differential equation

v _ 2
Y + ycotx.

. 1 d -1 dz
Solution: y=- = 2===
z dx z4 dx
-1 dz 1 1
= = .= 3 + —cotx
z4 dx z z
dz
= —+ zcotx = —1
dx

Integrating factor is R = e/ cotx dx = pln(sinx) — gjpy x

. dz .
= smxa+zcosx = —sinx
d . . L. R
= ™ (zsinx) = —sinx check that it is an exact derivative

= ZSinx = cosx + ¢

cos x+c
= 7 = — but z =
sSin x

sin x

cosx+c

Example 3:  Use the substitution z=x +y to solve the differential equation

o cos(x +y)

dx
; d d
Solution: z=x+y = Z=14+Z
dx dx
d
= Z = 14cosz
dx
= J T+cosz dz = [dx separating the variables
1
= fzsecz(g) dz = x+c 1+cosz:1+2cosz(§)—1= Zcosz(g)

= tan(g):x+c

But z=x+y = tan(“Ty)zx+c




5 Second Order Differential Equations

Linear with constant coefficients

2
a% + bZ—z + cy = f(x) where a, b and ¢ are constants.

(1) when f(x)=0

First write down the Auxiliary Equation, A.E

AE.

am?+ bm+c=0

and solve to find the roots m = a or f8

(i)

(if)

(i)

Example 1:

Solution:

VRN

Example 2:

Solution:

Uyl

If « and B are both real numbers, and if a # 8
then the Complimentary Function, C.F., is
y =Ae® + Bef* where A and B are arbitrary constants of integration

If @ and B are both real numbers, and if @ = 8
then the Complimentary Function, C.F., is
y =(A+ Bx)e*, where A and B are arbitrary constants of integration

If « and B are both complex numbers, and if « =a +ib, B =a—ib
then the Complimentary Function, C.F.,

y = e**(Asinbx + B cos bx),

where A and B are arbitrary constants of integration

d*y dy .
Solve = T 2; -3y =0

x2

AE.is m?+2m—-3=0

(m-—1)(m+3)=0

m =1 or -3

y = Ae* + Be 3 when f (x) = 0, the C.F. is the solution

2
Solve %2 4 6Z—i’+ 9y =0

dx?

AE.is m*+ 6m+9= 0

(m+3)2=0

m = -3 (and -3) repeated root

y = (A + Bx)e™3* when f (x) = 0, the C.F. is the solution



Example 3:

Solution:

Uu vy

a*y dy _
Solve ——= + 4—+ 13y =0

AE.is m*+ 4m+13=0
(m +2)* = -9 = (3i)’

(M+2)= +3i
m=-2-3i or —2+3i
y = e ?*(Asin3x + B cos3x) when f (x) = 0, the C.F. is the solution

(2) when f (x) # 0, Particular Integrals

First proceed as in (1) to find the Complimentary Function, then use the rules below to
find a Particular Integral, P.I.

Second the General Solution, G.S. , is found by adding the C.F. and the P.I.

=

GS. = CF + P.L

Note that it does not matter what P.l. you use, so you might as well find the easiest,
which is what these rules do.

1)

)

@)

(4)

f (x) = e

Try y = Ae®
unless e** appears, on its own, in the C.F., in which case try y = Cxe*
unless xe** appears, on its own, in the C.F., in which case try y = Cx%"*.

f(x) =sinkx or f(x) = coskx

Try y=Csinkx + D coskx
unless sin kx or cos kx appear in the C.F., on their own, in which case
try y=x(Csinkx + D coskx)

f (x) = apolynomial of degree n.

Try f(X) = apx™ 4+ a1 x™ 1+ apx" 2+ .+ ax+ a
unless a number, on its own, appears in the C.F., in which case

try f(X) = x(@x"+ a1 x™ 1+ ap_x" 2+ L+ ax+ ag)
i.e. try f(x) =apolynomial of degree n.

In general
to find a P.1., try something like f (x), unless this appears in the C.F. (or if there is
a problem), then try something like x f (x).



: 2’y ay _
Example 1:  Solve Freiis 6dx + 5y = 2x
Solution: AE. is m+6m+5=0
= (m+5)(mM+1)=0 = m=-5 or -1
= CF.is y=A4e™>* + Be™

Forthe P.l.,try y=Cx+ D

d d?
= =¢ and 22L=0
dx dx?

Substituting in the differential equation gives
0 + 6C + 5(Cx+D) =2x

= 5C=2 comparing coefficients of x
2
= C=-
5
and 6C + 5D =0 comparing constant terms
-12
= D=—
25
. 2 12
= P.|.|Sy—gx—g
= GS.is y=Ae 5 + Be‘x+§x—£
. d y dy 3x
Example 2:  Solve =4 6; + 9y = e
Solution: AE.is is m’—6m+9=0
= Mm-3?=0
= m=3 repeated root
= CF.is y=(Ax + B)e3*

In this case, both e3* and xe3* appear, on their own, in the C.F.,
soforaP.l.wetry y = Cx?%e3*

d
= 2 = 2Cxe3* + 3Cx%e3*
dx
d%y
dx?

and = 2Ce3* + 6Cxe3* + 6Cxe3* + 9Cx?e3*

Substituting in the differential equation gives

2Ce3* + 12Cxe3* + 9Cx?e3* — 6(2Cxe>* + 3Cx%e3*) + 9 Cx2e3* = e3*
2Ce3* = 3%

c=1:
2

- 1
Plis y= 5x2e3x

u v Ul

G.S.is y = (Ax + B)e3* + %x2e3x



2
Example 3:  Solve d—f — 3% 4 2x =4cos2t
dt dt
giventhat x=0and x =1 when t=0.
Solution: AE.is m*-3m+2=0
= m = 1lor2
= C.F.is x = Aet + Be?
Forthe P.l.try x = Csin2t + D cos2t BOTH sin 2t AND cos 2t are needed
= X = 2Ccos2t —2Dsin 2t
and X¥ = —4Csin2t — 4D cos2t

Substituting in the differential equation gives

(—4Csin 2t — 4D cos 2t) — 3(2C cos 2t — 2D sin 2t) + 2(C sin 2t + D cos 2t) = 4 cos 2t

= -2C+6D=10 = -C+3D=0 comparing coefficients of sin 2t
and -6C-2D =4 = 3C+D =-2 comparing coefficients of cos 2t
= c==and D=2
5 5
= P.l.is x=—§sin2t—§c052t
= G.S.is x = Aet + Be? — %sin 2t — icos 2t
= x = Aet + ZBQZt—SCOSZt-I- EsinZt
x=0and when t=0 :>O:A+B—§

and x =1 when t=0 :>1:A+2B_§

=

=

-9

A:? and B =2

. -9 6 . 2
solutionis x = ?et + 2e?%t — -sin 2t — = cos 2t



2 4%y dy —
D.E.s of the form ax”— + bx——+ cy = fx)

Substitute x=#e

=

and

u

dx _
du dx

d d du

dy _dy  du

dx du dx

d 1d dy dy
a _1ay = =2 - =X
dx x du dx du
d
ey _ _aay 14w
dx2 x2 du x dx
2 d dy/
@y _ _ady 1 4UVa) au
dx? x2du x du dx
ay _ _1ay  1dly
dx2~ x2du @ x2dul
2d’y _ d’y dy
dx? du? du
d? d? d d
Thuswe have x2°2 = 22 — 2 and x =2 =
dx? du? du dx

chain rule

ay
du

from I and 11

substituting these in the original equation leads to a second order D.E. with constant
coefficients.

Example:

d?y
dx?

Solve the differential equation x?

o v — 9,2
3xdx+3y— 2x°.

Solution: Using the substitution x = €", and proceeding as above
2d%y _ d?y _ dy v _ W
dx?2 ~ du? du and dx  du
@y _dy gy — e
= du? du 3du + 3y = —2e
dz_y — d_y — 2u
= Tz 4-- + 3y = —2e
= AE.is m*-4m+3=0
= (m=-3)(m-1) =0 = m=3or1l
— CF.isy = Ae® + Be"
For the P.I. try y = Ce®
2
= 2= 2cem™ and L2 = 4ce
du du
= 4Ce®™ — 8Ce?*™ + 3Ce?™ = —2e2%
= C=2
=  GS.isy = Ae + Be' + 2&¥
But x=¢" = GS.isy = A¢ + Bx + 2xX°




1)

2)

3)

4)

Maclaurin and Taylor Series

Maclaurin series

fG) = fO)+ xf'(0)+ ’;—Tf”(O)+ ’;—Tf”’(O)+--- + ’;—Tf"(O)+---

Taylor series

fa+a) = f@+ xf' @+ '@+ @+ + Zfra) + o

!

Taylor series — as a power series in (x —a)

replacing x by (x—a) in2) we get

f@) = f@) + (- a)f (@) + EL (@) + L (0) + o+ ED () 4o

Solving differential equations using Taylor series

(a)

(b)

If we are given the value of y when x =0, then we use the Maclaurin series with

f(0) =y, the value of y when x=0
") = (¥ dy -
f (0) = (dx)o the value of x when x=0

etc. to give

Fo =y = y+x(Z) + 5(2) +5(82) +-+5(52) +

If we are given the value of y when x = a, then we use the Taylor power series

with
f(a) = Ya the value of y when x=a
’ dy dy
= — valu — W X=
f'(a) = (dx) the value of —= when x=a
a
etc. to give

y = ot G- () + GE(2) + 52 (2) 4

a 2! dx? 3! dx3

NOTE THAT 4 (a) and 4 (b) are not in the formula book, but can easily be found

using the results in 1) and 3).



Standard series

x? x3 x™
e*=1+x toyt gttt ot converges for all real x
i x3 xS 1 xZn—l
sinx =x— T+ & =t (=)™ =y + - converges for all real x
x2 x4- 1 xZTl—Z
cosx =1-— St -t (-1 m+ converges for all real x
x2  x8 n—1x"
In(1+x) = X—=Z+ T =+ (-1) —+ converges for —1<x<1
1+x)"=1+nx +%x2 + -+ wxr + - converges for -1 <x<1

Example 1:  Find the Maclaurin series for f(x) = tan x, up to and including the term in x°

Solution: f(x) =tanx = f (0)=0
=  f'(x) =sec’x =  f0)=1
=  f"(x) =2sec?xtanx =  £"(0) =0
= f"(x) = 4sec® xtan® x + 2sec* x = "(0) = 2

and  fO)= fO)+ xf O+ ZF7(0)+ZfO) + - + Zfm(0) + ..

2 3
= tanx = 0+ xxX1 + J;—l><0+ J;—'XZ up to the term in x*

x3

3

IR

= tan x x +

Example 2:  Using the Maclaurin series for €* to find an expansion of ex+a? up to and
including the term in .

2 3
Solution: e*=1+x+ % + ’;—' + ..

(x+xz)2 n (x+xz)3

= eX+x? = 14+ (x+x3)+
21 31

up to the term in x®

x242x34  x34-
1+x+x%+ ” + 2 up to the term in x®

IR

2 3 7
= eXtx” =~ 1+x+5x2+ gx3 up to the term in x®



Example 3:  Find a Taylor series for cot (x + %) up to and including the term in X%

Solution: f(x) = cotx and we are looking for
T\ _ T (T x2 (T
fe+d) =r Q)+ (G)+ 5 ()
s
f(x) = cotx = f(Z) =
= f'(x) = —cosec? x = f' (E) =_2
4
= f"(x) = 2cosec? x cotx = " (%) =4
2
= COt(x+E) = 1-2x+ = x4 up to the term in x?
4 2!
= cot (x + %) = 1—2x+ 2% up to the term in x?

Example 4:  Use a Taylor series to solve the differential equation,

2 2
y% + (z—i’) +y=0 equation |
up to and including the term in X, given that y =1 and % = 2 when x=0.

In this case the initial value of x is 0, so we shall use

fe) = f(0)+ xf'(0) + gf”(0)+ ’;—Tf”’(o)+--- + %f"(0)+---

= v =yrx(g), + 50, 56,

We already know that y, =1 and (Z—i’) =40 values when x = 0
0

ey (_i(@ ) - _

= (E)o = ( y(dx) 1)0 = -5 values when x =0
- a2y | (dy)? _
equation | Yozt (E) +y=0
3 2 2
Differentiating = y% + %X% + 23—3{’><%+ % =0
ituti -1 (®) = 2yy - _ .

Substituting yo =1, (dx)o =2 and (de)o = -5 values when x = 0

d3 - _
- (d—xﬁ)o+2 X(T5)+2x2x(5)+ 2= 0

- (@),

2
= solutionis y=1+2x+ 2 x(75) + 3-x28

= y=142x— 2x? 41243
2 3



Series expansions of compound functions

Example: Find a polynomial expansion for
COoS 2x . . .
: up to and including the term in x°.
1-3x
Solution: Using the standard series
2
cos2x = 1— % + - up to and including the term in x®
-1 _ 2 1X—2X-3 3
and (1 -3x) =1+ 3% + =-2(-3x) —( 3x)
=1+ 3x +9x? + 27x3 up to and including the term in x*
CoS2x
- =(1- (20)" E0) (1 + 3x + 922 + 27x)
1-3x
=14+ 3x +9x? + 27x3 — 2x% — 6x3 up to and including the term in x*
cos 2x 5 3 ) )
= =1+3x+7x+ 21x up to and including the term in x®




7 Polar Coordinates

The polar coordinates of P are (r, &)
P(r0)

r = OP, the distance from the origin or pole,

and @ is the angle made anti-clockwise with the o 0

In the Edexcel syllabus r is always taken as positive or 0,and 0< 8 <2«

(But in most books r can be negative, thus (—4, g) is the same point as (4, 37”) )

Polar and Cartesian coordinates

From the diagram Ary
Y P(xy)
and tan6 = 2 (use sketch to find ). r
X =rcosd and y = rsin 6. - 5 >
X

Sketching curves

In practice, if you are asked to sketch a curve, it will probably be best to plot a few points. The
important values of @ are those for which r=0.

The sketches in these notes will show when r is negative by plotting a dotted line; these sections
should be ignored as far as Edexcel A-level is concerned.

Some common curves

r=a+bcos0O

Cardiod Limacon without dimple Limacon with a dimple

a=b a>2b, b<a<?2b

41y 41y Ay
/\r=3+30036 — /—\r=3+20039
r=3+1.4cos6
2 2 2
X X

2 4 -2 2 4 6 2 4

2 -2 -2




Limacon with a loop

a<b

r negative in the loop

r=2+3cos0

6
-4
Line (x = 3)
41y
r=3secH
2
X
-4 -2 2 4
-2
-4

in the x-direction.

Circle

Line (y = 3)

41y
r=3cosect
2
X
-4 -2 2 4
-2
-4

Half line

6=1/6

Circle

r=6c¢os0

With Cartesian coordinates the graph of y =f (x —a) is the graph of y = f (x) translated through a

In a similar way the graph of r=3sec(f— ), or r =3 sec(a— ), is a rotation of the graph of

r = secd through «, anti-clockwise.

Line (x = 3 rotated through %)

r =3sec(6-T11/6)

x=3

A

initial line

B\

Line (y = 3 rotated through %)

r =3cosec(6-11/6)

initial line




Rose Curves

r=4cos 36 r=4cos

30

0<O<~r L 0<2x

r=4cos30

below x-axis, r negative

above x-axis, r negative

r=4cos 36
0<8<2x

whole curve forr >0

The rose curve will always have n petals when n is odd, for0< 8 < 2x.

r=3cos46

When n is even there will be n petals for r > 0 and
0<6<2r.

Thus, whether n is odd or even, the rose curve
r=acoséd always has n petals, when only the
positive (or 0) values of r are taken.

Edexcel only allow positive or 0 values of r.

Leminiscate of Bernoulli Spiral r=26

2 Y r2=16c0s260

41y

r=3cos40

-
27

r=20
r>0

-40

Spiral r=¢?




Circle r=10cos @

Notice that in the circle on OA as diameter, the angle P is
90° (angle in a semi-circle) and trigonometry gives us that
r=10cos 4.

Circle r=10sin @

In the same way r = 10 sin @ gives a circle on the y-axis.

Areas using polar coordinates

.1
Remember: area of a sector is 5r20

Area of OPQ = SA ~ §r250
—  Area OAB ~ z(grzae)

as 08 -0

y
5 P
0 A X
o 0
-5 r=10cos6
r=10sin®
P
X
-5 5

6, 1 0
=  Area OAB = fel ~r2do

initial line

v



Example: Find the area between the
curve r=1+tan 6@

and the half lines ® =0 and 6 ==

3
Solution: Area = fo% 212 dg
2
=[5 1(1+twn6)? do
- 7t/3 1 2
= fo 1(1+2tan6 +tan?0) do
- 7t/3 1 2
= fo 1(2tanf + sec?6) do

A 1 1 7-[/3
— E [2In(sec#) + tan 0],

= In2 +§

Tangents parallel and perpendicular to the initial line
y=rsinf and x =rcosf

d
ay  _ y/dH
dx dx/de

r=1+tan®

1) Tangents will be parallel to the initial line (&= 0), or horizontal, when )

dy
= —de—O

d ing) = 0
= —de(rsm =

2) Tangents will be perpendicular to the initial line (6= 0), or vertical, when

dx
= dB_O

a 9) = 0
= de(rcos ) =

dx

Note that if both Z—Z =0 and = 0, then Z—z is not defined, and you should look at a sketch

to help (or use I'Hépital's rule).

dx

dy
dx


http://en.wikipedia.org/wiki/L'H%C3%B4pital's_rule

Example: Find the coordinates of the points on r = 1 4+ cos 8 where the tangents are

€) parallel to the initial line,
(b) perpendicular to the initial line.

Solution: r =14 cos @ isshown in the diagram.

(@) Tangents parallelto 8 =0 (horizontal)

= 3—2’:0 = ;—e(rsine) =0

= :—9((1+c030)sin0)= 0 = :—G(Sin9+sin9c059)= 0
= cos@ —sin? 6 + cos?6 =0 = 2cos?0+cosf—1 =0
= (2cos® —1)(cosf+1)= 0 = cosO = % or —1

= 0=i§ or @

(b) Tangents perpendicular to € =0 (vertical)

dx i A
= E_O = de(rcos@)— 0
= 5—9((1+c059)c059) =0 = :—6(c059+c0529) =0
= —sinf —2cosfsinf = 0 = sinf (1+2cosf) =0
= cosf = —% or sinf =0
= 0= iz?” or 0,7
y
From the above we can see that B treoss
€)] the tangent is parallelto 8 =0
_r - _r c
at B (6=2),and E(9=-1), X
also at 8 = m, the origin — see below (c) 1 AT
D
(b) the tangent is perpendicularto € =0 -1
_ _2m __—2m E
at A(0=0), C (6==) and D (9 ==2)
(c) we also have both Z—Z =0 and Z—Z =0 when 6 = m!!!

From the graph it looks as if the tangent is parallel to & =0 at the origin, when 6 = =,

and from I'Hopital's rule it can be shown that this is true.




Appendix

n'" roots of 1

Short method
Example: Find the 5" roots of — 4 + 4i = 42 " /a

Solution: First find the root with the
smallest argument Im

(4\/2637:1'/4)1/5 = V7o

b

Then sketch the symmetrical ‘spider
diagram where the angle between
successive roots is 27/ = 87/,

then find all five roots by
successively adding 87/, to the
argument of each root

to give
\/i e371'l'/20’ \/’2 ellni/ZO, \/? 61977.'1'/20,

\/E eZ77Ti/20 - \/7 e—1371'i/20, and \/E e357Ti/20 _ \/Ee—STL'i/ZO.

This can be generalized to find the n™ roots of any complex number, adding 27/, successively
to the argument of each root.

Warning: You must make sure that your method is very clear in an examination.



Sum of n'" roots of 1

Consider the solutions of z %=1, the
complex 10" roots of 1.

Suppose that @ is the complex 10" root of 1
with the smallest argument. The ‘spider’
diagram shows that the roots are

o, 0 o ot ..., oand 1.

Symmetry indicates that the sum of all these
roots is a real number, but to prove that this
sum is O requires algebra.

= l-o)(l+0+o’+0’+0*+... +0° =0

= l+w+o’+o’+0*+... +0° =

factorising

0, sincel—w # 0

o the sum of the complex 10" roots of 1 is 0.

This can be generalized to show that the sum of the n™ roots of 1 is 0, for any n.

Re

1—»



1* order differential equations

Justification of the Integrating Factor method.

d .
d—z +Py = Q where P and Q are functions of x only.

We are looking for an Integrating Factor, R (a function of x), so that multiplication by R
of the L.H.S. of the differential equation gives an exact derivative.

Multiplying the L.H.S. by R gives

R dy + RP
dx Y

If this is to be an exact derivative we can see, by looking at the first term, that we should

try
d dy dR dy
&(Ry)— Ra‘l‘}la = Rﬁﬁ'RPy
dR = RP
= ydx B Y
[Lan= [ra
= R = X

= InR =dex

- R = elPax

Thus e/ P4 s the required I.F., Integrating Factor.



Linear 2" order differential equations

Justification of the A.E. — C.F. technique for unequal roots

d*y dy
w'l‘ ba+ cy =0

2

without loss of generality we can take the coefficient of d—szl as 1.

Let the roots of the A.E. be «and S (a # ), then the A.E. can be written as
M-a)m-£H=0 & m’—(a+f)m+af=0
So the differential equation can be written

4% Yy =0 I
dxz (a ﬁ)dx aﬁy y-

We can ‘sort of factorise’ this to give

(d )(dy )—o I "multiply’out to check
ool | oo By) = multiply’out to chec

N t (dy )— in II d t & =0
ow put | = By | =z, in II, andweget ———az=

1
= f;dz= fadx = z=Ae*

But (d—y—,@>=z = ﬂ—ﬁ =Ae*
dx y dx Y

The Integrating Factor is e #*

d(e P*y) B
dx 9

d
— e Bx @y ﬁe—ﬁxy = Ae%eBr —

A e (a_ﬁ)x
dx

A
= e_ﬁx = e(a_ﬁ)x + B
Y= =P

= y=Ae¥™ + Bef*

which is the C.F., for unequal roots of the A.E.



Justification of the A.E. — C.F. technique for equal roots

d*y dy
W-l_ ba‘l‘ cy—O

2

without loss of generality we can take the coefficient of d_x}ZI as 1.

Let the roots of the A.E. be « and «, (equal roots) then the A.E. can be written as
M-a)(m-a)=0 < m*—2am+a?=0

So the differential equation can be written

We can ‘sort of factorise’ this to give

l ) ) g

1
= Edz= fadx = z=Ae*
d

y _ dy Coaax
But (dx ay)—z = I ay =Ae

ax

The Integrating Factor is e ~

d d(e
= e~ %— ae™ ¥y =Ae e ™ = % = A

= ey = Ax + B
= y = (Ax + B)e™

which is the C.F., for equal roots of the A.E.



Justification of the A.E. — C.F. technique for complex roots

Suppose that « and g are complex roots of the A.E., then they must occur as a conjugate pair
(see FP1),

= a =a+iband g =a-ib

= CF. isy=Ae @*rix 4 g g @-ibix assuming that calculus works for complex nos. which it does
= y=e®XAe™ +Be ™) = e™(A(cosx +isinx) + B(cosx —isinx))

= CF. is y= e®(Ccosx + Dsinx), where C and D are arbitrary constants.

We now have the rules for finding the C.F. as before

— 4+ cy =0 where a, b and c are constants.

First write down the Auxiliary Equation, A.E
AE. am?+4+ bm+c=0
and solve to find the roots m = «a or f8

e If « and S are both real numbers, and if a # 8
then the Complimentary Function, C.F., is
e y=Ae" + Behx where A and B are arbitrary constants of integration

e If a and B are both real numbers, and if a« =
then the Complimentary Function, C.F., is
o y=(A+Bx)e®, where A and B are arbitrary constants of integration

e If a and B are both complex numbers, and if « =a +ib, § =a—ib
then the Complimentary Function, C.F.,

o y=e%(Asinbx + B cos bx),
where A and B are arbitrary constants of integration



Justification that G.S. = C.F. + P.l.

Consider the differential equation ay" + by' + cy =f (x)

Suppose that u (a function of x) is any member of the Complimentary Function,
and that v (a function of x) is a Particular Integral of the above D.E.

= au"+bu+cu=0
and av"+bv'+cv="F(x)
Let w=u+v

au+v)"+b(u+v) +c(u+v)

then aw" +bw' +cw

(au" +bu' +cu) + (av'+hbv'+cv) = 0+f(x)=f(X)
= w is a solution of ay" + by' + cy =f ()
= all possible solutions y = u + v are part of the General Solution. I

We now have to show that any member of the G.S. can be written in the form u + v, where u is
some member of the C.F., and v is the P.I. used above.

Let z be any member of the G.S, then az" + bz' +cz =f (x).
Consider z—v
a(z-v)'+b(z-v)+c(z-v)=(az"+bz'+cz) — (av"+bv'+cv) = fT(X)—f(x)=0
= (z - v) is some member of the C.F. —call it u
= Z-V=U = z=U+V

thus any member, z, of the G.S. can be written in the form u + v, where u is some member of the
C.F., and v is the P.I. used above. I

I and Il = the Complementary Function + a Particular Integral forms the complete General
Solution.



Maclaurin’s Series

Proof of Maclaurin’s series

To express any function as a power series in X
Let f()=a+bx+ox®+dC+ex' +HC+ ... |
put x=0 = f(0)=a

— =  f'(xX) = b+2cx +3dx® + 4ex® + 5fix* + ...

put x=0 = f'0)=b

- =  f"(X)=2x1c+3x2dx+ 4 x 3ex?+5x 4K + ...
put x=0 =  f"(0)=2x1c =  c=—f"(0)
= = f"(X)=3x2x1d+4x3x2ex+5x4x 30+

put x=0 = f"(0)=3x2x1d = d=f"(0)
continuing in this way we see that the coefficient of x"in 1 is %f"(O)

= 1= FO+xXFO)+f7©0) +TFO) + ..+ fR(0) + ..

The range of x for which this series converges depends on f (x), and is beyond the scope
of this course.

Proof of Taylor’s series
If we put f(x) = g(x + a) then

f(0)=g(@), f'(0)=g'@, f"(0)=g"@), ..., f"(0)=g"@), ...
and Maclaurin’s series becomes

g(x+a)= g(@)+xg@+1g"@+1 g"(@) +... + = g'@)+ ...

which is Taylor’s series for g(x + a) as a power series in X

Replace x by (x —a) and we get

(x-a)"

g(x)= g(a)+(x—a)g'a)+ _(x—;)Z g"(a) + —(x_g!“)g gU@+ ...t g"@t ...

which is Taylor’s series for g(x) as a power series in (x —a)
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