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Defining an Electric Field

An electric field is defined as a region of space in which a charged particle experiences a

force

Hence, electric fields are a type of force field

The charged particle could be stationary or moving, and will experience an electric force in

that field

All charged particles create their own electric fields

These fields exert an electrostatic force, F  on other charged particles

The electrostatic force between two charges

Like charges (positive and positive, or negative and negative) repel each other

This means the force on each charge are away from the other charge

Opposite charged (positive and negative) attract each other

This means the force on each charge is towards the other charge

The size of the force changes with distance

A repulsive force decreases with distance

Electric Fields

7.1 Defining an Electric Field

E



Exam Tip

Electric fields are slightly di�erent in that a charged particle will experience a force in

this field whether it's stationary or moving. Don't get this mixed up with a magnetic

field, where a charged particle only experiences a force if it's moving.





Electric Field Strength

The electric field strength at a point is defined as:

The force per unit charge acting on a positive test charge at that point

The electric field strength can be calculated using the equation:

Where:

E = electric field strength (N C )

F = electrostatic force on the charge (N)

Q = charge (C)

It is important to use a positive test charge in this definition, as this determines the direction

of the electric field

Recall, the electric field strength is a vector quantity, it is always directed:

Away from a positive charge

Towards a negative charge

This direction is also denoted by the direction of the electric field 

Worked Example

A charged particle is in an electric field with electric field strength 3.5 × 10  N C

where it experiences a force of 0.3 N.

Calculate the charge of the particle.

7.2 Electric Field Strength
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Exam Tip

While the defining equation for electric field strength, E = F / Q is defined for a

positive test charge, it is still useable for negative charges in an electric field. You will

find that, if you substitute a negative charge in for Q, the electric field strength E is

also negative. This simply means that the vector representing the field points in

the opposite direction than it would for a positive charge, as you should expect.

Make sure you can interpret the direction of electric field lines for your exam! 



 



Electric Force between Two Charges

All charged particles produce an electric field around them

This field exerts a force on any other charged particle within range

The electrostatic force between two charges is defined by Coulomb’s Law

Recall that the charge of a uniform spherical conductor can be considered as a point

charge at its centre

Coulomb’s Law states that:

The electrostatic force between two point charges is proportional to the product

of the charges and inversely proportional to the square of their separation

The force F  between two charges as expressed by Coulomb's Law is given by the

equation:

The electrostatic force between two charges is defined by Coulomb’s Law

Where:

F  = electrostatic force between two charges (N)

Q  and Q  = two point charges (C)

ε  = permittivity of free space

r = distance between the centre of the charges (m)

The 1/r  relation is called the inverse square law

This means that when the separation of two charges doubles, the electrostatic force

between them reduces to (½)  = ¼ of its original size

ε  is a physical constant used to show the capability of a vacuum to permit electric fields

If Q  and Q  are oppositely charged, then the electrostatic force F  is negative

This can be interpreted as an attractive force betweenQ  and Q

If Q  and Q  are the same charge, then the electrostatic force F  is positive

This can be interpreted as a repulsive force betweenQ  and Q

7.3 Electric Force between Two Charges
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Electric Field due to a Point Charge

The electric field strength describes how strong or weak an electric field is at that point

A point charge produces a radial field

A charge sphere also acts like a point charge

The electric field strength E at a distance r due to a point charge Q in free space is defined

by:

Where:

Q = the point charge producing the radial electric field (C)

r = distance from the centre of the charge (m)

ε  = permittivity of free space (F m )

This equation shows:

Electric field strength in a radial field is not constant

As the distance from the charge r increases, E decreases by a factor of 1/r

This is an inverse square law relationship with distance

This means the field strength E decreases by a factor of four when the distance r is

doubled

Note: this equation is only for the field strength around a point charge since it produces a

radial field

Positive and negative point charges and the direction of the electric field lines

The electric field strength is a vector Its direction is the same as the electric field lines

If the charge is negative, the E field strength is negative and points towards the centre

of the charge

If the charge is positive, the E field strength is positive and points away from the centre

of the charge

This equation is analogous to the gravitational field strength around a point mass

7.4 Electric Field due to a Point Charge
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The only di�erence is, gravitational field lines are always towards the mass, whilst

electric field lines can be towards or away from the point charge

The graph of E against r for a charge is:

The electric field strength E has a 1/r  relationship

The key features of this graph are:

The values for E are all positive

As r increases, E against r follows a 1/r  relation (inverse square law)

The area under this graph is the change in electric potential ΔV

The graph has a steep decline as r increases

Worked Example

Calculate the strength of the electric field at a distance of 2 m away from an

electron, and state its direction. 

Step 1:Write out the equation for electric field strength

Step 2: Substitute quantities for charge, distance and permittivity of free space

The charge on an electron Q = –1.6 × 10  C

The distance r = 2 m

Permittivity of free space ε  = 8.85 × 10

Therefore:

E = 
−1 .6×10−19

4π× (8 .85×10−12)×22 = –3.6 × 10  N C

Step 3: State the direction of the field

The negative sign indicates the electric field is directed towards the electron
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Exam Tip

Remember to square the distance in the electric field strength equation! Don't get

this mixed up with the electric force between two charges equation, which has two

charges (Q) in the equation, whilst the equation for E only has 1 Q, which is the one

producing the electric field.





Electric Field & Potential

A positive test charge has electric potentialenergy due to its position in an electric field

The amount of electric potential energy depends on:

The magnitude of charge 

The value of the electric potential in the field

Work is done on a positive test charge Q to move it from the negatively charged plate A to

the positively charged plate B. This means its electric potential energy increases

Electric potential is defined as the amount of work done per unit of charge at that point

A stronger electric field means the electric potential changes more rapidly with distance as

the test charge moves through it

Hence, the relationship between the electric field strength and the electric potential is

summarised as: 

The electric field strength is proportional to the gradient of the electric potential

This means: 

If the electric potential changes very rapidly with distance, the electric field strength is

large

If the electric potential changes very gradually with distance, the electric field strength

is small

An electric field can be defined in terms of the variation of electric potential at di�erent

points in the field:

The electric field at a particular point is equal to the gradient of a potential-

distance graph at that point

The potential gradient in an electric field is defined as:

The rate of change of electric potential with respect to displacement in the

direction of the field

7.5 Electric Field & Potential



The graph of potential V against distance r for a negative or positive charge is:

The electric potential around a positive charge decreases with distance and increases with

distance around a negative charge

The key features of this graph are:

The values for V are all negative for a negative charge

The values for V are all positive for a positive charge

As r increases, V against r follows a 1/r relation for a positive charge and -1/r relation for

a negative charge

The gradient of the graph at any particular point is the value of E at that point

The graph has a shallow increase (or decrease) as r increases

The electric potential changes according to the charge creating the potential as the

distance r increases from the centre:

If the charge is positive, the potential decreases with distance

If the charge is negative, the potential increases with distance



Electric Field between Parallel Plates

The magnitude of the electric field strength in a uniform field between two charged parallel

plates is defined as:

Where:

E = electric field strength (V m )

V = potential di�erence between the plates (V)

d = separation between the plates (m)

The electric field strength is now defined by the units V m

Therefore, the units V m  are equivalent to the units N C

The equation shows:

The greater the voltage (potential di�erence) between the plates, the stronger the

field

The greater the separation between the plates, the weaker the field

Remember this equation cannot be used to find the electric field strength around a point

charge (since this would be a radial field)

The direction of the electric field is from the plate connected to the positive terminal of the

cell to the plate connected to the negative terminal

7.6 Electric Field between Parallel Plates
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The E field strength between two charged parallel plates is the ratio of the potential

di�erence and separation of the plates

Note: if one of the parallel plates is earthed, it has a voltage of 0 V

Worked Example

Two parallel metal plates are separated by 3.5 cm and have a potential di�erence of

7.9 kV.

Calculate the electric force acting on a stationary charged particle between the

plates that has a charge of 2.6 × 10  C.

Step 1: Write down the known values

Potential di�erence, V = 7.9 kV = 7.9 × 10  V

Distance between plates, d = 3.5 cm = 3.5 × 10  m

Charge, Q = 2.6 × 10  C

Step 2:Calculate the electric field strength between the parallel plates

Step 3:Write out the equation for electric force on a charged particle

F = QE

Step 4: Substitute electric field strength and charge into electric force equation

F = QE = (2.6 × 10 ) × (2.257 × 10 ) = 5.87 × 10  N = 5.9 × 10  N (2 s.f.)

Exam Tip

Remember the equation for electric field strength with V and d is only used for

parallel plates, and not for point charges (where you would use E = F/Q)
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Electric Potential for a Radial Field

Electric Potential Energy

In order to move a positive charge closer to another positive charge, work must be done to

overcome the force of repulsion between them

Similarly, to move a positive charge away from a negative charge, work must be done

to overcome the force of attraction between them

Energy is therefore transferred to the charge that is being pushed upon

This means its potential energy increases

If the positive charge is free to move, it will start to move away from the repelling charge

As a result, its potential energy decreases back to 0

This is analogous to the gravitational potential energy of a mass increasing as it is being

lifted upwards and decreasing as it falls

The electric potential at a point is defined as:

The work done per unit charge in bringing a positive test charge from infinity to that

point

Electric potential is a scalar quantity

This means it doesn’t have a direction

However, you will still see the electric potential with a positive or negative sign. This is

because the electric potential is:

Positive around an isolated positive charge

Negative around an isolated negative charge

Zero at infinity

Positive work is done to move a positive test charge from infinity to a point around a

positive charge and negative work is done to move it to a point around a negative charge.

This means:

When a positive test charge moves closer to a negative charge, its electric potential

decreases

When a positive test charge moves closer to a positive charge, its electric potential

increases

7.7 Electric Potential for a Radial Field



Electric Potential due to a Point Charge

The electric potential in the radial field due to a point charge is defined as:

Where:

V = the electric potential (V)

Q = the point charge producing the potential (C)

ε = permittivity of free space (F m )

r = distance from the centre of the point charge (m)

This equation shows that for a positive test charge:

As the distance r from the charge Qdecreases, the potential V increases (becomes

more positive)

This is because more work has to be done on the positive test charge to overcome the

repulsive force of Q

For a negative test charge:

0
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As the distance from the charge rdecreases, the potential Vdecreases (becomes

more negative)

This is because less work has to be done on the negative test charge since the

attractive force becomes stronger the nearer it gets to Q

Unlike the gravitational potential equation, the electric potential can be positive or

negative, because Q can be positive or negative

The electric potential varies according to 1 / r

Note, this is di�erent to electric field strength, which varies according to 1 / r

Worked Example

The electric potential at a distance r from a proton is V. 

What is the value of the electric potential at a distance three-times farther? 

Step 1: Write the equation for electric potential

The electric potential is given by the equation:

V=
Q

4πε0r

Step 2: Write the transformed equation for a distance three times as large

The charge Q remains constant (due to the proton)

The potential V becomes V' 

The distance r becomes 3r

Hence the transformed equation becomes: 

V'=
Q

4πε0 (3r)

=
1
3

Q
4πε0 r

=
1
3 V

Step 3: Write a conclusion

Therefore, when the distance from a charge Q gets three times larger, the value of the

electric potential decreases by a factor 1/3, because the potential is inversely

proportional to distance r

2
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Exam Tip

Electric potentialV is inversely proportional to radial distance, V∝
1
r

Electric field strengthE is inversely proportional to radial distance squared, 

E∝
1
r2

Make sure you remember these variations and that you can describe them in

words! 

One way to remember whether the electric potential increases or decreases with

respect to the distance from the charge is by the direction of the electric field lines.

The potential always decreases in the same direction as the field lines and vice

versa.
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Using Field Lines & Equipotential Diagrams

The direction of electric fields is represented by electricfield lines

Electric field lines are directed from positive to negative

Therefore, the field lines must be pointed away from the positive charge and towards

the negative charge

Hence, field lines show the direction of force on a positive test charge

Representing Radial Fields

A radial field spreads out from a spherical charge in all directions

e.g. the field around a point charge

Around a point charge, the electric field lines are directly radially inwards or outwards:

If the charge is positive (+), the field lines are radially outwards

If the charge is negative (-), the field lines are radially inwards

Radial electric field lines point away from a positive charge and point towards a negative

charge

This shares many similarities to radial gravitational field lines around a point mass

Since gravity is only attractive, the field lines will look similar to the negative point

charge, directed inward

However, electric field lines can be in eitherdirection

The electric field strength in a radial field follows an inverse square law

This means the field strength varies with distance r by 1 / r

Representing Uniform Electric Fields

A uniform electric field has the same electric field strength throughout the field

For example, the field between oppositely charged parallel plates

This is represented by equally spaced field lines

7.8 Representing Radial & Uniform Electric Fields
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This shares many similarities to uniform gravitational field lines on the surface of a

planet

A non-uniform electric field has varying electric field strength throughout

The strength of an electric field is determined by the spacing of the field lines:

A stronger field is represented by the field lines closer together

A weaker field is represented by the field lines further apart

The electric field lines are directed from the positive to the negative plate

The electric field strength in a uniform field is given by the equation E = V / d

Hence, E proportional to the potential di�erence V between the plates

E is inversely proportional to the distance d between the plates

Equipotential Diagrams

Equipotential lines (2D) and surfaces (3D) join together points that have the sameelectric

potential

These are always:

Perpendicular to the electric field lines in both radial and uniform fields

Represented by dotted lines (unlike field lines, which are solid lines with arrows)

The potential gradient is defined by the equipotential lines

https://www.savemyexams.co.uk/


Equipotential lines in a radial field are circles, showing lines of equal potential around a

charge. They intersect radial field lines at 90°

Equipotential lines in a uniform field are straight lines. They too intersect uniform field lines

at 90°

Worked Example

Sketch the electric field lines between the two point charges in the diagram below.

Electric field lines around point charges are radially outwards for positive charges and

radially inwards for negative charges

The field lines must be drawn with arrows from the positive charge to the negative charge

In a radial field (eg. a point charge), the equipotential lines:

Are concentric circles around the charge

Become further apart further away from the charge
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In a uniform field (eg. between charged parallel plates), the equipotential lines are:

Horizontal straight lines

Parallel

Equally spaced

No work is done when moving along an equipotential line or surface

Work is only done when moving between equipotential lines or surfaces

This means that an object travelling along an equipotential doesn't lose or gain energy

and ΔV =  0

Exam Tip

Always label the arrows on the field lines! The lines must also touch the surface of the

source charge or plates.



 



Capacitance

Capacitors are electrical devices used to store energy in electronic circuits, commonly for a

backup release of energy if the power fails

Capacitors do this by storing electric charge, which creates a build up of electric potential

energy

They are made in the form of two conductive metal plates connected to a voltage supply

(parallel plate capacitor)

There is commonly a dielectric in between the plates, to ensure charge does not flow

across them

The capacitor circuit symbol is:

The capacitor circuit symbol is two parallel lines

Capacitors are marked with a value of their capacitance

Capacitance is defined as:

The charge stored per unit potential di�erence (between the plates)

The greater the capacitance, the greater the charge stored in the capacitor

The capacitance of a capacitor is defined by the equation:

Where:

C = capacitance (F)

Q = charge stored (C)

V = potential di�erence across the capacitor plates (V)

Capacitance

7.9 Capacitance

https://www.savemyexams.co.uk/


A capacitor used in small circuits

Capacitance is measured in the unit Farad (F)

In practice, 1 F is a very large unit

Often it will be quoted in the order of micro Farads (μF), nanofarads (nF) or picofarads

(pF)

If the capacitor is made of parallel plates, Q is the charge on the plates and V is the potential

di�erence across the capacitor

The charge Q is not the charge of the capacitor itself, it is the charge stored on the

plates

This capacitance equation shows that an object’s capacitance is the ratio of the charge

stored by the capacitor to the potential di�erence between the plates

Worked Example

A parallel plate capacitor has a capacitance of 1 nF and is connected to a voltage

supply of 0.3 kV.

Calculate the charge on the plates.

Step 1: Write down the known quantities

Capacitance, C = 1 nF = 1 × 10  F

Potential di�erence, V = 0.3 kV = 0.3 × 10  V

Step 2: Write out the equation for capacitance

Step 3: Rearrange for charge Q

Q = CV

Step 4:Substitute in values

Q = (1 × 10 ) × (0.3 × 10 ) = 3 × 10  C = 300 nC

Exam Tip

The ‘charge stored’ by a capacitor refers to the magnitude of the charge stored on

each plate in a parallel plate capacitor or on the surface of a spherical

conductor. The letter ‘C’ is used both as the symbol for capacitance as well as the

unit of charge (coulombs). Take care not to confuse the two!
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Energy Stored by a Capacitor

When charging a capacitor, the power supply 'pushes' electrons to one of the metal plates

It therefore does work on the electrons and electrical energy becomes stored on the

plates

The power supply 'pulls' electrons o� of the other metal plate, attracting them to the

positive terminal

This leaves one side positively charged, while the other side becomes negatively

charged

Hence, in this way, charge is 'stored' by the capacitor

Gradually, this stored charge builds up

Adding more electrons to the negative plate at first is relatively easy since there is little

repulsion

As the charge of the negative plate increases, i.e., becomes more negatively charged, the

force of repulsion between the electrons on the plate and the new electrons being pushed

onto it increases

This means a greater amount of work must be done to increase the charge on the negative

plate or in other words:

The potential di�erence across the capacitor increases as the amount of charge

increases

Alternative Equations for Energy Stored

The energy stored by a capacitor is given by:

W=
1
2 QV

7.10 Energy Stored by a Capacitor
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Substituting the charge Q with the capacitance equation Q = CV, the energy stored can

also be calculated by the following equation:

W=
1
2 CV

2

By substituting the potential di�erence V, the energy stored can also be defined in terms of

just the charge stored Q and the capacitance, C:

W=
Q2

2C

Worked Example

Calculate the change in the energy stored in a capacitor of capacitance 1500 μF
when the potential di�erence across the capacitor changes from 10 V to 30 V.

Step 1: Write down the equation for energy stored, in terms of C and V and list the

known values

E =
1
2 CV2

Capacitance, C = 1500μF

Final p.d, V = 30 V

Initial p.d V =10 V

Step 2: The change in energy stored in proportional to the change in p.d

∆E =
1
2 C (∆V2

) =
1
2 C (V2

2 − V1
2

)

Step 3: Substitute in the values

∆E =
1
2 (1500 × 10−6) (302−202) =0 .4 J

Exam Tip

Energy stored or work done are used interchangeably (and sometimes written as E

or W as shown above). You should be comfortable linking the two equivalent ideas -

the energy stored in the capacitor is equal to the work done on it, by the power

supply which charges it. Make sure you can apply each of the three equations given

above! 
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Area Under a Potential Di�erence-Charge Graph

The charge stored Q on the capacitor is given by the equation Q = CV

Therefore, the charge stored Q is directly proportional to the potential di�erence

across the plates V

The graph of charge against potential di�erence is therefore a straight line graph through

the origin

The gradient of the graph represents the capacitance C, which is a constant

The electrical (potential) energy stored in the capacitor can be determined from the area

under the potential-charge graph which is equal to the area of a right-angled triangle:

Area = 
1
2  × base × height

The area under a potential di�erence-charge graph represents the energy stored by a

capacitor

Therefore the work done, or energy stored W in a capacitor is defined by the equation:

W=
1
2 QV

Where:

W = energy stored (J)

Q = charge stored (C)

V = potential di�erence across the plates (V)



Charge & Discharge Curves

Charging Curves

Capacitors are charged by a power supply (e.g. a battery)

When charging, electrons are 'pulled' from the plate connected to the positive terminal of

the power supply

Hence the plate nearest the positive terminal is positively charged

Oppositely, electrons are 'pushed' onto the plate connected to the negative terminal

Hence the plate nearest the negative terminal is negatively charged

As the negative charge builds up, fewer electrons are pushed onto the plate due to

electrostatic repulsion from the electrons already on the plate

When no more electrons can be pushed onto the negative plate, the charging stops

At the start of charging, the current is large and gradually falls to zero as the electrons stop

flowing through the circuit

The current decreases exponentially

This means the rate at which the charge decreases is proportional to the amount of

charge it has left

Since an equal but opposite charge builds up on each plate, the potential di�erence

between the plates slowly increases until it is the same as that of the power supply

7.11 Charge & Discharge Curves

A parallel plate capacitor is made up of two conductive plates with opposite charges

building up on each plate



Therefore, the charge stored on the capacitor plates increases until the potential

di�erence across the plates matches that of the power supply

Graphs of variation of current, p.d and charge with time for a capacitor charging through a

battery

The key features of the charging graphs are:

The shapes of the p.d. and charge against time graphs are identical

The current against time graph is an exponential decay curve

The initial value of the current starts on the y axis and decreases exponentially

The initial value of the p.d and charge starts at 0 up to a maximum value

Discharging Curves

Capacitors are discharged through a resistor with no power supply present

The electrons now flow back from the negative plate to the positive terminal of the power

supply until there is potential di�erence across the capacitor plates

Charging and discharging is commonly achieved by moving a switch that connects the

capacitor between a power supply and a resistor

YOUR NOTES 





The capacitor charges when connected to terminal P and discharges when connected to

terminal Q

At the start of discharge, the current is large (but in the opposite direction to when it was

charging) and gradually falls to zero

As a capacitor discharges, the current, p.d and charge all decrease exponentially

This means the rate at which the current, p.d or charge decreases is proportional to the

amount of current, p.d or charge it has left

The graphs of the variation with time of current, p.d and charge are all identical and follow a

pattern of exponential decay

Graphs of variation of current, p.d and charge with time for a capacitor discharging through

a resistor

The key features of the discharge graphs are:

The shape of the current, p.d. and charge against time graphs are identical

Each graph shows exponential decay curves with decreasing gradient



The initial values (typically called I , V  and Q  respectively) start on the y axis and

decrease exponentially

The rate at which a capacitor discharges depends on the resistance of the circuit

If the resistance is high, the current will decrease more slowly and charge will flow

from the capacitor plates more slowly, meaning the capacitor will take longer to

discharge

If the resistance is low, the current will decrease quickly and charge will flow from the

capacitor plates quickly, meaning the capacitor will discharge faster

Exam Tip

Make sure you're comfortable with sketching and interpreting charging and

discharging graphs, as these are common exam questions. A quick summary to help

you remember: 

Discharging curves are all identical

Current decreases for the Charging curve (but increases for potential

di�erence and charge stored!)

0 0 0



 



The Time Constant

The time constant of a capacitor discharging through a resistor is a measure of how long it

takes for the capacitor to discharge

The definition of the time constant for a discharging capacitor is:

The time taken for the charge, current or potential di�erence of a discharging

capacitor to decrease to 37% of its original value

Alternatively, for a charging capacitor:

The time taken for the charge or potential di�erence of a charging capacitor to rise

to 63% of its maximum value

37% is 0.37 or 1 / e (where e is the exponential function) multiplied by the original value (I ,

Q  or V )

This is represented by the Greek letter tau, τ , and measured in units of seconds (s)

The time constant provides an easy way to compare the rate of change of similar quantities

eg. charge, current and p.d.

It is defined by the equation:

τ  = RC

Where:

τ  = time constant (s)

R = resistance of the resistor (Ω)

C = capacitance of the capacitor (F)

For example, to find the time constant for a discharging capacitor:

Calculate 0.37V , where V  is the initial potential di�erence across it

Determine the corresponding time taken for the potential di�erence to decrease to

that value

To find the time constant for a charging capacitor:

Calculate 0.63V , where V  is the maximum potential di�erence across it

Determine the corresponding time taken for the potential di�erence to rise to that

value

0

0 0

0 0

0 0



Required Practical: Charging & Discharging Capacitors

Aim of the Experiment

The overall aim of this experiment is to calculate the capacitance of a capacitor. This is just

one example of how this required practical might be carried out

Variables

Independent variable = time, t 

Dependent variable= potential di�erence, V

Control variables:

Resistance of the resistor

Current in the circuit

Equipment List

Resolution of measuring equipment:

Voltmeter = 0.1 V

Stopwatch = 0.01 s

Method

7.12 Core Practical 11: Investigating Capacitor Charge & Discharge



�. Set up the apparatus like the circuit above, making sure the switch is not connected to X or

Y (no current should be flowing through)

�. Set the battery pack to a potential di�erence of 10 V and use a 10 kΩ resistor. The capacitor

should initially be fully discharged

�. Charge the capacitor fully by placing the switch at point X. The voltmeter reading should

read the same voltage as the battery (10 V)

�. Move the switch to point Y

�. Record the voltage reading every 10 s down to a value of 0 V. A total of 8−10 readings

should be taken

An example table might look like this:
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Analysing the Results

The potential di�erence (p.d) across the capacitance is defined by the equation:

Where:

V = p.d across the capacitor (V)

V  = initial p.d across the capacitor (V)

t = time (s)

e = exponential function

R = resistance of the resistor (Ω)

C = capacitance of the capacitor (F)

Rearranging this equation for ln(V) by taking the natural log (ln) of both sides:

Comparing this to the equation of a straight line: y = mx + c

y = ln(V)

x = t

gradient = -1/RC

c = ln(V )

�. Plot a graph of ln(V) against t and draw a line of best fit

�. Calculate the gradient (this should be negative)

�. The capacitance of the capacitor is equal to:

0

0

 



Evaluating the Experiment

Systematic Errors:

If a digital voltmeter is used, wait until the reading is settled on a value if it is switching

between two

If an analogue voltmeter is used, reduce parallax error by reading the p.d at eye level to the

meter

Make sure the voltmeter starts at zero to avoid a zero error

Random Errors:

Use a resistor with a large resistance so the capacitor discharges slowly enough for the

time to be taken accurately at p.d intervals

Using a datalogger will provide more accurate results for the p.d at a certain time. This will

reduce the error in the speed of the reflex needed to stop the stopwatch at a certain p.d

The experiment could be repeated by measuring the time for the capacitor to charge

instead

Safety Considerations

Keep water or any fluids away from the electrical equipment

Make sure no wires or connections are damaged and contain appropriate fuses to avoid a

short circuit or a fire

Using a resistor with too low a resistance will not only mean the capacitor discharges too

quickly but also that the wires will become very hot due to the high current

Capacitors can still retain charge after power is removed which could cause an electric

shock. These should be fully discharged and removed after a few minutes
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Exponential Discharge in a Capacitor

The Discharge Equation

When a capacitor discharges through a resistor, the charge stored on it decreases

exponentially

The amount of charge remaining on the capacitor Q after some elapsed time t is governed

by the exponential decay equation: 

Q=Q0e
−(t/RC )

Where:

Q = charge remaining (C)

Q  = initial charge stored (C)

e = exponential function

t = elapsed time (s)

R = circuit resistance (Ω)

C = capacitance (F)

Discharge Equation for Potential Di�erence

The exponential decay equation for charge can be used to derive a decay equation for

potential di�erence

Recall the equation for charge Q = CV

It also follows that the initial charge Q = CV (where V  is the initial potential

di�erence)

Therefore, substituting CV for Q into the original exponential decay equation gives:

CV=CV0e
−(t/RC )

Cancelling C from both sides gives the exponential decay equation for potential

di�erence V:

V=V0e
−(t/RC )

Where:

V = potential di�erence after some time t (V)

V  = initial potential di�erence (V)

t = elapsed time (s)

R = resistance (Ω)

C = capacitance (F)

This equation shows that the potential di�erence also decreases exponentially, from

some initial value V

Discharge Equation for Current

7.13 Exponential Discharge in a Capacitor

0

0 0 0

0

0
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The exponential decay equation for potential di�erence can be used to derive a decay

equation for current

Recall Ohm's law V = IR

It follows that the initial potential di�erence V = I R (where I  is the initial current)

Therefore, substituting IR for V into the decay equation for potential di�erence gives:

IR= I0Re
−(t/RC )

Cancelling R from both sides gives the exponential decay equation for current I:

I= I0e
−(t/RC )

Where:

I = current after some time t (A)

I  = initial current (A)

t = elapsed time (s)

R = resistance (Ω)

C = capacitance (F)

This equation shows that the current also decreases exponentially, from some initial value

I

Worked Example

A 10 mF capacitor is fully charged by a 12 V power supply and then discharged

through a 1 kΩ resistor. 

What is the discharge current after 15 s? 

Step 1: Write the known quantities

Initial potential di�erence V  = 12 V

Resistance R = 1 kΩ = 1000 Ω

Capacitance C = 10 mF = 0.01 F

Time elapsed = 15 s 

Step 2: Determine the initial current I

Since the initial potential di�erence is 12 V and the resistance is 1000 Ω, then:

I0=
V0

R =
12
1000 = 0.012 A

Step 3: Write the decay equation for current

The decay equation for current is:

I= I0e
−(t/RC )

Step 4: Substitute quantities and calculate the current after 15 s 

0 0 0

0

0



0

0
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Substituting quantities gives the following: 

I = (0.012) × (e )

I = (0.012) × (e )

I = (0.012) × (0.223...)

I = 2.7 × 10  A = 2.7 mA

Exam Tip

Remember you can work out initial quantities like current or potential di�erence or

charge using the equations: 

V  = I R

Q  = CV

You will then usually have enough information to substitute all necessary values into

the decay equations! 

Natural Logarithms & Discharge Equations

The exponential decay equations are not linear

They can be turned into linear equations by using the natural logarithm function

Recall the exponential decay equation for charge:

Q=Q0e
−(t/RC )

Dividing both sides by Q  gives:

Q
Q0

=e−(t/RC )

Taking the natural logarithm of both sides 'cancels' the exponential function e, giving: 

ln
⎛
⎜
⎜
⎜

⎝

⎞
⎟
⎟
⎟

⎠

Q
Q0

= ln (e−(t/RC )
)=−

t
RC

This simplifies to:

ln Q – ln Q0=−
t
RC

Leaving an equation for the natural logarithm of charge Q as:

ln Q=−
1
RC t + ln Q0

This is the equation of a straight line graph, where:

ln Q is plotted on the y-axis

–(15/(1000 × 0.01)

–1.5

–3



0 0

0 0

0
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t is plotted on the x-axis

The gradient of the line is therefore equal to –1/RC

The natural logarithm of the exponential decay curve line arises it to a straight-line graph

with a gradient equal to –1/RC

Following similar steps, the linearised versions of the decay equations for potential

di�erenceV is: 

ln V = –
1
RC t + ln V0

And for current I is: 

ln I = −
1
RC t + ln I0
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Magnetic Flux, Flux Density & Flux Linkage

Magnetic Flux Density

The strength of a magnetic field is defined by the density of the magnetic field lines,

or magnetic flux density, at that point

Magnetic flux density is defined by the symbol B

It is measured in Tesla (T)

Rearranging the equation for magnetic force on a wire, the magnetic flux density is defined

by the equation:

Where:

B = magnetic flux density (T)

F = magnetic force on a current-carrying wire (N)

I = current (A)

L = length of the wire (m)

For reference, the Earth's magnetic flux density is around 0.032 mT and an ordinary fridge

magnet is around 5 mT

The magnetic flux density is sometimes referred to as the magnetic field strength

Magnetic Flux

Magnetic flux is a quantity which signifies how much of a magnetic field passes

perpendicularly through some area

For example, the amount of magnetic flux through a rotating coil will vary as the coil rotates

in the magnetic field

It is a maximum when the magnetic field lines are perpendicular to the coil area

It is at a minimum when the magnetic field lines are parallel to the coil area

The magnetic flux is defined as:

The product of the magnetic flux density and the cross-sectional area

perpendicular to the direction of the magnetic flux density

Magnetic flux is defined by the symbol Φ (greek letter ‘phi’)

It is measured in units of Webers (Wb)

Magnetic flux can be calculated using the equation:

Φ = BA

Magnetic Fields

7.14 Magnetic Flux Density, Flux & Flux Linkage



ers

This means the magnetic flux is:

Maximum = BA when cos(θ) =1 therefore θ = 0 . The magnetic field lines are

perpendicular to the plane of the area

Minimum = 0 when cos(θ) = 0 therefore θ = 90 . The magnetic fields lines are parallel to

the plane of the area

An e.m.f is induced in a circuit when the magnetic flux linkage changes with respect to time

This means an e.m.f is induced when there is:

A changing magnetic flux density B

A changing cross-sectional area A

A change in angle θ

Flux Linkage

The magnetic flux linkage is a quantity commonly used for solenoids which are made of N

turns of wire

The flux linkage is defined as:

The product of the magnetic flux and the number of turns of the coil

It is calculated using the equation:

Flux linkage = ΦN = BAN

Where:

Φ = magnetic flux (Wb)

N = number of turns of the coil

B = magnetic flux density (T)

A = cross-sectional area (m )

The flux linkage ΦN has the units of Weber turns (Wb turns)

o

o

2



Magnetic Force on a Charged Particle

The magnetic force on an isolated moving charged particle, such as a proton, is given by

the equation:

F = BQv

Where:

F = magnetic force on the particle (N)

B = magnetic flux density (T)

Q = charge of the particle (C)

v = speed of the particle (m s )

This is the maximum force on the charged particle, when F, B and v are mutually

perpendicular

Therefore if a particle travels parallel to a magnetic field, it will not experience a

magnetic force

Current is the rate of flow of positive charge

This means that the direction of the 'current' for a flow of negative charge (e.g. an

electron beam) is in the opposite direction to its motion

If the charged particle is moving at an angle θ to the magnetic field lines, then the size of the

magnetic force F is given by the equation: 

F = BQv sin θ

This equation shows that: 

The size of the magnetic force is zero if the angle θ is zero (i.e. the particle moves

parallel to the field lines)

The size of the magnetic force is maximum if the angle θ is 90° (i.e. the particle

moves perpendicular to field lines)

7.15 Magnetic Force on a Charged Particle
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Fleming's Left Hand Rule for a Charged Particle

Fleming’s left hand rule can be used to determine the direction of the magnetic force on a

moving charged particle in a magnetic field

The First Finger = direction of the magnetic field

The Second Finger = direction of conventional current (i.e. the velocity of a moving

positive charge)

The Thumb = direction of the magnetic force

Fleming's Left Hand Rule is illustrated in the image below:

Fleming's Left Hand Rule shows the magnetic force, magnetic field and conventional

current (flow of positive charge) are all perpendicular to each other 

Since this is represented in 3D space, sometimes the flow of charge, magnetic force or

magnetic field could be directed into or out of the page, not just left, right, up and down

The direction of the magnetic field into or out of the page in 3D is represented by the

following symbols:

Dots (sometimes with a circle around them) represent the magnetic field directed out

of the plane of the page

Crosses represent the magnetic field directed into the plane of the page
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The magnetic field into or out of the page is represented by circles with dots or crosses

The way to remember this is by imagining an arrow used in archery or darts:

If the arrow is approaching head-on, such as out of a page, only the very tip of the

arrow can be seen (a dot)

When the arrow is moving away, such as into a page, only the cross of the feathers at

the back can be seen (a cross)

An Electron Moving in a Magnetic Field

The maximum magnetic force on a moving charged particle is always perpendicular to its

velocity

This means magnetic forces cause charged particles to move in a circle

The direction of magnetic force on the charged particle can be determined using Fleming's

Left Hand Rule

The image below shows an electron incident on a uniform magnetic field B directed

into the page:
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An electron moving to the left as shown is equivalent to a conventional positive charge or

current moving to the right. Using Fleming's Left Hand Rule, the direction of the force can be

determined

According to Fleming's Left Hand Rule:

B is directed into the page, therefore the first finger should point into the page

The conventional current (or velocity of a positivecharge) is directed to the right

(because an electron is moving to the left), therefore the second finger should point to

the right

Therefore, the force on the electron as shown by the thumb is initially upwards as it

enters the magnetic field

The force due to the magnetic field is always perpendicular to the velocity of the electron

Note: this is equivalent to circular motion

Therefore, the magnetic force on a moving charge is a centripetal force

The centripetal force is what keeps moving charges following a circular trajectory

Fleming’s Left Hand Rule can be used again to find the direction of the force, magnetic field

and velocity

The key di�erence is that the second finger, representing current I (direction of positive

charge), can now be used as the direction of velocity vof a positive charge

Exam Tip

The most important point when using Fleming's left hand rule is the direction of

the charge (or current flow). This is always the direction of positive charge.

Therefore, for electrons, or negatively charged ions, you should point your second

finger for the current in the opposite direction to its motion.
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Magnetic Force on a Current-Carrying Conductor

A current-carrying conductor produces its own magnetic field

An external magnetic field will therefore exert a magnetic force on it

A current-carrying conductor (eg. a wire) will experience the maximum magnetic force if the

current through it is perpendicular to the direction of the magnetic flux lines

A simple situation would be a copper rod placed within a uniform magnetic field

When current is passed through the copper rod, it experiences a force which makes it

accelerate

A copper rod moves within a magnetic field when current is passed through it

The force F on a conductor carrying current I in a magnetic field with flux density B is defined

by the equation

F = BIL sin θ

Where:

F = magnetic force on the current-carrying conductor (N)

B = magnetic flux density of external magnetic field (T)

I = current in the conductor (A)

L = length of the conductor in the field (m)

θ = angle between the conductor and external flux lines (degrees)

This equation shows that the magnitude of the magnetic force F is proportional to:

Current I

Magnetic flux density B

7.16 Magnetic Force on a Current-Carrying Conductor
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Length of conductor in the field L

The sine of the angle θ between the conductor and the magnetic flux lines

The maximum force occurs when sin θ = 1

This means θ = 90  and the conductor is perpendicular to the B field

This equation for the magnetic force now becomes:

F = BIL

The minimum force (0) is when sin θ = 0

This means θ = 0 and the conductor is parallel to the B field

It is important to note that a current-carrying conductor will experience no force if the

current in the conductor is parallel to the field

o

o 

Worked Example

A current of 0.87 A flows in a wire of length 1.4 m placed at 30  to a magnetic field of

flux density 80 mT.

Calculate the force on the wire.

Step 1: Write down the known quantities

Magnetic flux density, B = 80 mT = 80 × 10  T

Current, I = 0.87 A

Length of wire, L = 1.4 m

Angle between the wire and the magnetic flux lines, θ = 30

Step 2: Write down the equation for the magnetic force on a current-carrying

conductor

F = BIL sin θ

Step 3: Substitute in values and calculate

F = (80 × 10 ) × (0.87) × (1.4) × sin (30) = 0.04872 = 0.049 N (2 s.f)

Exam Tip

Remember that the direction of current is the flow of positive charge (i.e.

conventional current) and this is in the opposite direction to the flow of electrons

(i.e. electron flow)!


o

-3

o

-3
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Fleming's Left Hand Rule for a Current-Carrying Conductor

Fleming's Left Hand Rule was previously used to determine the direction of the magnetic

force on a moving chargedparticle in a magnetic field

It can also be used to determine the direction of the magnetic force on a current-carrying

conductor in a magnetic field

This is because inside a conductor (e.g. a wire) there are many charged particles

flowing as a current

Using the conventional symbols representing vectors like magnetic flux density B and

force F that go into the page (arrows) or out of the page (dots) we can apply Fleming's Left

Hand Rule to problems in 3D
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Induced E.M.F in a Moving Coil

Electromagnetic induction is a phenomenon which occurs when an e.m.f is induced when a

conductor moves through a magnetic field

If there is a change in magnetic fluxΦ or magnetic flux linkage NΦ
Mechanical work (from moving the conductor in the field) is transformed into

electrical energy

Therefore, if attached to a complete circuit, a current will be induced in the conductor

This is known as electromagnetic induction and is defined as:

The process in which an e.m.f is induced in a closed circuit due to changes in

magnetic flux (linkage)

This can occur either when:

A conductor cuts through a magnetic field

The magnetic flux (linkage) through a coil changes, e.g. becomes more or less dense,

or changes direction

Electromagnetic induction is used in:

Electrical generators which convert mechanical energy to electrical energy

Transformers which are used in electrical power transmission

This phenomenon can easily be demonstrated with a magnet and a coil, or a wire and two

magnets

Relative Motion between a Coil and a Magnet

When a coil is connected to a sensitive voltmeter, a bar magnet can be moved in and out of

the coil to induce an e.m.f in the coil

Electromagnetic Induction & Alternating Currents

7.17 Induced E.M.F in a Moving Coil

YOUR NOTES 
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A bar magnet is moved through a coil connected to a voltmeter to induce an e.m.f

The observations are:

When the bar magnet is not moving, the voltmeter shows a zero reading

When the bar magnet is held still inside, or outside, the coil, the rate of change of flux is

zero, so, there is no e.m.f induced

When the bar magnet begins to move inside the coil, there is a reading on the voltmeter

As the bar magnet moves, its magnetic field lines ‘cut through’ the coil, generating a

change in magnetic flux (ΔΦ)

This induces an e.m.f within the coil, shown momentarily by the reading on the

voltmeter

When the bar magnet is taken back out of the coil, an e.m.f is induced in the opposite

direction

As the magnet changes direction, the direction of the current changes

The voltmeter will momentarily show a reading with the opposite sign

Increasing the speed of the magnet induces an e.m.f with a higher magnitude

As the speed of the magnet increases, the rate of change of flux increases

The direction of the electric current, and e.m.f, induced in the conductor is such that it

opposes the change that produces it
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Factors that will increase the induced e.m.f are:

Moving the magnet faster through the coil

Adding more turns to the coil

Increasing the strength of the bar magnet

Rotating Coils 

When a coil rotates in a uniform magnetic field, the magneticflux through the coil will vary

as it rotates

Therefore, since the flux linkage through the coil also varies, this will induce an e.m.f that

also varies 

The maximum e.m.f is when the coil cuts through the most field lines

The varying e.m.f induced is called an alternatingvoltage

Even though the flux linkage through the coil is maximum when θ = 0°, the change in flux

linkage is minimal as the coil rotates, so the induced e.m.f is a minimum. The opposite is true

when θ = 90°

Increasing the coil's frequency of rotation increases:

The frequency of the alternating voltage

The amplitude of the alternating voltage
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Induced E.M.F between Linked Coils

An e.m.f can be induced in a coil when there is a change of current in another coil linked with

this coil

This is what happens in a transformer

Transformers

A transformer is adevice that works by the principles of electromagnetic induction

It changes high alternating voltages at low current to low alternating voltage at high

current, and vice versa

A transformer is made up of:

A primary coil

A secondary coil

An iron core

The primary and secondary coils are wound around the soft iron core

The soft iron core is necessary because it creates flux linkage between the primary

and secondary coils

Soft iron is used because it can easily be magnetised and demagnetised

Coils are magnetically linked, through their combined magnetic flux linkage, using a soft

iron core

In the primary coil, an alternating current producing an alternating voltage is applied

This creates an alternating magnetic field inside the iron core and therefore a

changing magnetic flux linkage

A changing magnetic field passes through to the secondary coil through the iron core

This results in a changing magnetic flux linkage in the secondary coil and from

Faraday's Law, an e.m.f is induced

An e.m.f produces an alternating output voltage from the secondary coil

The output alternating voltage is at the same frequency as the input voltage

7.18 Induced E.M.F between Linked Coils
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Lenz's Law

Lenz’s Law is used to predict the direction of an induced e.m.f in a coil or wire

Lenz's Law is summarised below:

The induced e.m.f is set up in a direction to produce e�ects that oppose the

change causing it

Experimental Evidence for Lenz’s Law

To verify Lenz’s Law, the only apparatus needed is:

A bar magnet

A coil of wire

A sensitive ammeter

Note, a cell is not required

Lenz’s law can be verified using a coil connected in series with a sensitive ammeter and a bar

magnet

A known pole (either north or south) of a bar magnet is pushed into the coil

This induces an e.m.f in the coil

The induced e.m.f drives a current (because it is a complete circuit)

Lenz's Law dictates: 

The direction of the e.m.f, and hence the current, must be set up to oppose the

incoming magnet

Since a north pole approaches the coil face, the e.m.f must be set up to create an

induced north pole

This is because two north poles will repel each other

The direction of the current is therefore as shown in the image above

The direction of current can be verified using the right hand grip rule

7.19 Lenz's Law
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Fingers curl around the coil in the direction of current and the thumb points along the

direction of the flux lines, from north to south 

Therefore, the current flows in an anti-clockwise direction in the image shown, in order

to induce a north pole opposing the incoming magnet

Reversing the magnet direction would give an opposite deflection on the voltmeter

Lenz's Law now predicts a south pole induced at the coil entrance

This would attract the north pole attempting to leave 

Therefore, the induced e.m.f always produces e�ects to oppose the changes causing

it

Lenz's Law is a direct consequence of the principle of conservation of energy

Electromagnetic e�ects will not create electrical energy out of nothing

In order to induce and sustain an e.m.f, for instance, work must be done in order to

overcome the repulsive e�ect due to Lenz's Law

Exam Tip

A typical exam question may ask you to explain the presence of the negative sign in

Faraday's Law, which is the equation that tells you the size of the induced e.m.f ε as: 

ε = −
d (NΦ)

dt

You should remember that the negative sign is representative of Lenz's Law, which

says that the induced e.m.f ε is set up to oppose the change causing it. The

'change' causing an induced e.m.f, in this case, is the changing flux linkage

(represented by the quantity 
d (NΦ)

dt ). 
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Faraday's Law

Faraday's Law connects the rate of change of flux linkage with induced e.m.f

It is defined in words as:

The magnitude of the induced e.m.f is directly proportional to the rate of change of

magnetic flux linkage

Faraday's Law as an equation is defined as:

ε=
Δ(NΦ)

Δt

Where:

ε = induced e.m.f (V)

Δ(Nɸ) = change in flux linkage (Wb turns)

Δt = time interval (s)

If the interval of time becomes very small (i.e., in the limit of Δt → 0) the equation for

Faraday's Law can be written as:

ε=
d (NΦ)

dt

Combining Lenz's Law and Faraday's Law

Combining Lenz's Law into the equation for Faraday's Law is written as: 

ε=−
d (NΦ)

dt

The negativesign represents Lenz's Law

This is because it shows the induced e.m.f ε is set up in an 'oppositedirection' to

oppose the changing flux linkage

This equation also shows that the gradient of the graph of magnetic flux (linkage) against

time, 
Δ(NΦ)

Δt  represents the magnitude of the induced e.m.f

Note: the negative sign means if the gradient is positive, the induced e.m.f is negative

This is again due to Lenz's Law, which says the e.m.f is set up to oppose the e�ects of

the changing flux linkage

7.20 Faraday's Law
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Alternating Currents & Potential Di�erences

An alternating current (a.c) is defined as:

A current which periodically varies between a positive and negative value

This means the direction of an alternating current switches every half cycle

The variation of current, or p.d., with time can be described as a sine curve ie. sinusoidal

Therefore, the electrons in a wire carrying a.c. move back and forth with simple

harmonic motion

As with SHM, the relationship between time periodT and frequency f for a.c is related by the

equation:

Where:

T = time period (s)

f = frequency (Hz)

Peak current (I ), or peak voltage (V ), is defined as:

The maximum value of the alternating current or voltage

Peak current, or voltage, can be determined from the amplitude of a current-time or

voltage-time graph

The peak-to-peak current or voltage is the distance between a positive and consecutive

negative peak. This means:

peak voltage V  = peak-to-peak voltage ÷ 2

Graph of alternating current against time showing the time period, peak current and peak-

to-peak current
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Root-Mean-Square Current & Voltage

Root-mean-square (rms) values of current, or voltage, are a useful way of comparing a.c

current, or voltage, to its equivalent direct current (d.c), or voltage

The rms values represent the direct current, or voltage, values that will produce the same

heating e�ect, or power dissipation, as the alternating current, or voltage

The rms value of an alternatingcurrent is defined as:

The equivalent direct current that produces the same power

In other words, an rms current is 'equivalent', in a sense, to a DC current, because they

produce the same overall e�ect in a circuit

The rms value of an alternating voltage is similarly defined as:

The equivalent dc voltage that produces the same power

Rms current is equal to 0.707 × I , which is about 70% of the peak current I

This is also the case for rms voltage

V  and peak voltage. The rms voltage is about 70% of the peak voltage
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Root-Mean-Square Current & Potential Di�erence

The root-mean-square (rms) current I  is defined by the equation:

Where:

I  = peak current (A)

The rms voltage V  is defined by the equation:

Where:

V  = peak voltage (V)

Rms current is equal to 0.707I , which is about 70% of the peak current I

This is also the case for rms voltage

Worked Example

An electric oven is connected to a 230 V root mean square (rms) mains supply using

a cable of negligible resistance.

Calculate the peak-to-peak voltage of the mains supply.

Step 1: Write down the V  equation 

Step 2: Rearrange for the peak voltage, V

V  = √2 × V

Step 3: Substitute in the values

V  = √2 × 230

Step 4: Calculate the peak-to-peak voltage

The peak-to-peak voltage is the peak voltage (V ) × 2

Peak-to-peak voltage = (√2 × 230) × 2 = 650.538 = 651 V (3 s.f)
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Exam Tip

You are expected to know how to apply these equations, which simply relate the

peak current or voltage of an AC circuit to its rms value.

Remember, the rms value in an AC circuit is equivalent to values of current and

voltage that would produce the same heating e�ect in DC circuits. This means,

you can use the rms values in AC circuits for equivalent calculations involving DC

circuits.  
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