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Density

Density is the mass per unit volume of an object

Objects made from low-density materials typically have a lower mass

For example, a balloon is less dense than a small bar of lead despite occupying a larger

volume

The units of density depend on the units used for mass and volume:

If the mass is measured in g and volume in cm , then the density will be in g / cm

If the mass is measured in kg and volume in m , then the density will be in kg / m

Gases are less dense than a solid

The volume of an object may not always be given directly, but can be calculated with the

appropriate equation depending on the object’s shape

Density, Upthrust & Viscous Drag

4.1 Density

3 3

3 3



Volumes of common 3D shapes



Upthrust

Archimedes' Principle

Archimedes’ principle states:

An object submerged in a fluid at rest has an upward buoyancy force (upthrust)

equal to the weight of the fluid displaced by the object

The object sinks until the weight of the fluid displaced is equal to its own weight

Therefore the object floats when the magnitude of the upthrust equals the weight of

the object

The magnitude of upthrust can be calculated in steps by:

Find the volume of the submerged object, which is also the volume of the displaced

fluid

Find the weight of the displaced fluid

Since m = ρV (density × volume), upthrust is equal to F = mg which is the weight of the

fluid displaced by the object

Archimedes’ Principle explains how ships float:

Boats float because they displace an amount of water that is equal to their weight

4.2 Upthrust



Exam Tip

Don't get confused by the two step process to find upthrust.

Step 1: You need the volume of the submerged object, but only because you

want to know how much fluid was displaced

Step 2: What you really want to know is the weight of the displaced fluid.

A couple of familiar equations will help;

m = ρV to get mass (and that's the V from step 1 out of the way),

then

W = mg to get weight

If you are feeling particularly mathematical, you can combine your equations, so that

W = ρVg





Stoke's Law

Viscous Drag

Viscous drag is defined as

the frictional force between an object and a fluid which opposes the the motion between

the object and the fluid

Viscous drag is calculated using Stoke’s Law;

F = 6πηrv

Where

F = viscous drag (N)

η = coe�cient of viscosity of the fluid (N s m or Pa s)

r = radius of the object (m)

v = velocity of the object (ms )

The viscosity of a fluid can be thought of as its thickness, or how much it resists flowing

Fluids with low viscosity are easy to pour, while those with high viscosity are di�cult

to pour

The coe�cient of viscosity is a property of the fluid (at a given temperature) that indicates

how much it will resist flow

The rate of flow of a fluid is inversely proportional to the coe�cient of viscosity

Drag Force at Terminal Velocity

Terminal velocity is useful when working with Stoke’s Law since at terminal velocity the

forces in each direction are balanced

W  = F  + U (equation 1)

Where;

4.3 Viscous Drag
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W  = weight of the sphere

F  = the drag force (N)

U = upthrust (N)

At terminal velocity forces are balanced: W (downwards) = Fd + U (upwards)

The weight of the sphere is found using volume, density and gravitational force

W  =v ρ g

Ws =
4
3 πr

3ρsg  (equation 2)

Where

v  = volume of the sphere (m )

ρ  = density of the sphere (kg m )

g = gravitational force (N kg )

Recall Stoke’s Law

F  = 6πηrv  (equation 3)

Upthrust equals weight of the displaced fluid

The volume of displaced fluid is the same as the volume of the sphere

The weight of the fluid is found from volume, density and gravitational force as above

U =
4
3 πr

3ρ fg (equation 4)

Substitute equations 2, 3 and 4 into equation 1

4
3 πr

3ρsg = 6πηrv term +
4
3 πr

3ρ fg

Rearrange to make terminal velocity the subject of the equation

v term =

4
3 πr3g(ρs − ρ f)

6πηr =
4πr3g(ρs − ρ f)

18πηr
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Finally, cancel out r from the top and bottom to find an expression for terminal velocity in

terms of the radius of the sphere and the coe�cient of viscosity

v term =
2πr2g(ρs − ρ f)

9πη

This final equation shows that terminal velocity is;

directly proportional to the square of the radius of the sphere

inversely proportional to the viscosity of the fluid



Understanding Viscosity & Stoke's Law

Conditions for Stoke’s Law Equation

The equation can only be used when certain conditions are met;

The flow is laminar

The object is small

The object is spherical

Motion between the sphere and the fluid is at a slow speed

Laminar and Turbulent Flow

As an object moves through a fluid, or a fluid moves around an object, layers in the fluid are

created

In laminar flow all the layers are moving in the same direction and they do not mix

This tends to happen for slow moving objects, or slow flowing liquids

The equation above only applies for laminar flow

In turbulent flow the layers move in di�erent directions and the layers do mix

Changing Viscosity

Viscosity is temperature-dependent

Liquids are less viscous as temperature increases

Gases get more viscous as temperature increases

Worked Example

A ball bearing of radius 5.0 mm falls at a constant speed of 0.030 ms  through a oil

which has viscosity 0.3 Pa s and density 900 kg m .

Determine the viscous drag acting on the ball bearing. 
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Step 1: List the known quantities in SI units

Radius of the sphere, r  = 5.0 mm = 5.0 × 10  m

Terminal velocity of the sphere, v = 0.03 m s

Viscosity of oil, η = 0.3 Pa s

Density of oil, ρ = 900 kg m

Step 2: Sketch a free-body diagram to resolve the forces at constant speed

W  = F  + U

Step 3: Calculate the value for viscous drag, F

F  = 6πηrv = 6 × π × 0.3 × 5.0 × 10  × 0.03 = 0.008482

Step 4: Write the complete answer to the correct significant figures and include units

 The viscous drag, F = 8.5 × 10  N
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Exam Tip

You may need to write out some or all of the derivation given in the first part above.

It is really important to keep clear whether you are talking about density of the

sphere or the fluid, and mass of the sphere or the fluid.

Practice using subscripts and do try this at home. It isn’t one to do for the first time in

an exam!





Core Practical 4: Investigating Viscosity of a Liquid

Aim of the Experiment

By allowing small spherical objects of known weight to fall through a fluid until they reach

terminal velocity, the viscosity of the fluid can be calculated

Variables

Independent variable: weight of ball bearing, W

Dependent variable: terminal velocity, v

Control variables:

fluid being tested, 

temperature

Equipment List

Long measuring cylinder

Viscous liquid to be tested (thin oil of known density or washing up liquid)

Stand and clamp

Metre rule

Rubber bands

Steel ball bearings of di�erent weights

Digital scales

Vernier calipers

Digital stopwatch

Magnet

Method

�. Weigh the balls, measure their radius using Vernier callipers and calculate their density

�. Place three rubber bands around the tube. The highest should be far enough below the

surface of the liquid to ensure the ball is travelling at terminal velocity when it reaches this

4.4 Core Practical 4: Investigating Viscosity
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band. The remaining two bands should be 10 – 15 cm apart so that time can be measured

accurately

�. Release the ball and wait until it reaches the first rubber band. Start the timer at the first

band, then use the lap timer to find the time to fall d  and also d

i. If lap timing is not available, two stopwatches operated by di�erent people should be

used

ii. If the ball is still accelerating as it passes the markers, they need to be moved

downwards until the ball has reached terminal velocity before passing the first mark
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�. Measure and record the distances d  (between the highest and middle rubber band) and d

between the highest and lowest bands.

�. Repeat at least three times for balls of this diameter and three times for each di�erent

diameter

�. Ball bearings are removed from the bottom of the tube using the magnet against the

outside wall of the measuring cylinder

Table of Results:

Analysis

Terminal velocity is used in this investigation since at terminal velocity the forces in each

direction are balanced

Ws = Fd + U  (equation 1)

Where;

W  = weight of the sphere

F  = the drag force (N)

U = upthrust (N)

The weight of the sphere is found using volume, density and gravitational force

1 2

s

d

https://www.savemyexams.co.uk/?utm_source=pdf
https://www.savemyexams.co.uk/


Ws = vsρsg

Ws =
4
3 πr

3ρsg  (equation 2)

Where

v  = volume of the sphere (m )

ρ  = density of the sphere (kg m )

g = gravitational force (N kg )

Recall Stoke’s Law

Fd = 6πηrv term (equation 3)

Upthrust equals the weight of the displaced fluid

The volume of displaced fluid is the same as the volume of the sphere

The weight of the fluid is found from volume, density and gravitational force as above

U =
4
3 πr

3ρ fg (equation 4)

Substitute equations 2, 3 and 4 into equation 1

4
3 πr

3ρsg = 6πηrv term +
4
3 πr

3ρ fg

Rearrange to make viscosity the subject of the equation

4
3 πr

3ρsg −
4
3 πr

3ρ fg = 6πηrv term

4πr3g (ρs− ρ f)

3 × ( 6πrv term)

= η

η =
2r2g (ρs− ρ f)

9v term

Evaluating the Experiment

Systematic Errors:

Ruler must be clamped vertically and close to the tube to avoid parallax errors in

measurement

Ball bearing must reach terminal velocity before the first marker

Random errors:

Cylinder must have a large diameter compared to the ball bearing to avoid the possibility of

turbulent flow

Ball must fall in the centre of the tube to avoid pressure di�erences caused by being too

close to the wall which will a�ect the velocity

s
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Safety Considerations

Measuring cylinders are not stable and should be clamped into position at the top and

bottom

Spillages will be slippery and must be cleaned up immediately

Avoid getting fluids in the eyes



Hooke's Law

When a force F is added to the bottom of a vertical metal wire of length L, the wire stretches

A material obeys Hooke’s Law if:

The extension of the material is directly proportional to the applied force (load) up

to the limit of proportionality

This linear relationship is represented by the Hooke’s law equation:

ΔF= kΔx

Where:

F = applied force (N)

k = spring constant (N m )

Δx = extension (m)

The spring constant is a property of the material being stretched and measures the

sti�ness of a material

The larger the spring constant, the sti�er the material

Hooke's Law applies to both extensions and compressions:

The extension of an object is determined by how much it has increased in length

The compression of an object is determined by how much it has decreased in length

Stretching Materials

4.5 Hooke's Law
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Stretching a spring with a load produces a force that leads to an extension

Force–Extension Graphs

The way a material responds to a given force can be shown on a force-extension graph

A material may obey Hooke's Law up to a point

This is shown on its force-extension graph by a straight line through the origin

As more force is added, the graph may start to curve slightly

The Hooke's Law region of a force-extension graph is a straight line. The spring constant is

the gradient of that region

The key features of the graph are:

The limit of proportionality: The point beyond which Hooke's law is no longer true

when stretching a material i.e. the extension is no longer proportional to the applied

force

The point is identified on the graph where the line starts to curve (flattens out)

Elastic limit: The maximum amount a material can be stretched and still return to its

original length (above which the material will no longer be elastic). This point is always

after the limit of proportionality

The gradient of this graph is equal to the spring constant k
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Stress & Strain

Stress

Stress is the applied force per unit cross sectional area of a material

Forces can be;

Tensile forces, which pull on an object and extend it

Compressive forces, which push onto an object and compress (or squash) it

 The equation for stress is the force per unit area, and so the units are N m , or Pascals, the

same unit as pressure

Stress equation

The ultimate tensile stress is the maximum force per original cross-sectional area a wire is

able to support until it breaks

Strain

Strain is the extension per unit length

4.6 Stress, Strain & The Young Modulus
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Strain is the ratio of the extension (or compression) and the original length

This is a deformation of a solid due to stress in the form of elongation or contraction

Note that strain is a dimensionless unit because it’s the ratio of lengths

Strain equation



The Young Modulus

Young Modulus

The Young modulus (sometimes called Young's Modulus) is the measure of the ability of a

material to withstand changes in length with an added load ie. how sti� a material is

This gives information about the elasticity of a material

The Young Modulus is defined as the ratio of stress and strain

Young Modulus equation

Its unit is the same as stress: Pa (since strain is unitless)

Just like the Force-Extension graph, stress and strain are directly proportional to one

another for a material exhibiting elastic behaviour

A stress-strain graph is a straight line with its gradient equal to Young modulus

The gradient of a stress-stress graph when it is linear is the Young Modulus



Force-Extension Graphs

The way a material responds to a tensile or compressive force can be shown on a force-

extension, or a force-compression graph

Although compression can be put into equations as a negative value, the graphs have

the same shaped curves

Compression is plotted on the graph as a positive, increasing value

Every material will have a unique force-extension graph depending on how brittle or

ductile it is

In the same way, materials have unique force-compression graphs, which will not be the

same as their force-extension graph

This is because materials behave di�erently under tensile and compressive strain

Simple Force-Extension Graphs

Simple force-extension graph showing the Hooke's Law region, and the calculation to find

k, the spring constant

A material may obey Hooke's Law up to a point

This is shown on its force-extension graph by a straight line through the origin

As more force is added, the graph may start to curve slightly

The key features of the graph are:

The limit of proportionality

The point beyond which Hooke's law is no longer true when stretching or compressing

a material i.e. the extension/ compression is no longer proportional to the applied force

The point is identified on the graph where the line starts to curve

4.7 Force-Extension Graphs



The elastic limit

The point before which a material will return to its original length or shape when the

deforming force is removed

This point is always after the limit of proportionality

The spring constant k is found from the gradient of the straight part of the graph

More Detailed Force-Extension Graphs

Graphs of applied load-extension can give more detailed information about materials

This will apply when loads were continued well past the elastic limit

Detailed force-extension graph showing a material under loads which exceed the elastic

limit

The yield point is where the material continues to stretch even though no extra force is

being applied to it

Elastic deformation is a change of shape where the material will return to its original

shape when the load is removed

Plastic deformation occurs after the yield point

It is a change of shape where the material will not return to its original shape when the

load is removed
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Stress-Strain Graphs

Stress-strain curves give an indication of the properties of materials such as

Up to what stress and strain they obey Hooke's Law

Whether they exhibit elastic and/or plastic behaviour

The value of their Young Modulus

The value of their breaking stress

Each material has a unique stress-strain curve

Stress-strain graph for di�erent materials up to their breaking stress

Comparing Force-Extension to Stress-Strain Graphs

The key features of the graph which are also on the force-extension graph are:

Limit of proportionality, beyond which Hooke's law no longer applies

The elastic limit, before which a material returns to its original length or shape when the

deforming force is removed

The yield point beyond which the material continues to stretch (more strain is seen) even

though no extra force is being applied to it (without additional stress)

Elastic deformation where the material will return to its original shape when the load is

removed

Plastic deformation where the material will not return to its original shape when the load is

removed

4.8 Stress-Strain Graphs YOUR NOTES 
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The important points shown on a stress-strain graph

The stress-strain graph is also used to find;

The Young Modulus is found from the gradient of the straight part of the graph

Breaking stress (also called fracture stress) is the stress at the point where the material

breaks

At the yield point the atoms in the material had started to move relative to each other,

at the breaking stress they separate completely

Breaking stress is not the same as ultimate tensile stress which is marked on many

graphs



Core Practical 5: Investigating Young Modulus of a Material

To measure the Young Modulus of a metal in the form of a wire requires a clamped horizontal

wire over a pulley (or vertical wire attached to the ceiling with a mass attached) as shown in

the diagram below

A reference marker is needed on the wire. This is used to accurately measure the extension

with the applied load

The independent variable is the load

The dependent variable is the extension

Method

�. Measure the original length of the wire using a metre ruler and mark this reference point with

tape

�. Measure the diameter of the wire with micrometer screw gauge or digital calipers

�. Measure or record the mass or weight used for the extension e.g. 300 g

�. Record initial reading on the ruler where the reference point is

�. Add mass and record the new scale reading from the metre ruler

�. Record final reading from the new position of the reference point on the ruler

�. Add another mass and repeat method

Reducing Uncertainty

To reduce the uncertainty in the final answer, take the following precautions when

measuring

Take pairs of readings of the diameter right angles to each other, to ensure the wire is

circular

4.9 Core Practical 5: Investigating Young Modulus



Six to ten readings altogether is enough to get an average value

Remove the load and check the wire returns to the original limit after each reading. A

little 'creep' is acceptable but a large amount indicates that the elastic limit has been

exceeded

Take several readings with di�erent loads and find average

Use a Vernier scale to measure the extension of the wire

Measurements to Determine the Young Modulus

1. Determine extension x from final and initial readings

Example table of results:

Table with additional data



2. Plot a graph of force against extension and draw line of best fit

3. Determine gradient of the force v extension graph

4. Calculate cross-sectional area from:

5. Calculate the Young modulus from

https://www.savemyexams.co.uk/


Safety Considerations

Safety glasses should be worn in case of the wire snapping

Protect feet and the floor from falling weights by cushioning the area underneath the

weights

Exam Tip

Although every care should be taken to make the experiment as reliable as possible,

you will be expected to suggest improvements in producing more accurate and

reliable results

Good examples of improvements in any experiment are:

Take repeat readings and take an average to improve accuracy

Measure longer distances, such as using a longer length of wire, to reduce

percentage error
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Area Under a Force-Extension Graph

For a material which obeys Hooke's law, the elastic strain energy, E  can be determined by

finding the area under the force-extension graph

Since this area will be a triangle with sides F (force) and x (extension) the equation is:

ΔEel=
1
2 FΔx

Where:

E  = elastic strain energy (or work done) (J)

F = average force (N)

Δx = extension (m)

Since Hooke's Law states that F = kΔx, the elastic strain energy can also be written as: 

ΔEel=
1
2 k (Δx)

2

Where:

k = spring constant (N m )

4.10 Elastic Strain Energy
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Elastic Strain Energy

Work has to be done to stretch a material

Before a material reaches its elastic limit (whilst it obeys Hooke's Law), all the work is done is

stored as elastic strain energy

The work done, or the elastic strain energy is the area under the force-extension graph

Work done is the area under the force-extension graph

This is true for whether the material obeys Hooke's law or not

Linear Graphs

For the region where the material obeys Hooke's law, the work done is the area of a right-

angled triangle under the graph

Non-linear Graphs

For the region where the material doesn't obey Hooke's law, the area is the full region

under the graph.

To calculate this area, split the graph into separate segments and add up the individual

areas of each

For the remaining part, count the squares left over

Before adding squares to the total they must be converted using the values on the

axes

For example, if each division on the y-axis = 0.1 N and each division on the x-axis = 0.2

m, then each square = 0.1 × 0.2 N m = 0.02 N m


