
  

Further Pure 2 
1  Inequalities ...................................................................................................... 3 

Algebraic solutions ................................................................................................................. 3 

Graphical solutions ................................................................................................................. 4 

2 Series  Method of Differences ....................................................................... 5 

3 Complex Numbers ........................................................................................... 7 

Modulus and Argument .......................................................................................................... 7 

Properties............................................................................................................................ 7 

Euler’s Relation   e
i

 ........................................................................................................... 7 

Multiplying and dividing in mod-arg form .......................................................................... 7 

De Moivre’s Theorem ............................................................................................................. 8 

Applications of De Moivre’s Theorem ................................................................................ 8 

   
 

      2 cos n    and      
 

   2 i sin n ................................................................. 8 

n
th

 roots of a complex number ................................................................................................. 9 

Roots of polynomial equations with real coefficients ............................................................ 10 

Loci on an Argand Diagram .................................................................................................. 10 

Transformations of the Complex Plane ................................................................................. 12 

Loci and geometry ................................................................................................................ 13 

4 First Order Differential Equations ................................................................. 14 

Separating the variables, families of curves ........................................................................... 14 

Exact Equations .................................................................................................................... 14 

Integrating Factors ................................................................................................................ 15 

Using substitutions ............................................................................................................... 15 

5 Second Order Differential Equations ............................................................. 17 

Linear with constant coefficients .......................................................................................... 17 

(1) when  f (x) = 0 ......................................................................................................... 17 

(2) when f (x) ≠ 0,  Particular Integrals ......................................................................... 18 

D.E.s of the form   
   

     
  

  
         ........................................................................ 21 

6 Maclaurin and Taylor Series .......................................................................... 22 

1) Maclaurin series ...................................................................................................... 22 

2) Taylor series ........................................................................................................... 22 

3) Taylor series – as a power series in  (x  a) ............................................................. 22 



4) Solving differential equations using Taylor series .................................................... 22 

Standard series ...................................................................................................................... 23 

Series expansions of compound functions ............................................................................. 25 

7 Polar Coordinates .......................................................................................... 26 

Polar and Cartesian coordinates ............................................................................................. 26 

Sketching curves ................................................................................................................... 26 

Some common curves ........................................................................................................... 26 

Areas using polar coordinates ................................................................................................ 29 

Tangents parallel and perpendicular to the initial line ............................................................ 30 

Appendix ............................................................................................................. 32 

n
th
 roots of 1 .......................................................................................................................... 32 

Short method ..................................................................................................................... 32 

Sum of n
th
 roots of 1 .......................................................................................................... 33 

1
st
 order differential equations ............................................................................................... 34 

Justification of the Integrating Factor method. ................................................................... 34 

Linear 2
nd

 order differential equations ................................................................................... 35 

Justification of the A.E. – C.F. technique for unequal roots ............................................... 35 

Justification of the A.E. – C.F. technique for equal roots ................................................... 36 

Justification of the A.E. – C.F. technique for complex roots .............................................. 37 

Justification that G.S. = C.F. + P.I. .................................................................................... 38 

Maclaurin’s Series ................................................................................................................. 39 

Proof of Maclaurin’s series ................................................................................................ 39 

Proof of Taylor’s series ..................................................................................................... 39 

 

  



1  Inequalities 

Algebraic solutions 

Remember that if you multiply both sides of an inequality by a negative number, you must turn 

the inequality sign round:    2x  >  3    2x  <  3. 

A difficulty occurs when multiplying both sides by, for example,  (x  2); this expression is 

sometimes positive (x > 2), sometimes negative (x < 2) and sometimes zero (x = 2). In this case 

we multiply both sides by  (x  2)
2
, which is always positive (provided that  x ≠ 2). 

Example 1: Solve the inequality         
  

   
              

Solution: Multiply both sides by  (x  2)
2 
   we can do this since (x  2) ≠ 0 

                        DO NOT MULTIPLY OUT 

                        

                      

                      

               , below x-axis 

 

Note – care is needed when the inequality is  ≤  or  ≥. 

Example 2: Solve the inequality   
 

   
 

 

   
 ,  x ≠ 1,  x ≠ 3 

Solution: Multiply both sides by  (x + 1)
2
(x + 3)

2
  which cannot be zero 

                             DO NOT MULTIPLY OUT 

                               

                          

                          

from sketch it looks as though the solution is 

                                 

BUT since  x ≠ 1,  x ≠ 3,  

the solution is                                       ,  above the x-axis 
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Graphical solutions 

Example 1: On the same diagram sketch the graphs of    
  

   
             . 

Use your sketch to solve the inequality    
  

   
  ≥  x  2  

Solution: First find the points of intersection of the two graphs 

 
  

   
  =  x  2  

             

              

             

From the sketch we see that       

                  .   Note that  x  –3 

 

 

For inequalities involving   2x  5  etc., it is often essential to sketch the graphs first. 

Example 2: Solve the inequality   x
2
  19  <  5(x  1). 

Solution: It is essential to sketch the curves first in order to see which solutions are needed. 

To find the point  A,  we need to solve 

              
            

                             

   

From the sketch  x ≠ 8  x = 3 

 

To find the point  B,  we need to solve 

              
            

                                  

From the sketch  x ≠ 2  x = 7 

    the solution of  x
2
  19  <  5(x  1)  is    3 < x < 7 
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2 Series  Method of Differences 

The trick here is to write each line out in full and see what cancels when you add. 

Do not be tempted to work each term out – you will lose the pattern which lets you cancel when 

adding. 

 

Example 1: Write   
 

      
  in partial fractions, and then use the method of differences to find 

the sum      
 

      

 

   
  =  

 

   
 

 

   
 

 

   
   

 

      
 . 

Solution:             
 

      
       

 

 
       

 

   
 

put  r = 1        
 

   
            

 

 
         

 

 
 

put  r = 2        
 

   
            

 

 
         

 

 
 

put  r = 3        
 

   
            

 

 
         

 

 
 

etc. 

put  r = n      
 

      
         

 

 
         

 

   
 

   

               
 

      

 

 

                
 

   
        

 

   
     

 

 

 

 

 

 

 



Example 2: Write   
 

           
  in partial fractions, and then use the method of differences to 

find the sum      
 

           

 

   
  =  

 

     
 

 

     
 

 

     
   

 

           
 . 

Solution:               
 

           
     

 

 
       

 

   
     

 

   
 

put  r = 1             
 

     
            

 

 
         

 

 
         

 

 
 

put  r = 2             
 

     
            

 

 
         

 

 
         

 

 
 

put  r = 3             
 

     
            

 

 
         

 

 
         

 

 
 

put  r = 4             
 

     
            

 

 
         

 

 
         

 

 
 

 

etc. 

 

put  r = n 1     
 

           
        

 

   
     

 

 
      

 

   
 

put  r = n          
 

           
         

 

 
      

 

   
     

 

   
 

  

                                  
 

           

 

 

       
 

 
   

 

 
 

 

 
  

 

   
 

 

   
 

 

   
    

        =   
 

 
  

 

   
 

 

   
 

        =    
                 

           
 

                         
 

           

 

 

      
     

           
   

                                          
 

           

 

 

      
     

           
      

 

  



3 Complex Numbers 

Modulus and Argument 

 

The modulus of  z = x + iy   is the length of  z 

    r  =   z   =        

and the argument of  z  is the angle made by  z 

with the positive  x-axis,   –π <  arg z ≤ π. 

N.B.  arg z  is not always equal to        
 

 
  

Properties 

z  =  r cos   +  i r sin  

 zw   =   z   w ,     and       
 

 
   

   

   
 

arg (zw)  =  arg z  +  arg w,    and     arg  
 

 
   =  arg z  –  arg w 

 

Euler’s Relation   ei 

z  =  e 
i

    =   cos   +  i sin  

 

 
  =  e 

–i
   =  cos   –  i sin  

Example: Express     
   

 
 
  in the form  x + iy. 

Solution:      
   

 
 
 =        

  

 
        

  

 
   

 =  
    

 
     

   

 
 

 

Multiplying and dividing in mod-arg form 

                        

                                                                 

and 

             
 

 
          

                                       
 

 
             

 

 
           

y 

x 

z 

r 

 

x 

y 



De Moivre’s Theorem 

      
 

                                                      

Applications of De Moivre’s Theorem 

Example: Express   sin 5  in terms of  sin   only. 

Solution: From De Moivre’s Theorem we know that     

cos 5  +  i sin 5   =  (cos  + i sin  )
5

   

=  cos
5  + 5i cos

4  sin  + 10i
2
 cos

3  sin
2  + 10i

3
 cos

2  sin
3  + 5i

4
 cos  sin

4  + i
5
 sin

5  

Equating imaginary parts 

 sin 5  =  5cos
4  sin  – 10 cos

2  sin
3  +  sin

5 

  =  5(1 – sin
2 )

2
 sin  –  10(1 – sin

2) sin
3  + sin

5  

  =  16 sin
5   –  20 sin

3  +  5 sin  

   
 

      2 cos n    and      
 

   2 i sin n  

z  =  cos  + i sin  

                                      

and  
 

                                        

from which we can show that 

   
 

 
            and       

 

 
         

     
 

      2 cos n       and        
 

      2i sin n        

 

Example: Express  sin
5   in terms of   sin 5 ,  sin 3   and  sin . 

Solution: Here we are dealing with  sin , so we use 

                  
 

 
 

 

 

                 =            
 

 
         

 

     – 10   
 

        
 

      
 

          

                  =        
 

           
 

           
 

 
  

                  =    2i sin 5    –  5 × 2i sin 3   + 10 × 2i sin  

 sin
5    =    

 

  
                      



nth roots of a complex number 

The technique is the same for finding  n
th

  roots of any complex number. 

Example: Find the 4
th
 roots of  8   + 8  i, and show the roots on an Argand Diagram. 

Solution: We need to solve the equation    z
4
 = 8   + 8  i 

1. Let  z  =  r cos  + i r sin  

 z
4
  =  r 

4
 (cos 4  + i sin 4) 

2.  8   + 8  i  =       =      and     arg (8   + 8  i )  =  
 

 
 

 8   + 8  i =  16 (cos 
 

 
  + i sin 

 

 
) 

3. Then   z
4
 = 8   + 8  i 

becomes    r 
4
 (cos 4  + i sin 4)   =   16 (cos 

 

 
  + i sin 

 

 
) 

     =   16(cos 
  

 
  + i sin 

  

 
)  adding 2π 

     =   16 (cos 
   

 
  + i sin 

   

 
)  adding 2π 

     =   16 (cos 
   

 
  + i sin 

   

 
)  adding 2π 

 

4.  r
 4
  =  16 and 4   =  

 

 
 ,    

  

 
 ,    

   

 
 ,    

   

 
 

 r    =  2 and    =   
 

  
 ,    

  

  
 ,    

   

  
  

    

  
  ,    

   

  
 

   

  
 ;         < arg z ≤   

 

5.  roots are    z1 = 2 (cos 
 

  
  + i sin 

 

  
)     =     1962  +  0390 i 

   z2 = 2 (cos 
  

  
  + i sin 

  

  
)       =    –0390 + 1962 i 

   z3 = 2 (cos 
    

  
  + i sin 

    

  
)    =    –1962  – 0390 i 

   z4 = 2 (cos 
   

  
  + i sin 

   

  
)    =     0390 – 1962 i 

 

 

 

Notice that the roots are symmetrically placed around 

the origin, and the angle between roots is  
  

 
    

 

 
   

The angle between the n
th
  roots will always be   

  

 
  . 

 

 

For sixth roots the angle between roots will be  
  

 
    

 

 
 ,  and so on. 
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Roots of polynomial equations with real coefficients 

1. Any polynomial equation with real coefficients, 

                               
             ,     ……..  (I) 

where all   ai   are real, has a complex solution 

2.     any complex n
th
 degree polynomial can be factorised into n linear factors over the 

complex numbers 

3. If  z = a + ib  is a root of  (I), then its conjugate, a – ib  is also a root  see FP1. 

4. By pairing factors with conjugate pairs we can say that any polynomial with real 

coefficients can be factorised into a combination of linear and quadratic factors over the 

real numbers. 

Example: Given that  3  2i  is a root of   z
3
  5z

2
 + 7z + 13 = 0 

(a) Factorise over the real numbers 

(b) Find all three real roots 

Solution:   

(a) 3  2i  is a root    3 + 2i  is also a root 

 (z  (3  2i))(z  (3 + 2i))  =  (z
2
  6z  + 13)  is a factor 

 z
3
  5z

2
 + 7z + 13 =  (z

2
  6z  + 13)(z + 1)  by inspection  

 (b)    roots are  z  =   3  2i,   3 + 2i   and   1   

 

 

Loci on an Argand Diagram 

Two basic ideas 

1. z – w  is the distance from  w  to  z . 

2. arg (z – (1 + i))  is the angle made by the half line joining  (1+i)  to  z, with the  x-axis. 

Example  1: 

z – 2 – i = 3   is a circle with centre  (2 + i)  and radius 3 

 

Example  2:  

z  + 3 – i  =  z – 2 + i   

   z  – (–3 + i)  =  z – (2 – i)   

 is the locus of all points which are equidistant from 

the points   

A (– 3, 1)  and  B (2, –1), and so is the perpendicular 

bisector of  AB. 
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Example  3:  

arg (z  – 4)  = 
  

 
  is a half line, from (4, 0), 

making an angle of  
  

 
  with the  x-axis. 

 

Example  4: 

z – 3 =  2 z + 2i   is a circle  

(Apollonius’s circle).  

To find its equation, put  z = x + iy 

   (x – 3) + iy  =  2x + i(y + 2)   square both sides 

    (x – 3)
2
 + y

2
   =  4(x

2
 + (y + 2)

2)   leading to 

    3x
2
 + 6x + 3y

2
 + 16y + 7  =  0 

     (x + 1)
2 
 +    

 

 
 

 

  =  
  

 
 

which is a circle with centre  (–1, 
  

 
 ), and radius  

    

 
  . 

 

Example 5: 

arg  
   

   
   

 

 
     

                       
 

 
 

      = 
 

 
 

which gives the arc of the circle as shown. 

 

N.B. 

The corresponding arc below the x-axis  

would have equation 

arg  
   

   
     

 

 
     

as    –   would be negative in this picture. 

( is a ‘larger negative number’ than .) 
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Transformations of the Complex Plane 

Always start from the  z-plane and transform to the  w-plane, z = x + iy  and  w = u + iv. 

Example 1: Find the image of the circle  z  5 = 3   

under the transformation      
 

   
  . 

Solution:  First  rearrange to find  z 

    
 

   
    z  2 = 

 

 
  z = 

 

 
   

 Second  substitute in equation of circle 

     
 

 
          

    

 
    

  1  3w = 3w   3 
 

 
         

     
 

 
      

which is the equation of the perpendicular bisector of the line joining  0  to  
 

 
, 

 the image is the line  u = 
 

 
 

Always consider the ‘modulus technique’ (above) first;  

if this does not work then use the u + iv method shown below. 

Example 2: Show that the image of the line  x + 4y = 4  under the transformation 

   
 

   
   is a circle, and find its centre and radius. 

Solution: First rearrange to find z      z = 
 

 
   

 The ‘modulus technique’ is not suitable here. 

z = x + iy      and  w = u + iv    

   z  =   
 

 
      

    

    
     

 

    
 

    

    
   

 x + iy   =   
    

          

Equating real and imaginary parts   x  =  
 

         and  y  =  
  

      

   x + 4y = 4    becomes   
 

           
  

       =  4 

 u
2
  u  +  v

2
 + 4v  =  0 

    
 

 
 

 

         
  

 
 

which is a circle with centre   
 

 
      and radius  

   

 
 . 

There are many more examples in the book, but these are the two important techniques. 



Loci and geometry 

It is always important to think of diagrams. 

Example: z  lies on the circle  z  2i = 1.  

Find the greatest and least values of  arg z. 

Solution: Draw a picture! 

The greatest and least values of   arg z  

will occur at  B  and  A. 

Trigonometry tells us that 

 = 
 

 
 

and so greatest and least values of  

arg z  are  
  

 
   and   

 

 
 

 

 

  

1 1 
2 

  

A B 



4 First Order Differential Equations 

Separating the variables, families of curves 

Example: Find the general solution of 

  

  
 

 

       
 ,    for  x > 0, 

and sketch some of the family of solution curves. 

Solution: 
  

  
 

 

       
      

 

 
         

 

      
         

 

 
  

 

   
       

 2ln y   =   ln x    ln (x + 1)  +  ln A 

 y
2 
 =  

  

   
 

Thus for varying values of  A  and for  x > 0, we have 

 

 

 

 

 

 

 

 

Exact Equations 

In an exact equation the L.H.S. is an exact derivative  (really a preparation for Integrating 

Factors). 

Example: Solve   sin x  
  

  
   +  y cos x  = 3x

2
 

Solution: Notice that the L.H.S. is an exact derivative 

sin x  
  

  
   +  y cos x   =   

 

  
        

 
 

  
          =   3x

2
 

 y sin x  =   3x
2
  dx   =   x

3
  + c 

 y  =   
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Integrating Factors 

  

  
  + Py  =  Q          where  P  and  Q  are functions of  x  only. 

 In this case, multiply both sides by an Integrating Factor,            . 

The L.H.S. will now be an exact derivative,  
 

  
    . 

Proceed as in the above example. 

Example: Solve    x
   

  
  + 2y  =  1 

Solution: First divide through by  x 

 
  

  
   +  

 

 
   

 

 
    now in the correct form 

Integrating Factor, I.F., is              =    
 

 
   

  =         =  x
2
 

 x
2   

  
  + 2xy  =  x   multiplying by  x2 

 
 

  
       =  x ,   check that it is an exact derivative 

 x
2
 y  =          

  

 
        

 y   =   
 

 
 

 

   

 

Using substitutions 

Example 1: Use the substitution   y = vx  (where  v  is a function of  x) to solve the equation 

 
  

  
  

        

        . 

Solution: y = vx       
  

  
  =  v  +  x 

  

  
 

 
  

  
  

       

            v  +  x 
  

  
  =  

              

             =   
      

     

and we can now separate the variables 

 x 
  

  
   =  

      

           
               

      =  
  

     

 
    

  
 
  

  
    

 

 
 

  
 

  
 + 

 

 
  dv   =   

 

 
      

 
 

 
       

  

 
   =  ln x  +  c 

But   v  =  
 

 
,    

 

 
  

 

 
    

  

      =  ln x  +  c 

 2x
2
 ln y  + y

2
 = 6x

2
 ln x  +  c x2

  c is new arbitrary constant 

and I would not like to find  y‼! 

 

If told to use the substitution    
 

 
, rewrite as y = vx  and proceed as in the above example. 



Example 2: Use the substitution    
 

 
  to solve the differential equation  

 
  

  
           . 

Solution:   
 

 
            

  

  
    

  

   
  

  
 

 
  

   
  

  
    

 

    +  
 

 
     

 
  

  
             

Integrating factor is  R =              =                  

      
  

  
                  

 
  

  
                 check that it is an exact derivative 

 z sin x  =  cos x  +  c 

 z  =  
      

    
    but     

 

 
   

    
    

      
 

 

Example 3: Use the substitution  z = x + y  to solve the differential equation 

 
  

  
          

Solution: z = x + y     
  

  
    

  

  
 

 
  

  
         

  
 

      
             separating the variables 

  
 

 
     

 

 
               1 + cos z  =  1 + 2 cos2  

 

 
   1 =  2 cos2  

 

 
  

 tan  
 

 
   =          

But   z = x + y          
   

 
      

 



5 Second Order Differential Equations  

Linear with constant coefficients 

 
   

        
  

  
                where  a, b  and  c  are constants. 

 

(1) when  f (x) = 0 

First write down the Auxiliary Equation, A.E 

A.E.             

and solve to find the roots                 

(i) If              are both real numbers, and if      

then the Complimentary Function, C.F., is 

             , where A  and  B  are arbitrary constants of integration 

 

(ii) If              are both real numbers, and if      

then the Complimentary Function, C.F., is 

            , where A  and  B  are arbitrary constants of integration 

 

(iii) If              are both complex numbers, and if                

then the Complimentary Function, C.F.,  

                       ,    

where A  and  B  are arbitrary constants of integration 

Example 1: Solve   
   

        
  

  
        

Solution: A.E. is            

               

 m  = 1  or  3 

                 when f (x) = 0, the C.F. is the solution 

 

Example 2: Solve    
   

        
  

  
          

Solution: A.E. is              

 (m + 3)
2
 = 0 

 m  =  3  (and 3)    repeated root 

                 when f (x) = 0, the C.F. is the solution 

 



Example 3: Solve    
   

        
  

  
           

Solution: A.E. is               

 (m + 2)
2
 = –9 = (3i)

2 
 

 (m + 2) =   3i 

 m  =  2  3i   or   2 + 3i 

                          when f (x) = 0, the C.F. is the solution 

 

(2) when f (x) ≠ 0,  Particular Integrals 

First proceed as in (1) to find the Complimentary Function, then use the rules below to 

find a Particular Integral, P.I. 

Second  the General Solution, G.S. , is found by adding the C.F. and the P.I. 

 G.S.  =  C.F.  +  P.I. 

Note that it does not matter what P.I. you use, so you might as well find the easiest, 

which is what these rules do. 

 

(1) f (x) = e
kx

. 

 Try  y = Ae
kx

 

 unless   e
kx

  appears, on its own, in the C.F., in which case try   y = Cxe
kx

  

 unless   xe
kx

  appears, on its own, in the C.F., in which case try   y = Cx
2
e

kx
. 

 

(2)              or              

 Try                      

 unless  sin kx  or  cos kx  appear in the C.F., on their own, in which case 

 try                           

 

(3) f (x)  =  a polynomial of degree  n. 

 Try   f (x)  =                       
               

 unless a number, on its own, appears in the C.F., in which case 

 try    f (x)  =               
          

                

 i.e.    try  f (x) = a polynomial of degree n. 

 

(4) In general 

 to find a P.I., try something like  f (x), unless this appears in the C.F. (or if there is 

a problem), then try  something like  x f (x). 

 

 

 



Example 1: Solve   
   

        
  

  
            

 

Solution: A.E.  is  m
2
 + 6m + 5 = 0 

 (m + 5)(m + 1) = 0  m = 5  or  1 

 C.F. is                 

 

For the P.I., try  y = Cx + D 

 
  

  
          

   

      

 

Substituting in the differential equation gives 

 0  +  6C  +  5(Cx + D)  = 2x 

 5C = 2         comparing coefficients of x 

   C  =  
 

 
  

and 6C  +  5D  =  0        comparing constant terms 

    D  =  
   

  
   

 P.I.  is     
 

 
     

  

  
  

 G.S.  is                  
 

 
     

  

  
   

 

 

Example 2: Solve    
   

        
  

  
             

 

Solution: A.E. is   is  m
2
 – 6m + 9 = 0 

 (m  3)
2
  =  0 

 m  =  3           repeated root 

 C.F. is               

 

In this case, both       and x     appear, on their own, in the C.F.,  

so for a P.I. we try            

 
  

  
                    

and 
   

                                      

 

Substituting in the differential equation gives 

 

                                            + 9               

             

    
 

 
 

 P.I. is     
 

 
      

 G.S. is                  
 

 
      



Example 3: Solve   
   

      
  

  
            

 given that  x = 0 and        when  t = 0. 

 

Solution: A.E. is   m
2
 – 3m + 2 = 0 

 m  =  1 or 2 

 C.F. is               

 

For the P.I. try                             BOTH sin 2t  AND  cos 2t are needed 

 

                          

and                            

 

Substituting in the differential equation gives 

 

                    3(               ) +  2(               = 4 cos 2t 

 2C + 6D =  0    C + 3D = 0  comparing coefficients of  sin 2t 

and 6C  2D  =  4  3C + D  =  2  comparing coefficients of  cos 2t 

 C = 
  

 
   and      

  

 
 

 P.I. is      
 

 
       

 

 
      

 G.S. is               
 

 
       

 

 
       

                
 

 
       

 

 
       

x = 0 and  when  t = 0      0 =  A + B  
 

 
 

and        when  t = 0      1 =  A + 2B – 
 

 
 

 A = 
  

 
    and   B  =  2 

 solution is     
  

 
          

 

 
       

 

 
      

  



D.E.s of the form        

   
    

  

  
             

Substitute   x = e
u
 

 
  

  
  =  e

u
 = x  

  

  
 

 

 
 

and  
  

  
 

  

  
  

  

  
       

 
  

  
 

 

 

  

  
   

  

  
   

  

  
  I 

 
   

      
 

  

  

  
  

 

 
 
    

    

  
 

 
   

      
 

  

  

  
  

 

 
 
    

    

  
  

  

  
         chain rule 

 
   

      
 

  

  

  
  

 

  

   

    

      

   
  

   

   
 

  

  
     II 

 

Thus we have        

       
   

       
  

  
    and    

  

  
    

  

  
      from I and II 

 

substituting these in the original equation leads to a second order D.E. with constant 

coefficients. 

 

Example: Solve the differential equation        

         
  

  
           . 

 

Solution: Using the substitution  x = e
u
, and proceeding as above 

 

      

       
   

       
  

  
    and    

  

  
    

  

  
 

 
   

       
  

  
     

  

  
                 

 
   

         
  

  
                 

 A.E. is   m
2
 – 4m + 3 = 0 

 (m  3)(m 1)  =  0  m  =  3  or  1 

 C.F. is  y  =  Ae
3u

  +  Be
u 
 

 

For the P.I. try  y = Ce
2u 

 
  

  
             and   

   

             

                                 

 C = 2 

 G.S. is  y  =  Ae
3u

  +  Be
u 
 +  2e

2u
 

 

But  x = e
u
     G.S. is  y  =  Ax

3
  +  Bx

 
 +  2x

2
  



6 Maclaurin and Taylor Series 

 

1) Maclaurin series 

                        
  

  
        

  

  
             

  

  
        

2) Taylor series 

                          
  

  
        

  

  
             

  

  
        

3) Taylor series – as a power series in  (x  a) 

 replacing  x  by  (x  a)   in 2)  we get 

                       
      

  
       

      

  
            

      

  
        

4) Solving differential equations using Taylor series 

(a) If  we are given the value of  y  when  x = 0, then we use the Maclaurin series with 

             the value of  y  when  x = 0 

         
  

  
 

 
   the value of  

  

  
  when  x = 0 

etc. to give    

                  
  

  
 

 
    

  

  
 

   

    
 
  

  

  
 

   

    
 

    
  

  
 

   

    
 

   

(b) If  we are given the value of  y  when  x = a, then we use the Taylor power series 

with 

             the value of  y  when  x = a 

         
  

  
 

 
   the value of  

  

  
  when  x = a 

etc. to give    

                
  

  
 

 
    

      

  
 

   

    
 

  
      

  
 

   

    
 

   

 

NOTE  THAT  4 (a) and 4 (b) are not in the formula book, but can easily be found 

using the results in 1) and 3). 



Standard series 

       
  

  
  

  

  
       

  

  
      converges for all real  x 

        
  

  
  

  

  
                 

       
     converges for all real  x 

 

        
  

  
  

  

  
                 

       
     converges for all real  x 

           
  

 
  

  

 
              

 
     converges for  1 < x ≤ 1 

            
      

  
      

              

  
     converges for  1 < x < 1 

 

Example 1: Find the Maclaurin series for           , up to and including the term in x
3 

Solution:                       

                         

                                

                                         

and                        
  

  
        

  

  
             

  

  
         

                     
  

  
     

  

  
     up to the term in x3 

              
  

 
 

 

Example 2: Using the Maclaurin series for  e
x
  to find an expansion  of       

, up to and 

including the term in  x
3
. 

Solution:        
  

  
 

  

  
    

      
            

      
 

  
 

      
 

  
  up to the term in x3 

            
        

  
 

    

  
  up to the term in x3 

      
       

 

 
    

 

 
     up to the term in x3 

 



Example 3: Find a Taylor series for        
 

 
 , up to and including the term in  x

2
. 

Solution:            and we are looking for 

     
 

 
   =   

 

 
       

 

 
   

 

  

 
    

 

 
  

                   
 

 
    

                          
 

 
     

                             
 

 
    

       
 

 
           

 

  

 
    up to the term in x2 

       
 

 
           2x

2  
up to the term in x2 

 

Example 4: Use a Taylor series to solve the differential equation,  

  
   

       
  

  
 

 

       equation  I 

up to and including the term in  x
3
, given that  y = 1  and  

  

  
    when  x = 0. 

In this case the initial value of x is 0, so we shall use    

                        
  

  
        

  

  
             

  

  
        

             
  

  
 

 
    

  

  
 

   

    
 
  

  

  
 

   

    
 
. 

We already know that  y0 = 1  and   
  

  
 

 
      values when x = 0 

  
   

    
 

    
 

 
 

  

  
 

 

    
 
  =  5      values when x = 0 

equation  I       
   

       
  

  
 

 

    = 0   

Differentiating        
   

      
  

  
 

   

        
  

  
 

   

     
  

  
       

Substituting  y0 = 1,   
  

  
 

 
    and   

   

    
 
 =  5  values when x = 0 

  
   

    
 

                             

  
   

    
 

    

 solution is             
  

  
        

  

  
      

         
 

 
    

  

 
      



Series expansions of compound functions 

Example: Find a polynomial expansion for 

  
     

    
 , up to and including the term in  x

3
. 

Solution: Using the standard series 

 cos 2x  =    
     

  
       up to and including the term in  x3 

and                   
     

  
       

        

  
        

   =                up to and including the term in  x3 

 
     

    
  =    

     

  
                 

  =                       up to and including the term in  x3 

 
     

    
  =                 up to and including the term in  x3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



7 Polar Coordinates 

The polar coordinates of  P  are  (r,  ) 

r = OP,  the distance from the origin or pole,  

and    is the angle made anti-clockwise  with the 

initial line. 

In the Edexcel syllabus r is always taken as positive or 0, and 0    < 2 

(But in most books  r  can be negative, thus      
 

 
   is the same point as     

  

 
  )   

Polar and Cartesian coordinates 

From the diagram   

r =            

and        
 

 
   (use sketch to find   ). 

x  =  r cos    and  y  =  r sin  . 

Sketching curves 

In practice, if you are asked to sketch a curve, it will probably be best to plot a few points. The 

important values of   are those for which  r = 0.  

The sketches in these notes will show when r is negative by plotting a dotted line; these sections 

should be ignored as far as Edexcel A-level is concerned. 

Some common curves 

          

 Cardiod Limacon without dimple Limacon with a dimple 

 a = b a  2b,         b  a < 2b  

             

  

−12 −10 −8 −6 −4 −2 2 4 6

−4

−2

2
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y

r=3+3cosθ

−12 −10 −8 −6 −4 −2 2 4 6

−4

−2

2

4

x

y

r=3+2cosθ

−14 −12 −10 −8 −6 −4 −2 2 4 6

−4

−2

2

4

x

y

r=3+1.4cosθ

 initial line 

P (r,  ) 

r 

   O 
pole 

y 

x 

P (x, y ) 

r 

 

x 

y 



 Limacon with a loop Circle Half line  

 a < b 
 r negative in the loop   

   

  

 Line (x = 3) Line (y = 3) Circle 

 

 

With Cartesian coordinates the graph of  y = f (x  a) is the graph of y = f (x) translated through a 

in the x-direction. 

In a similar way the graph of   r = 3 sec(  ), or  r = 3 sec(  ), is a rotation of the graph of  

r = sec  through  , anti-clockwise.  

 Line (x = 3 rotated through 
 

 
 ) Line (y = 3 rotated through 

 

 
 ) 
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r=3cosecθ
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r < 0
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3

x=3

A
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3
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π/6
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3

y=3B
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Rose  Curves 

 r = 4 cos 3  r = 4 cos 3 r = 4 cos 3 

 0   <      < 2 0   < 2  

 

    below x-axis, r negative above x-axis, r negative  whole curve for r  0 

The rose curve will always have  n  petals when n is odd, for 0    < 2. 

r = 3 cos 4 

 

When n is even there will be n petals for r ≥ 0 and  

0 ≤  < 2 . 

 

Thus, whether n is odd or even, the rose curve 

r = a cos   always has n petals, when only the 

positive (or 0) values of r are taken. 

Edexcel only allow positive or 0 values of r. 

 

Leminiscate  of  Bernoulli         Spiral   r = 2        Spiral  r = e
  
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Circle  r = 10 cos  

Notice that in the circle on  OA  as diameter, the angle  P  is 

90
o
 (angle in a semi-circle) and trigonometry gives us that  

r = 10 cos  .  

 

 

 

Circle  r = 10 sin   

In the same way  r = 10 sin   gives a circle on the  y-axis. 

 

 

 

 

 

Areas using polar coordinates 

Remember:   area of a sector is  
 

 
    

 

Area of  OPQ  =  A    
 

 
     

 Area  OAB     
 

 
      

as     0 

  Area  OAB  =    
 

 
     

  

  
 

 

 

 

 

 

A 

initial  line 

  
r  

O  

A 

Q  

P  

B  
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θ

P
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O

θ

r=10cosθ

−30 −25 −20 −15 −10 −5 5

10

x
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r

θ

P

A

O

θ

r=10sinθ



Example: Find the area between the 

curve  r = 1 + tan    

and the half lines    = 0  and    
 

 
 

Solution: Area  =    
 

 
     

 
  

 
 

=     
 
          

 
  

 
    

=     
 
                  

 
  

 
    

=     
 
                

 
  

 
    

= 
 

 
                

 

 
   

= ln 2  + 
  

 
  

 

 

Tangents parallel and perpendicular to the initial line 

           and           

   
  

  
     

  
  

 

  
   

      

1) Tangents will be parallel to the initial line ( = 0), or horizontal, when  
  

  
   

 
  

  
   

 
  

  
             

2) Tangents will be perpendicular to the initial line ( = 0), or vertical, when 
  

  
  is infinite 

 
  

  
   

 
  

  
             

 

Note that if both  
  

  
     and   

  

  
  , then  

  

  
  is not defined, and you should look at a sketch 

to help  (or use  l'Hôpital's rule). 

 

 

 

 

 

 

−6 −5 −4 −3 −2 −1 1 2

1

2

x

y

O

r=1+tanθ

http://en.wikipedia.org/wiki/L'H%C3%B4pital's_rule


Example: Find the coordinates of the points on            where the tangents are 

(a) parallel to the initial line, 

(b) perpendicular to the initial line. 

 

Solution:           is shown in the diagram. 

 

(a) Tangents parallel to    = 0  (horizontal) 

      
  

  
          

  

  
             

     
  

  
                        

  

  
                   

                      =  0                     =  0 

                             
 

 
              

    
 

 
          

(b) Tangents perpendicular to    = 0  (vertical) 

      
  

  
          

  

  
             

     
  

  
                        

  

  
                

                    =  0                     =  0 

        
 

 
                  

    
  

 
         , π 

From the above we can see that 

(a) the tangent is parallel to    = 0 

at  B     
 

 
 , and  E     

 

 
 , 

also at      , the origin – see below  (c) 

 

(b) the tangent is perpendicular to    = 0 

at  A (  = 0),  C     
  

 
   and  D     

   

 
  

(c) we also have both  
  

  
    and   

  

  
    when      !!! 

 From the graph it looks as if the tangent is parallel to    = 0  at the origin,  when   =  , 

and from l'Hôpital's rule it can be shown that this is true. 
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Appendix 

nth roots of 1 

Short method 

Example: Find the 5
th
 roots of   4 + 4i  =      

   
   

Solution: First find the root with the 

smallest argument 

      
   

   
 

  

        
   

    

Then sketch the symmetrical ‘spider’ 

diagram where the angle between 

successive roots is     
        

    

then find all five roots by 

successively adding   
    to the 

argument of each root 

to give 

    
   

   ,     
    

   ,     
    

   , 

    
    

    =     
     

   , and      
    

        
    

   . 

 

This can be generalized to find the  n
th
  roots of any complex number, adding    

    successively 

to the argument of each root. 

Warning: You must make sure that your method is very clear in an examination. 

 

 

 

 

 

 

 

 

 

  
     

   

  
   

  
   

  
    

   

   

    

    

Re 

Im 

    
   

   
 



Sum of nth roots of 1 

Consider the solutions of  z 
10

 = 1, the 

complex 10
th

 roots of 1. 

Suppose that   is the complex 10
th

 root of 1 

with the smallest argument. The ‘spider’ 

diagram shows that the roots are   

,  
2
,  

3
,  

4
, … ,  

9
 and 1. 

Symmetry indicates that the sum of all these 

roots is a real number, but to prove that this 

sum is 0 requires algebra. 

 

 

 ≠ 1, and  
10 

 = 1 

 1   
10

  = 0 

 (1  )(1 +   +  
2
 +  

3
 +  

4
 + …  +  

9
)  =  0    factorising  

 1 +   +  
2
 +  

3
 +  

4
 + …  +  

9
  =  0,         since 1    ≠  0 

 the sum of the complex 10
th

 roots of 1 is 0. 

 

Re 

Im 

 

 
2 

 
3 

 
4 

 
6 

 
7 

 
8 

 
9 

 1
 

This can be generalized to show that the sum of the  n
th
  roots of 1 is 0, for any n. 

 

 

 

 

 

 

 

 

 

 

 



1st order differential equations 

Justification of the Integrating Factor method.  

 

  

  
  + Py  =  Q          where  P  and  Q  are functions of  x  only. 

We are looking for an Integrating Factor,  R (a function of x), so that multiplication by R 

of the L.H.S. of the differential equation gives an exact derivative. 

Multiplying the L.H.S. by R  gives 

 
  

  
     

If this is to be an exact derivative we can see, by looking at the first term, that we should 

try 

 

  
       

  

  
  

  

  
     

  

  
     

       
  

  
          

     
 

 
         

                    

                         

Thus         is the required I.F., Integrating Factor. 

 

 

 

 

 

 

 

 



Linear 2nd order differential equations 

 

Justification of the A.E. – C.F. technique for unequal roots 

   

   
     

  

  
                             

                                                          
   

   
        

Let the roots of the A.E. be  and   ( ≠  ), then the A.E. can be written as  

(m  )(m  ) = 0      m
2
  ( + ) m +  = 0 

So the differential equation can be written 

   

   
        

  

  
                               

We can ‘sort of factorise’ this to give   

 
 

  
    

  

  
                                                                       

          
  

  
                              

  

  
          

     
 

 
                                  

      
  

  
                

  

  
                 

The Integrating Factor is  e 
 x

    

               
  

  
                           

        

  
              

                 
 

     
               

                             

which is the C.F., for unequal roots of the A.E. 

 

 

 



Justification of the A.E. – C.F. technique for equal roots 

   

   
     

  

  
                             

                                                          
   

   
        

Let the roots of the A.E. be  and , (equal roots) then the A.E. can be written as  

(m  )(m   ) = 0      m
2
  2 m +  

2
 = 0 

So the differential equation can be written 

   

   
     

  

  
                               

We can ‘sort of factorise’ this to give   

 
 

  
    

  

  
                                                                       

          
  

  
                              

  

  
          

     
 

 
                                  

      
  

  
                

  

  
                 

The Integrating Factor is  e 
 x

    

               
  

  
                           

        

  
       

                          

                         

which is the C.F., for equal roots of the A.E. 

 

 

 

 

 

 



Justification of the A.E. – C.F. technique for complex roots 

Suppose that    and    are complex roots of the A.E., then they must occur as a conjugate pair 

(see FP1), 

   = a + ib  and   = a  ib  

 C.F.  is  y = A e 
(a + ib)x 

 + B e 
(a  ib)x 

  assuming that calculus works for complex nos. which it does 

 y = e 
ax

 (A e 
ibx 

 + B e 
ibx

)  =  
 
 e 

ax
 (A(cos x  + i sin x) + B(cos x   i sin x)) 

 C.F.  is  y = 
 
 e 

ax
 (C cos x  + D sin x),    where  C  and  D  are arbitrary constants. 

We now have the rules for finding the C.F. as before 

 
   

        
  

  
             where  a, b  and  c  are constants. 

First write down the Auxiliary Equation, A.E 

A.E.             

and solve to find the roots                 

 If              are both real numbers, and if      

then the Complimentary Function, C.F., is 

              , where A  and  B  are arbitrary constants of integration 

 

 If              are both real numbers, and if      

then the Complimentary Function, C.F., is 

             , where A  and  B  are arbitrary constants of integration 

 

 If              are both complex numbers, and if                

then the Complimentary Function, C.F.,  

                        ,    

where A  and  B  are arbitrary constants of integration 

 

 

 

 

 

 

 

 



Justification that G.S. = C.F. + P.I. 

Consider the differential equation   ay'' + by' + cy = f (x)   

Suppose that  u (a function of x) is any member of the Complimentary Function,  

and that v (a function of x) is a Particular Integral of the above D.E. 

 au'' + bu' + cu = 0 

and av'' + bv' + cv = f (x)   

Let  w = u + v 

then      aw'' + bw' + cw  =  a(u + v)'' + b(u + v)' + c(u + v)  

 =  (au'' + bu' + cu)  +  (av'' + bv' + cv)  =   0 + f (x) = f (x) 

 w is a solution of  ay'' + by' + cy = f (x)   

 all possible solutions  y = u + v are part of the General Solution.  I 

We now have to show that any member of the G.S. can be written in the form u + v, where u is 

some member of the C.F., and v is the P.I. used above. 

Let z be any member of the G.S,  then   az'' + bz' + cz = f (x). 

Consider  z  v 

a(z  v)'' + b(z  v)' + c(z  v) = (az'' + bz' + cz)    (av'' + bv' + cv)  =    f (x)  f (x) = 0 

 (z  v) is some member of the C.F. – call it u 

 z  v = u      z = u + v 

thus any member, z, of the G.S. can be written in the form u + v, where u is some member of the 

C.F., and v is the P.I. used above.        II 

I and II    the Complementary Function + a Particular Integral forms the complete General 

Solution. 

  



Maclaurin’s Series 

Proof of Maclaurin’s series 

To express any function as a power series in x 

Let  f (x) = a + bx + cx
2
 + dx

3
 + ex

4
 + fx

5
 + …  I 

put  x = 0  f (0) = a 

     
 

  
     f '(x) = b + 2cx + 3dx

2
 + 4ex

3
 + 5fx

4
 + … 

put  x = 0  f '(0) = b 

     
 

  
     f ''(x) = 2  1c + 3  2dx + 4  3ex

2
 + 5  4fx

3
 + … 

put  x = 0  f ''(0) = 2  1c     
 

  
        

     
 

  
     f '''(x) = 3  2  1d + 4  3  2ex + 5  4  3fx

2
 + … 

put  x = 0  f '''(0) = 3  2  1d    
 

  
         

continuing in this way we see that the coefficient of  x
n
 in  I  is    

 

  
      

 f (x) =  f (0) + x f '(0) + 
  

  
       + 

  

  
        + … + 

  

  
      + … 

The range of x for which this series converges depends on  f (x), and is beyond the scope 

of this course. 

 

Proof of Taylor’s series 

If we put  f (x) = g(x + a) then 

 f (0) = g(a),  f '(0) = g'(a),  f ''(0) = g''(a),  … ,  f 
n
(0) = g

n
(a), … 

and Maclaurin’s series becomes 

 g (x + a) =  g (a) + x g'(a) + 
  

  
 g''(a) + 

  

  
 g'''(a) + … + 

  

  
 g

n
(a)+ … 

which is Taylor’s series for  g(x + a)  as a power series in  x   

Replace  x by  (x  a)  and we get 

 g (x) =  g (a) + (x  a) g'(a) + 
      

  
 g''(a) + 

      

  
 g'''(a) + … + 

      

  
 g

n
(a)+ … 

which is Taylor’s series for  g(x)  as a power series in  (x  a)   
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