
1  Complex Numbers 

Definitions and arithmetical operations 

i = √−1,  so  √−16 = 4𝑖, √−11  =  √11 i,  etc. 
These are called imaginary numbers 
 
Complex numbers are written as  z = a + bi,  where  a  and  b ∈ ℝ. 
a is the real part and  b  is the imaginary part. 
 
+, –, × are defined in the ‘sensible’ way; division is more complicated. 
 
(a + bi)  +  (c + di) = (a + c)  +  (b + d)i 
(a + bi)  –  (c + di) = (a – c)  +  (b – d)i 
(a + bi)  ×  (c + di) = ac  +  bdi 2  + adi + bci 
   = (ac – bd)  +  (ad +bc)i          since  i 2 = –1 
 
So   (3 + 4i)  –  (7 – 3i)   =    –4 + 7i 
and (4 + 3i) (2 – 5i)  =    23 – 14i 
 
 
Division – this is just rationalising the denominator. 
 

    3+4𝑖
5+2𝑖  = 3+4𝑖

5+2𝑖   × 5−2𝑖
5−2𝑖     multiply top and bottom by the complex conjugate 

 

  =  23+14𝑖
25+4

  =  23
29

+ 14
29
𝑖 

Complex conjugate 

z = a + bi 
The complex conjugate of z is  z* = 𝑧  =  a – bi 

Properties 

If z = a + bi  and  w = c + di, then 

(i) {(a + bi) + (c + di)}*  =  {(a + c) + (b + d)i}*  

  =  {(a + c) – (b + d)i} 

  =  (a – bi) + (c – di)   

 ⇔ (z + w)*  =  z* + w* 

 



(ii) {(a + bi) (c + di)}*    =  {(ac – bd) + (ad + bc)i}* 

   =  {(ac – bd) – (ad + bc)i} 

   =  (a – bi) (c – di)   

   =  (a + bi)*(c + di)*   

 ⇔ (zw)*  =  z* w* 

 

Complex number plane, or Argand diagram 

We can represent complex numbers as points on the complex number plane: 

3 + 2i  as the point  A (3, 2),  and  –4 + 3i  as the point   (–4, 3). 

 

 

 

 

 

Complex numbers and vectors 

Complex numbers under addition (or subtraction) behave just like vectors under addition (or 
subtraction). We can show complex numbers on the Argand diagram as either points or 
vectors. 

(a + bi) + (c + di)  =  (a + c) + (b + d) i ⇔ �𝑎𝑏� +  �𝑐𝑑�   =  �𝑎 + 𝑐
𝑏 + 𝑑�     

(a + bi) – (c + di)  =  (a – c) + (b – d) i ⇔ �𝑎𝑏� −  �𝑐𝑑�   =  �𝑎 − 𝑐
𝑏 − 𝑑�     

or 
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Multiplication by i 

i(3 + 4i)  =  –4 + 3i   –  on an Argand diagram this would have the effect of a positive quarter 
turn about the origin. 

 

In general; 

i(a + bi)  =  –b + ai 

 

 

Modulus of a complex number 

This is just like polar co-ordinates. 

The modulus of z  is z and 

is  the length of the complex number   

 z  =  √𝑎2 + 𝑏2. 

z z*  =  (a + bi)(a – bi)  =  a2 + b2  

⇒ z z*  = z2. 

 

Argument of a complex number 

The argument of  z  is  arg z  =  the angle made by the complex number with the positive 
x-axis.  
By convention,  –π < arg z ≤ π .   

N.B.   Always draw a diagram when finding  arg z. 

 

Example: Find the modulus and argument of   z = –6 + 5i. 

Solution: First sketch a diagram (it is easy to get the argument wrong if you don’t). 
 

z  =  √62 + 52  =   √61 

and  tan α = 5
6
    ⇒   α = 0⋅694738276 

⇒ arg z  = θ  =  π – α  =  2.45      to 3 S.F. 
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Equality of complex numbers 

 a + bi  =  c + di ⇒ a – c  =   (d – b)i 

⇒ (a – c)2  =  (d – b)2 i 2   =  – (d – b)2              squaring both sides 

But  (a – c)2  ≥ 0   and   – (d – b)2 ≤ 0 

⇒ (a – c)2  =   – (d – b)2 =  0 

⇒ a = c  and  b = d 

Thus    a + bi  =  c + di 

⇒ real parts are equal  (a = c),  and imaginary parts are equal  (b = d). 

 

Square roots 

Example: Find the square roots of   5 + 12i, in the form  a + bi,  a, b ∈ ℝ. 

Solution: Let    √5 + 12𝑖 =  a + bi   

 ⇒ 5 + 12i  =  (a + bi)2  =  a2 – b2  +  2abi 

Equating real parts  ⇒ a2 – b2  =  5,  I 

equating imaginary parts ⇒ 2ab   =  12    ⇒ a  =  6
𝑏
   

Substitute in  I     ⇒ �6
𝑏
�
2
−  𝑏2 = 5    

⇒ 36 – b4  =  5b2  ⇒ b4 + 5b2 – 36  =  0 

⇒ (b2 – 4)(b2 + 9) = 0 ⇒ 𝑏2 = 4 

⇒ b = ± 2,  and  a  = ± 3 

⇒ √5 + 12𝑖  =  3 + 2i   or   –3 – 2i . 

 

Roots of equations 

(a) Any polynomial equation with complex coefficients has a complex solution. 

The is The Fundamental Theorem of Algebra, and is too difficult to prove at this stage. 

Corollary: Any complex polynomial can be factorised into linear factors over the 
complex numbers. 



(b) If  z = a + bi  is a root of   αn zn + αn–1 zn–1 + αn–2 zn–2 + … + α 2 z 2 + α 1 z  + α 0  = 0, 
 and if all the  α i  are real,  
 then the conjugate,  z* = a – bi  is also a root.  

 The proof of this result is in the appendix. 

(c) For any polynomial with zeros   a + bi,  a – bi,   
(z – (a + bi))(z – (a – bi))  =  z2 – 2az + a2 – b2  will be a quadratic factor in which the 
coefficients are all real. 

(d) Using (a), (b), (c) we can see that any polynomial with real coefficients can be factorised 
into a mixture of linear and quadratic factors, all of which have real coefficients. 

Example: Show that  3 – 2i  is a root of the equation  z3 – 8z2 + 25z – 26 = 0. 
Find the other two roots. 

Solution: Put z = 3 – 2i  in  z3 – 8z2 + 25z – 26 
= (3 – 2i)3 – 8(3 – 2i)2 + 25(3 – 2i) – 26 
= 27 – 54i + 36i 2  –  8i 3  – 8(9 – 12i + 4i 2) + 75 – 50i – 26 
= 27 – 54i  – 36   +   8i   –  72 +  96i  + 32   +  75 – 50i – 26  

= 27 – 36 – 72 + 32 + 75 – 26 + (–54 + 8 + 96 – 50)i 
= 0 + 0i 
⇒ 3 – 2i  is a root 
⇒ the conjugate,  3 + 2i,  is also a root             since all coefficients are real 

 ⇒ (z – (3 + 2i))(z – (3 – 2i))  =  z2 – 6z + 13   is a factor. 

 Factorising, by inspection, 

  z3 – 8z2 + 25z – 26  =  (z2 – 6z + 13)(z – 2) = 0 

 ⇒ roots are   z = 3 ± 2i, or 2    

 

 

 

 

 

 

 

 



2 Numerical solutions of equations 

Accuracy of solution 

When asked to show that a solution is accurate to n D.P., you must look at the value of  f (x) 
‘half’ below and ‘half’ above, and conclude that 

there is a change of sign in the interval, and the function is continuous, therefore there 
is a solution in the interval correct to n D.P. 

Example:  Show that α  =  2⋅0946  is a root of the equation   
   f (x) = x3 – 2x – 5 = 0, accurate to 4 D.P. 

Solution:   

  f (2.09455) = –0⋅0000165…,   and   f (2.09465) = +0⋅00997 

  There is a change of sign and  f is continuous   

 ⇒  there is a root in [2⋅09455, 2⋅09465]  ⇒  root is  α = 2⋅0946  to 4 D.P. 

 

Interval bisection 

(i) Find an interval [a, b] which contains the root of an equation  f (x) = 0. 

(ii) x = 𝑎+𝑏
2

  is the mid-point of the interval [a, b] 

 Find  𝑓 �𝑎+𝑏
2
�  to decide whether the root lies in  �𝑎, 𝑎+𝑏

2
�  or  �𝑎+𝑏

2
, 𝑏� . 

(iii) Continue finding the mid-point of each subsequent  interval to narrow the interval which 
contains the root. 

 

Example: (i) Show that there is a root of the equation   
  f (x) = x3 – 2x – 7 = 0 in the interval  [2, 3].  
 (ii) Find an interval of width 0⋅25 which contains the root. 

 

Solution: (i) f (2) = 8 – 4 – 7  =  –3,   and  f (3) = 27 – 6 – 7 = 14 

 There is a change of sign and f is continuous  ⇒  there is a root in [2, 3]. 

 (ii) Mid-point of [2, 3]  is  x = 2⋅5, and  f (2⋅5) = 15⋅625 – 5 – 7 = 3⋅625 

  ⇒ change of sign between  x = 2 and x = 2⋅5   

⇒ root in  [2, 2⋅5] 



   Mid-point of [2, 2⋅5]  is  x = 2⋅25,  
  and  f (2⋅25) = 11⋅390625 – 4⋅5 – 7 = –0⋅109375 

  ⇒ change of sign between  x = 2⋅25 and x = 2⋅5   

⇒ root in  [2⋅25, 2⋅5], which is an interval of width 0⋅25 

 

 

Linear interpolation 

To solve an equation   f (x)  using linear interpolation. 

First, find an interval which contains a root,  

second, assume that the curve is a straight line and use similar triangles to find where the line 
crosses the x-axis, 

third, repeat the process as often as necessary. 

 

Example: (i) Show that there is a root, α,  of the equation   
   f (x) = x3 – 2x – 9 = 0 in the interval  [2, 3].  
 (ii) Use linear interpolation once to find an approximate value of α.  
  Give your answer to 3 D.P. 

Solution: (i) f (2) = 8 – 4 – 9  =  –5,   and  f (3) = 27 – 6 – 9 = 12 

 There is a change of sign and f is continuous  ⇒  there is a root in [2, 3]. 

(ii) From (i), curve passes through (2, –5)  and  (3, 12), and we assume that the curve 
is a straight line between these two points. 

Let the line cross the x-axis at (α, 0) 

Using similar triangles 

3−𝛼
𝛼−2

= 12
5

   

⇒ 15 – 5α = 12α – 24 

⇒ α = 39
17

= 2 5
17

   

⇒ α =  2⋅294  to 3 D.P. 

  

Repeating the process will improve accuracy.  

(2, –5) 

(3, 12) 

2 

3 
5 

3 – α α 

12 

α – 2 



Newton-Raphson 

 

Suppose that the equation  f (x) = 0 has a root at 
x = α,   ⇒  f (α) = 0 

To find an approximation for this root, we first find 
a value  x = a  near to  x = α  (decimal search). 

In general, the point where the tangent at  P, x = a, 
meets the x-axis, x = b, will give a better 
approximation. 

At P, x = a, the gradient of the tangent is  f ′(a), 

and the gradient of the tangent is also  𝑃𝑀
𝑁𝑀

. 

 PM = y = f (a)  and  NM = a – b 

⇒ f ′(a)  =  𝑃𝑀
𝑁𝑀

  =  𝑓(𝑎)
𝑎−𝑏

     ⇒ b  =  a –  𝑓(𝑎)
𝑓′(𝑎)

. 

Further approximations can be found by repeating the process, which would follow the dotted 
line converging to the point  (α, 0). 

This formula can be written as the iteration   xn +1 =  xn  –  
𝑓(𝑥𝑛)
𝑓′(𝑥𝑛)

    

Example: (i) Show that there is a root, α,  of the equation   
   f (x) = x3 – 2x – 5 = 0 in the interval  [2, 3].  

  (ii) Starting with  x0 = 2, use the Newton-Raphson formula to  
  find  x1,  x2   and  x3, giving your answers to  3 D.P. where appropriate. 

 

Solution: (i) f (2) = 8 – 4 – 5  =  –1,   and  f (3) = 27 – 6 – 5 = 16 

 There is a change of sign and f is continuous  ⇒  there is a root in [2, 3]. 

  (ii) f (x) = x3 – 2x – 5     ⇒ f ′ (x) = 3x2 – 2 

⇒     x1  =  x0 – 
𝑓(𝑥0)
𝑓′(𝑥0)

   =  2 – 8−4−5
12−2

  =  2⋅1 

⇒  x2  =  2⋅094568121  =  2⋅095 

⇒  x3  =  2⋅094551482  =  2⋅095  

 

α  
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3 Coordinate systems 

Parabolas 

y2 = 4ax is the equation of a parabola which passes 
through the origin and has the x-axis as an axis of 
symmetry. 

Parametric form 

x = at2,   y = 2at    satisfy the equation for all values of t.  
t is a parameter, and these equations are the parametric 
equations of the parabola  y2 = 4ax. 

 

Focus and directrix 

The point  S (a, 0) is the focus, and 

the line  x = – a  is the directrix. 

Any point P of the curve is equidistant from the focus and the directrix,  PM = PS. 

Proof:  PM    =  at2 – (–a)  =  at2 + a 

  PS 2   =  (at2 – a)2 + (2at)2  =  a2t4 – 2a2t2 + a2  + 4a2t2 

   =  a2t4 + 2a2t2 + a2  =  (at2 + a)2  =  PM 2 

 ⇒ PM  =  PS. 

 

Gradient 

For the parabola  y2 = 4ax, with general point P, (at2, 2at), we can find the gradient in two 
ways: 

1. y2 = 4ax    
⇒ 2y 𝑑𝑦

𝑑𝑥
  =  4a ⇒ 𝑑𝑦

𝑑𝑥
  =  2𝑎

𝑦
 ,  which we can write as  𝑑𝑦

𝑑𝑥
  =  2𝑎

2𝑎𝑡
 =   1

𝑡
 

2. At P,  x = at2,  y = 2at 
⇒ 𝑑𝑦

𝑑𝑡
 = 2a,    𝑑𝑥

𝑑𝑡
  = 2at 

⇒ 𝑑𝑦
𝑑𝑥

  =  
𝑑𝑦

𝑑𝑡�
𝑑𝑥

𝑑𝑡�
 =   2𝑎

2𝑎𝑡
 =   1

𝑡
  

 

x

y

directrix
   x=−a

   X
focus
S (a, 0)

M X   P (at , 2at)2



Tangents and normals 

Example: Find the equations of the tangents to  y2 = 8x  at the points where x = 18, and 
show that the tangents meet on the x-axis. 

Solution: x = 18     ⇒ y2 = 8 × 18 ⇒   y = ±12 

 2y 𝑑𝑦
𝑑𝑥

  =  8     ⇒   𝑑𝑦
𝑑𝑥

 =  ± 1
3
          since  y = ±12 

⇒ tangents are y – 12 = 1
3
 (x – 18) ⇒ x – 3y + 18 = 0          at (18, 12) 

 and  y + 12 = −1
3
 (x – 18) ⇒ x + 3y + 18 = 0.                 at (18, –12) 

To find the intersection, add the equations to give 

 2x + 36 = 0 ⇒   x = –18 ⇒  y = 0 

⇒ tangents meet at (–18, 0)  on the x-axis. 

 

Example: Find the equation of the normal to the parabola given by  x = 3t2,  y = 6t. 

Solution: x = 3t2,  y = 6t ⇒ 𝑑𝑥
𝑑𝑡

  = 6t,    𝑑𝑦
𝑑𝑡

 = 6,     

⇒ 𝑑𝑦
𝑑𝑥

  =  
𝑑𝑦

𝑑𝑡�
𝑑𝑥

𝑑𝑡�
 =   6

6𝑡
 =   1

𝑡
   

⇒ gradient of the normal is  −1 
1
𝑡

   =  –t 

⇒ equation of the normal is   y – 6t  =  –t(x – 3t2). 
 

Notice that this ‘general equation’ gives the equation of the normal for any particular 
value of  t:–  when  t = –3  the normal is y + 18 = 3(x – 27)  ⇔  y = 3x – 99. 

 

Rectangular hyperbolas 

A rectangular hyperbola is a hyperbola in which the 
asymptotes meet at 90o. 

xy = c2 is the equation of a rectangular hyperbola in 
which the x-axis and y-axis are perpendicular 
asymptotes. 

 

x

y

 xy = c2



Parametric form 

x = ct,   y = 𝑐
𝑡
    are parametric equations of the hyperbola  xy = c2. 

Tangents and normals 

Example: Find the equation of the tangent to the hyperbola   xy = 36  at the point where 
x = 3. 

Solution: x = 3     ⇒ 3y = 36 ⇒   y = 12 

 y = 36
𝑥

     ⇒   𝑑𝑦
𝑑𝑥

 =  – 36
𝑥2

 = –4              when x = 3 

⇒ tangent is y – 12 = –4(x – 3) ⇒ 4x + y – 24 = 0. 

 

Example: Find the equation of the normal to the hyperbola given by  x = 3t,  y = 3
𝑡
. 

Solution: x = 3t,  y = 3
𝑡
   ⇒ 𝑑𝑥

𝑑𝑡
  = 3,    𝑑𝑦

𝑑𝑡
 =  −3

𝑡2
     

⇒ 𝑑𝑦
𝑑𝑥

  =  
𝑑𝑦

𝑑𝑡�
𝑑𝑥

𝑑𝑡�
 =   

−3
𝑡2

3
 =   −1

𝑡2
   

⇒ gradient of the normal is     −1   
−1
𝑡2

   =   t2 

⇒ equation of the normal is   y – 3
𝑡
   =  t2(x – 3t) 

⇒ t3x – ty =  3t4 – 3. 
 

 

 

 

 

 

 

 

 

 

 



4 Matrices 

You must be able to add, subtract and multiply matrices. 

Order of a matrix 

An  r × c matrix has r rows and c columns;  

the fiRst number is the number of Rows  

the seCond number is the number of Columns. 

Identity matrix 

The identity matrix is  I = �1 0
0 1�. 

Note that  MI = IM = M for any matrix M. 

 

Determinant and inverse 

Let  M  =  �𝑎 𝑏
𝑐 𝑑� then the determinant of  M  is   

Det M = | M |  =  ad – bc. 

 

To find the inverse of   M  =  �𝑎 𝑏
𝑐 𝑑� 

Note that  M –1M =  M M –1  = I 

(i) Find the determinant,  ad – bc.   
If   ad – bc = 0, there is no inverse. 

(ii) Interchange   a  and  d (the leading diagonal) 
 Change sign of  b  and  c, (the other diagonal) 
 Divide all elements by the determinant,  ad – bc. 

⇒ 𝑴−1 =
1

𝑎𝑑−𝑏𝑐 � 𝑑 −𝑏
−𝑐 𝑎 �. 

Check:  

M –1M =  
1

𝑎𝑑−𝑏𝑐 � 𝑑 −𝑏
−𝑐 𝑎 � �𝑎 𝑏

𝑐 𝑑�  =  
1

𝑎𝑑−𝑏𝑐 �𝑑𝑎 − 𝑏𝑐 0
0 −𝑐𝑏 + 𝑎𝑑� =  �1 0

0 1� = 𝑰 

Similarly we could show that  M M –1  = I. 

 

 



Example: M  =  �4 2
5 3�   and  MN  =  �−1 2

2 1�.  Find N. 

Solution: Notice that  M –1 (MN) =  (M –1M)N = IN = N       multiplying on the left by M –1 

  But  MNM –1 ≠  IN        we cannot multiply on the right by M –1 

 First find  M –1  

  Det M  =  4 × 3 – 2 × 5 = 2 ⇒ 𝑴−1 =
1
2 � 3 −2
−5 4 � 

 Using  M –1 (MN) = IN = N 

⇒ N =
1
2 � 3 −2
−5 4 � �−1 2

2 1� = 
1
2 �−7 4

13 −6�  =  �−3 ∙ 5 2
6 ∙ 5 −3� . 

 

Singular and non-singular matrices 

If  det A = 0, then  A  is a singular matrix, and  A–1 does not exist. 

If  det A ≠ 0, then  A  is a non-singular matrix, and  A–1 exists 

 

Linear Transformations 

A matrix can represent a transformation, but the point must be written as a column vector 
before multiplying by the matrix. 

Example: The image of  (2, 3)  under  T = �4 5
1 2�  is given by  �4 5

1 2� �
2
3�  = �23

8 �    

 ⇒ the image of   (2, 3)  is  (23, 8). 

Note that the image of  (0, 0)  is always  (0, 0)   

⇔  the origin never moves under a matrix (linear) transformation 

Basis vectors 

The vectors  i = �1
0� and  j  = �0

1� are called  basis  vectors, and are particularly important in 

describing the geometrical effect of a matrix, and in finding the matrix for a particular 
geometric transformation. 

�𝑎 𝑏
𝑐 𝑑� �

1
0� = �𝑎𝑐�     and    �𝑎 𝑏

𝑐 𝑑� �
0
1� = �𝑏𝑑�      

i = �1
0� → �𝑎𝑐�,  the first column, and   j  = �0

1� → �𝑏𝑑�,  the second column 

This is a more important result than it seems! 



Finding the geometric effect of a matrix transformation 

 We can easily write down the images of  i  and  j, sketch them and find the geometrical 
transformation. 

Example: Find the transformation represented by the matrix  𝑻 =  �2 0
0 3� 

Solution: Find images of  i, j  and  �1
1�, and show on a 

sketch. Make sure that you letter the points 

�2 0
0 3� �

1 0 1
0 1 1� = �2 0 2

0 3 3�  

From sketch we can see that the transformation is a 
two-way stretch, of factor 2 parallel to the x-axis 
and of factor 3 parallel to the y-axis. 

Finding the matrix of a given transformation.  

Example: Find the matrix for a shear with factor 2 and invariant line the x-axis. 

Solution: Each point is moved in the x-direction by a  
distance of  (2 × its y-coordinate).  

i  = �1
0�  →  �1

0�  (does not move as it 

is on the invariant line). 
This will be the first column of the 

matrix  �1 ∗
0 ∗� 

j  = �0
1�  →  �2

1�.  This will be the second 

column of the matrix  �∗ 2
∗ 1� 

⇒ Matrix of the shear is   �1 2
0 1�. 

 

Example: Find the matrix for a reflection in y = –x.  

Solution: First find the images of i  and  j .  These will be 
the two columns of the matrix. 

A  → A′    ⇒    i  = �1
0�  →  � 0

−1�.   

This will be the first column of the matrix  � 0 ∗
−1 ∗� 
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y
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B (0, 1)

A' (0, −1)

B' (−1, 0)



B  → B′    ⇒    j  = �0
1�  →  �−1

0 �.   

This will be the second column of the matrix  �∗ −1
∗ 0 � 

⇒ Matrix of the reflection is  � 0 −1
−1 0 �. 

 

Rotation matrix 

From the diagram we can see that  

i  = �1
0�  →  �cos 𝜃

sin𝜃�  , 

j  = �0
1�  →  �− sin𝜃

cos 𝜃 � 

These will be the first and second 
columns of the matrix 

⇒ matrix is  𝑅𝜃 =  �cos 𝜃 − sin 𝜃
sin𝜃 cos 𝜃 �. 

 

Determinant and area factor 

For the matrix   𝐴 =  �𝑎 𝑏
𝑐 𝑑� 

�𝑎 𝑏
𝑐 𝑑� �

1
0� = �𝑎𝑐�     

and    �𝑎 𝑏
𝑐 𝑑� �

0
1� = �𝑏𝑑�      

⇒ the unit square is mapped on to the 
parallelogram as shown in the diagram. 

The area of the unit square =  1. 

The area of the parallelogram = (a + b)(c + d) – 2 × (bc + 1
2
 ac + 1

2
 bd) 

  = ac + ad + bc + bd – 2bc – ac – bd 

  = ad – bc     =  det A. 

All squares of the grid are mapped onto congruent parallelograms  

⇒ area factor of the transformation is  det A  = ad – bc. 

A (1, 0) 

A′ (cosθ , sinθ) 

B (0, 1) 
           B′  
(–sinθ, cosθ) 

x 

y 

θ  

θ  

cosθ  

cosθ  
sinθ  

sinθ  

×
  

×
  ×

  ×
  

b 

d 

c 

a 

(b, d) 
(a, c) 

b 

d 

c 

a 

x 

y 

1 
1 



5 Series 

You need to know the following sums 

�𝑟
𝑛

𝑟=1

= 1 + 2 + 3 + ⋯+ 𝑛 =   
1
2
𝑛(𝑛 + 1) 

�𝑟2
𝑛

𝑟=1

= 12 + 22 + 32 + ⋯+ 𝑛2  =   
1
6
𝑛(𝑛 + 1)(2𝑛 + 1) 

�𝑟3
𝑛

𝑟=1

= 13 + 23 + 33 + ⋯+ 𝑛3  =   
1
4
𝑛2(𝑛 + 1)2      

   

  = �1
2
𝑛(𝑛 + 1)�

2
=         a fluke, but it helps to remember it 

 

Example: Find             . 

 
Solution:  
 
 = 1

4
𝑛2(𝑛 + 1)2  −   3 × 1

2
𝑛(𝑛 + 1) 

= 1
4
𝑛(𝑛 + 1){𝑛(𝑛 + 1) −   6}    

= 1
4
𝑛(𝑛 + 1)(𝑛 + 3)(𝑛 − 2) 

 

Example: Find    Sn =  22 + 42 + 62 + … + (2n)2. 

 

Solution: Sn =  22 + 42 + 62 + … + (2n)2  =  22(12 + 22 + 32 + … + n2) 

 =   4 × 1
6
𝑛(𝑛 + 1)(2𝑛 + 1)  =  2

3
𝑛(𝑛 + 1)(2𝑛 + 1) . 

 

Example: Find     

 

Solution:                       notice that the top limit is 4 not 5 

 

 = 1
6

(𝑛 + 2)(𝑛 + 2 + 1)(2(𝑛 + 2) + 1) − 1
6

  × 4 × 5 × 9   

 = 1
6

(𝑛 + 2)(𝑛 + 3)(2𝑛 + 5) − 30. 

�𝑟(𝑟2 − 3)
𝑛

𝑟=1

 

��𝑟
𝑛

𝑟=1

�
2

 

�𝑟(𝑟2 − 3)
𝑛

𝑟=1

=   �𝑟3
𝑛

𝑟=1

−  3�𝑟
𝑛

𝑟=1

 

�𝑟2
𝑛+2

𝑟=5

 

�𝑟2
𝑛+2

𝑟=5

 =  �𝑟2
𝑛+2

𝑟=1

 −  �𝑟2
4

𝑟=1

  



   6 Proof by induction 

1. Show that the result/formula is true for  n = 1  (and sometimes n = 2 , 3 ..). 
Conclude  
 “therefore the result/formula ………. is true for  n = 1”. 
 

2.  Make induction assumption 
 “Assume that the result/formula ………. is true for  n = k”. 
Show that the result/formula must then be true for  n = k + 1 
Conclude  
 “therefore the result/formula ………. is true for  n = k + 1”. 
 

3. Final conclusion  
 “therefore the result/formula ………… is true for all positive integers, n, by 
 mathematical induction”. 

Summation 

Example: Use mathematical induction to prove that 

  Sn = 12 + 22 + 32 + … + n2  =  1
6
𝑛(𝑛 + 1)(2𝑛 + 1)   

Solution: When n = 1,  S1 = 12 = 1   and   S1 = 1
6

× 1(1 + 1)(2 × 1 + 1) =  1
6

× 1 × 2 × 3 = 1    

⇒ Sn =  1
6
𝑛(𝑛 + 1)(2𝑛 + 1)   is true for  n = 1. 

Assume that the formula is true for  n = k 

⇒ Sk  = 12 + 22 + 32 + … + k2  =  1
6
𝑘(𝑘 + 1)(2𝑘 + 1)   

⇒ Sk + 1 =  12 + 22 + 32 + … + k2
 + (k + 1)2  =  1

6
𝑘(𝑘 + 1)(2𝑘 + 1) + (k + 1)2   

  =  1
6

(𝑘 + 1){𝑘(2𝑘 + 1) + 6(𝑘 + 1)} 

  =  1
6

(𝑘 + 1){2𝑘2 + 7𝑘 + 6}  =  1
6

(𝑘 + 1)(𝑘 + 2)(2𝑘 + 3) 

  =  1
6

(𝑘 + 1){(𝑘 + 1) + 1}{2(𝑘 + 1) + 1} 

⇒ The formula is true for  n = k + 1 

⇒ Sn =  1
6
𝑛(𝑛 + 1)(2𝑛 + 1)   is true for all positive integers, n, by mathematical 

induction.  

 



Recurrence relations 

Example: A sequence, 4, 9, 19, 39, … is defined by the recurrence relation 

u1 = 4,  un + 1 = 2un + 1. Prove that  un = 5 × 2n − 1 − 1.   

Solution: When  n = 1, u1 = 4,  and  u1 = 5 × 21−1 − 1 = 5 − 1 = 4,  ⇒ formula true for n = 1. 

Assume that the formula is true for  n = k,  ⇒  uk = 5 × 2k − 1 − 1. 

From the recurrence relation,    

uk + 1  =   2uk + 1  =  2(5 × 2k − 1 − 1) + 1 

⇒ uk + 1 =   5 × 2k  − 2  + 1  =    5 × 2 (k + 1) − 1  − 1   

⇒ the formula is true for  n = k + 1 

⇒ the formula is true for all positive integers, n, by mathematical induction. 

Divisibility problems 

Considering  f (k + 1)  −  f (k), will lead to a proof which sometimes has hidden difficulties,  

and a more reliable way is to consider   f (k + 1)  −  m × f (k),  where  m  is chosen to eliminate 
the exponential term. 

Example: Prove that  f (n)  =  5n − 4n − 1 is divisible by 16 for all positive integers, n. 

Solution: When  n = 1,  f (1)  =  51 − 4 − 1 = 0,  which is divisible by 16, and so f (n)  is 
divisible by  16  when  n = 1. 

Assume that the result is true for  n = k,  ⇒  f (k)  =  5k − 4k − 1  is divisible by 16. 

Considering  f (k + 1)  −  5 × f (k)  we will eliminate the  5k  term. 

  f (k + 1)  −  5 × f (k)   =   (5k + 1 − 4(k + 1) − 1) − 5 × (5k − 4k − 1) 

     =   5k + 1 − 4k − 4 − 1  −  5k + 1 + 20k + 5  =  16k 

⇒ f (k + 1)  =  5 × f (k)  + 16k 

Since  f (k)  is divisible by 16 (induction assumption), and  16k  is divisible by 16, then  
f (k + 1)  must be divisible by 16,   

⇒ f (n)  =  5n − 4n − 1 is divisible by 16 for  n = k + 1 

⇒ f (n)  =  5n − 4n − 1 is divisible by 16 for all positive integers, n, by mathematical 
induction. 

 



Example: Prove that  f (n)  =  22n + 3  +  32n − 1  is divisible by  5  for all positive integers n. 

Solution: When  n = 1,  f (1)  =  22 + 3  +  32 − 1  =  32 + 3  =  35  =  5 × 7, and so the result is 
true for  n = 1. 

Assume that the result is true for  n = k 

⇒ f (k)  =  22k + 3  +  32k − 1  is divisible by  5   

We could consider either (it does not matter which) 

f (k + 1)  −  22 × f (k),   which would eliminate the  22k + 3  term  I 

or f (k + 1)  −  32 × f (k),   which would eliminate the  32k − 1  term  II 

I  ⇒ f (k + 1)  −  22 × f (k)  =    22(k + 1) + 3  +  32(k + 1) − 1  − 22 × (22k + 3  +  32k − 1) 

     =     22k + 5 + 32k + 1   −  22k + 5  −  22 × 32k − 1 

⇒ f (k + 1)  −  4 × f (k) =     9 × 32k − 1  − 4 × 32k − 1  =  5 × 32k − 1 

⇒ f (k + 1)  =  4 × f (k)  −  5 × 32k − 1 

Since  f (k)  is divisible by 5 (induction assumption), and  5 × 32k − 1  is divisible by 5, 
then  f (k + 1)  must be divisible by 5. 

⇒ f (n)  =  22n + 3  +  32n − 1  is divisible by  5  for all positive integers, n, by 
mathematical induction. 

 

Powers of matrices 

Example: If  𝑀 =  �2 −1
0 1 �,   prove that  𝑀𝑛 =  �2𝑛 1 − 2𝑛

0 1 �  for all positive integers n. 

Solution: When  n = 1,  𝑀1 =  �21 1 − 21
0 1

�  = �2 −1
0 1 �  = 𝑀   

⇒  the formula is true for n = 1. 

Assume the formula is true for  n = k   ⇒   𝑀𝑘 =  �2𝑘 1 − 2𝑘
0 1

� . 

 𝑀𝑘+1 =  𝑀𝑀𝑘  =  �2 −1
0 1 � �2𝑘 1 − 2𝑘

0 1
�   =  �2 × 2𝑘 2 − 2 × 2𝑘 − 1

0 1
� 

⇒ 𝑀𝑘+1 =   �2𝑘+1 1 − 2𝑘+1
0 1

�      ⇒ The formula is true for  n = k + 1 

⇒ 𝑀𝑛 =  �2𝑛 1 − 2𝑛
0 1 �  is true for all positive integers, n, by mathematical 

induction.  



7 Appendix 

Complex roots of a real polynomial equation 

Preliminary results: 

I (z1 + z2 + z3 + z4 + … + zn)*  =  z1* + z2* + z3* + z4* + … + zn*,   

 by repeated application of   (z + w)*  =  z* + w*  

II (zn)*  =  (z*) n 

(zw)* = z*w*   

⇒  (zn)*  = (zn-1z)*  = (zn-1)*(z)*  = (zn-2z)*(z)*  = (zn-2)*(z)*(z)*  … = (z*) n 

 

Theorem: If z = a + bi  is a root of   αn zn + αn–1 zn–1 + αn–2 zn–2 + … + α 2 z 2 + α 1 z  + α 0  = 0, 
 and if all the  α i  are real,  
 then the conjugate,  z* = a – bi  is also a root. 

Proof:  If  z = a + bi  is a root of the equation  αn zn + αn–1 zn–1 + … + α 1 z  + α 0  = 0 

then αn zn + αn–1 zn–1 + … + α 2 z 2 + α 1 z  + α 0  = 0 

⇒ (αn zn + αn–1 zn–1 + … + α 2 z 2 + α 1 z  + α 0)*  = 0                  since 0* = 0 

⇒ (αn zn)* + (αn–1 zn–1)* + … + (α 2 z 2)* + (α 1 z)*  + (α 0)*  = 0                using I 

⇒ αn*( zn)* + αn–1*(zn–1)* + …+ α 2*( z 2)* + α 1*( z)*  + α 0* = 0      since (zw)* = z*w* 

⇒ αn( zn)* + αn–1(zn–1)* + … + α 2( z2)*+ α 1( z)*  + α 0 = 0         αi real  ⇒  αi* = αi     

⇒ αn( z*) n + αn–1(z*) n–1 + … + α 2(z*)2 + α 1(z*)  + α 0 = 0                      using II 

⇒ z* = a – bi  is also a root of the equation. 

 

Formal definition of a linear transformation 

A linear transformation T has the following properties: 

(i) 𝑻�𝑘𝑥𝑘𝑦�  = 𝑘𝑻 �
𝑥
𝑦�  

(ii) 𝑻��
𝑥1
𝑦1� + �

𝑥2
𝑦2��  = 𝑻�

𝑥1
𝑦1� + 𝑻�

𝑥2
𝑦2�  

It can be shown that any matrix transformation is a linear transformation, and that any linear 
transformation can be represented by a matrix. 



Derivative of xn, for any integer 

We can use proof by induction to show that 𝑑
𝑑𝑥

(𝑥𝑛) =  𝑛𝑥𝑛−1, for any integer n. 

1) We know that the derivative of  x0  is  0  which equals  0x−1,  

since  x0 = 1, and the derivative of  1  is 0 

⇒ 𝑑
𝑑𝑥

(𝑥𝑛) =  𝑛𝑥𝑛−1  is true for  n = 0. 

2) We know that the derivative of  x1  is 1  which equals  1 × x1 – 1 

⇒ 𝑑
𝑑𝑥

(𝑥𝑛) =  𝑛𝑥𝑛−1  is true for  n = 1 

Assume that the result is true for  n = k 

⇒ 𝑑
𝑑𝑥

(𝑥𝑘)       =  𝑘𝑥𝑘−1   

⇒ 𝑑
𝑑𝑥

(𝑥𝑘+1)   =  𝑑
𝑑𝑥

(𝑥 × 𝑥𝑘) = 𝑥 × 𝑑
𝑑𝑥

(𝑥𝑘) +  1 × 𝑥𝑘          product rule 

⇒ 𝑑
𝑑𝑥

(𝑥𝑘+1)   =  𝑥 × 𝑘𝑥𝑘−1 + 𝑥𝑘 = 𝑘𝑥𝑘 + 𝑥𝑘 = (𝑘 + 1)𝑥𝑘   

⇒ 𝑑
𝑑𝑥

(𝑥𝑛) =  𝑛𝑥𝑛−1  is true for  n = k + 1 

⇒ 𝑑
𝑑𝑥

(𝑥𝑛) =  𝑛𝑥𝑛−1  is true for all positive integers, n, by mathematical induction. 

 3) We know that the derivative of  x−1  is  −x−2   which equals  −1 × x−1 – 1 

⇒ 𝑑
𝑑𝑥

(𝑥𝑛) =  𝑛𝑥𝑛−1  is true for  n = −1 

Assume that the result is true for  n = k 

⇒ 𝑑
𝑑𝑥

(𝑥𝑘)       =  𝑘𝑥𝑘−1   

⇒ 𝑑
𝑑𝑥

(𝑥𝑘−1)   =  𝑑
𝑑𝑥
�𝑥

𝑘

𝑥
� =

𝑥× 𝑑
𝑑𝑥�𝑥

𝑘�  −  𝑥𝑘×1

𝑥2
             quotient rule 

⇒ 𝑑
𝑑𝑥

(𝑥𝑘+1)   =  𝑥×𝑘𝑥𝑘−1  −  𝑥𝑘

𝑥2
 =   (𝑘−1)𝑥𝑘

𝑥2
= (𝑘 − 1)𝑥𝑘−2 =  (𝑘 − 1)𝑥(𝑘−1)−1 

⇒ 𝑑
𝑑𝑥

(𝑥𝑛) =  𝑛𝑥𝑛−1  is true for  n = k − 1 

We are going backwards (from  n = k  to  n = k − 1), and, since we started from  n = −1, 

⇒ 𝑑
𝑑𝑥

(𝑥𝑛) =  𝑛𝑥𝑛−1  is true for all negative integers, n, by mathematical induction. 

Putting 1), 2) and 3), we have proved that 

𝑑
𝑑𝑥

(𝑥𝑛) =  𝑛𝑥𝑛−1, for any integer n. 
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