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Conditions for Simple Harmonic Motion

¢ Simple harmonic motion (SHM) is a specific type of oscillation
¢ Anoscillationis said to be SHM when:
o Theaccelerationis proportional to the displacement
o The accelerationisinthe oppositedirectionto the displacement

e Examples of oscillators that undergo SHM are:
o Thependulum of a clock
o Amassonaspring
Guitar strings
The electronsin alternating current flowing through a wire

o

o]



| EXAMPLES OF SHM |

e Timeperiod, T:
o The objects swings are periodic, meaning they arerepeatedinregularintervals
according to their frequency ortime period
o If an object swings freely it always takes the same time to complete one swing

Restoring force

¢ When an objectis movingin SHM a force, called the restoring force, F, is always trying to
return the object back toits equilibrium position.
e Theforceis proportional to the displacement, x, from that equilibrium position

=-kx

¢ Where:
o Fistherestoringforce



o xisthedisplacement of the object from the equilibrium position

o kisaconstantdependingonthesystem

o thenegative sign shows that the acceleration will always be towards the centre of
oscillation
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Force, acceleration and displacement of a pendulumin SHM

e Thisis why a person jumping on a trampoline is not an example of simple harmonic motion:
o Therestoring force on the personis not proportional to their distance from the
equilibrium position
o Whenthepersonis notin contact with the trampoline, the restoring force is equalto
theirweight, whichis constant
o This does notchange, evenif they jump higher

*> Worked Example

[
A200gtoyrobotis attachedto a pole by a spring, with a springconstantof 90N
m-!, and made to oscillate horizontally.
(a) What force willact on therobot whenitis atits amplitude position of 5 cm from
equilibrium?
(b) How fast will the robot accelerate whilst at this amplitude position?
Part (a)

Step 1: Convert amplitudeintom

5cm=0.05m



Step 2: Substitute values into the restoring force equation
F=-kx=-(90)x(0.05)=-4.5N
Step 3: Explain the answer

Aforce of 4.5 newtons willact on therobot, trying to pullit back towards the equilibrium
position.
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Part (b)
Step 1: Convert mass of robotinto kg
200g=0.2kg
Step 2: Substitute values into Newton's second law equation:
F=ma

s _ F -4.5 b y
o,a= m= 02 =-225ms

Step 3: Explain the answer

The train will decelerate at arate of 22.5 m s“2when at this amplitude position

(’) ExamTip

Even with this topic you must make sure you convert all quantities into standard S|
units



Equations for Simple Harmonic Motion

Acceleration and SHM
e Acceleration a and displacement x can berepresented by the defining equation of SHM:
a«-X
¢ Theacceleration of an object oscillatingin simple harmonic motionis:
a=-w’X

e Where:
o a=acceleration(ms)
o w=angularfrequency (rads)
o x=displacement(m)

This is used to find the acceleration of an object with a particularangularfrequency wat a

specific displacement x

¢ Theequation demonstrates:

o Theaccelerationreaches its maximumvalue when the displacement is at a maximum
i.e..x=A(amplitude)

o The minus sign shows thatwhen the object is displaced to theright, the direction of
the accelerationis to theleft andvice versa (a andxare always in opposite directions
to each other)

Displacement and SHM

¢ The graph of acceleration against displacement s a straight line through the origin sloping
downwards (similartoy = -x)
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The acceleration of an objectin SHM is directly proportional to the negative displacement

e Thekey features of the graph are:
o Thegradientis equalto -»?
o The maximum and minimum displacement xvalues are the amplitudes -Aand +A

¢ Asolutiontothe SHM acceleration equation is the displacement equation:
X=Acos (ot)

e Where:
o A=amplitude (m)
o t=time(s)

e This occurs when:
o Anobjectis oscillating fromits amplitude position (x=Aorx=-Aatt=0)
o Thedisplacement willbe atits maximum when cos(wt) equals Tor-1, whenx=A

¢ This equation can be usedto find the position of an objectin SHM with a particularangular
frequency and amplitude ata momentin time

e |fanobjectis oscillating fromits equilibrium position (x= 0 at t = 0) then the displacement
equation will be:

x=Asin (ot)

¢ Thedisplacement willbe atits maximum when sin(wt) equals Tor -1, whenx=A
e Thisis becausethesine graphstarts at O, whereas the cosine graph starts ata maximum
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*> Worked Example

o
Amass of 55 gis suspended from a fixed point by means of a spring.

The stationary mass is pulled vertically downwards through a distance of 4.3cm
andthenreleasedatt=0.

The massis observed to perform simple harmonic motion with a period of 0.8 s.

Calculate the displacementx, incm, of themass attimet=0.3s.

Step 1: Write down the SHM displacement equation

Sincethemassisreleasedatt=0 atits maximum displacement, the displacement
equation will be with the cosine function:

x = Acos( w t)
Step 2: Calculate angular frequency

_2n_2n_785 g1
w_T_O.S_' rad s

Rememberto use thevalue of the time period given, not the time passed
Step 3: Substitute values into the displacement equation
x=4.3c0s(7.85x0.3)=-3.0369..=-3.0cm (2s.f)
Make sure the calculatoris in radians mode
The negative value means the massis 3.0 cm on the opposite side of the equilibrium
position to whereit started (3.0 cm aboveiit)
Speed and SHM

e Thespeedof an objectin simple harmonic motion varies as it oscillates back and forth
o Its speedis the magnitude of its velocity

e Thegreatestspeedofan oscillatoris at the equilibrium position ie. when its displacement x
=0
e How the speedyv changes with the oscillator’s displacement xin SHM is defined by:

v=*w\/ (A2 -x2)

e Where:
o v=speed(ms)
A =amplitude(m)
o +="plus orminus’. Thevalue can be negative or positive
w=angularfrequency (rads™)
x=displacement(m)

o]

o

(e}



¢ This equation shows thatwhen an oscillatorhas a greateramplitude A, ithas to travel a
greaterdistancein the sametime andhence has greaterspeedv

¢ Although the symbolvis commonly usedtorepresentvelocity, not speed, exam questions
focus more on the magnitude of the velocity thaniits directionin SHM

7 Worked Example
[

Asimple pendulum oscillates with simple harmonic motion with an amplitude of 15
cm.
The frequency of the oscillations is 6.7 Hz.

Calculate the speed of the pendulum at a position of 12 cm from the equilibrium
position.

Step 1: Write out the known quantities

o Amplitude of oscillations,A=15cm =0.15m
o Displacement atwhich the speedis tobefound,x=12cm=0.12m
o Frequency, f=6.7Hz

Step 2: Oscillator speed with displacement equation

v=*w/ (A2-x2)

o Sincethe speedis being calculated, the £ sign can beremoved as direction does not
matterin this case

Step 3: Write an expression for the angular frequency
o Equationrelating angular frequency and normal frequency:

w =2nf =21 X 6.7 =42.097...

Step 4: Substitutein values and calculate

v=021mx6-7)x+/(0-15)2=(0-12)?

v=3.789=3.8ms™ (2s.)

(f) Exam Tip

¥ Since displacementis a vector quantity, rememberto keep the minus signin your
solutions if they are negative, you couldlose a markif not! Also, remember that your
calculatormust bein radians mode when using the cosine and sine functions. This is
because the angularfrequency  is calculatedinrad s™!, not degrees. You often have
to convert between time period T, frequency f and angular frequency » formany
exam questions - so make sure you revise the equations relating to these.



Period of a simple pendulum

e Asimple pendulumis:
o Anobject moving from side to side
o Attachedto afixed pointabove

e Thetime period of a simple pendulum can also be calculated using this equation:

JT
T=2m| —
g
e Where:

o [is thelength of the pendulum swing
o gisthestrength of gravity on the planet on which the pendulumis setup

*> Worked Example

Achildis sitting on a swing thatis 200 cmlong. What is the period of oscillation?

Step 1: Convertlength to meters
200cm=2m

’ —2 —2 ‘ E —2 848

The time period of Toscillation of the swingis 2.84 s

Step 3: Confirmthe answer



Period of aMass-Spring System

¢ Amass-spring systemmeans:
o Anobject movingup and down
o Ontheendofaspring

EQUILIBRIUM -
POSITION

e Theequation fortherestoring forcein SHMF = - kx
o isthesameasthe equationforHooke's Law
e Thetimeperiod, T can be calculated using the equation:

I - 2“
k

o misthemass of the object on the end of the pendulum
o kisthespring constant of the material the pendulumis made from

Observing the Motion of aMass-Spring System

e Anexperimental and graphicalmethod can be usedto observe the motion of a simple
mass-spring system
o Tieapenciltogetherwith the mass and set the mass in free oscillations by displacing it
downwards slightly

¢ Theoscillations willmove the pencilup and down
o Ona piece of graph paper, allow the pencilto trace the path of the oscillations by
pulling the paper sideways as the mass-spring system oscillates up and down

¢ Theoscillations will produce a curved, periodic graph
o This willdecreasein amplitude as the mass-spring system slows down
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The motion of oscillator can be observed through a simple mass and spring system



Displacement-Time graph for an oscillator

¢ Thedisplacement of an objectin simple harmonic motion can be represented by a graph of
displacement againsttime
¢ Allundamped SHM graphs are represented by periodic functions

o}

This means they can allbe described by sine and cosine curves
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¢ Key features of the displacement-time graph:

o}

o}

The amplitude of oscillations A can be found from the maximum value of x

The time period of oscillations T can be found from reading the time taken for one full
cycle

The graph might not always startat O

If the oscillations starts at the positive ornegative amplitude, the displacement will be
atits maximum

(’) Exam Tip

This graph might notlook identical to whatis in your textbook, depending on where
the object starts oscillating from at t = O (on either side of the equilibrium, orat the
equilibrium). However, if there is no damping, they will allalways be a general sine or
cosinecurve.



Velocity-time graph for an oscillator
¢ Thevelocity of an objectin simple harmonic motion can be represented by a graph of
velocity against time
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* Key features of the velocity-time graph:
o Itis 90° out of phase with the displacement-time graph
o Velocityis equalto therate of change of displacement
o So, thevelocity of an oscillatorat any time can be determined from the gradient of the
displacement-time graph:

_Ax
V= At

¢ Anoscillatormoves the fastest atits equilibrium position
o Therefore, the velocity is atits maximum when the displacement is zero



*> Worked Example

Aswingis pulled 5 cmandthenreleased.

Thevariation of the horizontal displacement x of the swing with time tis shown on
the graph below.
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The swing exhibits simple harmonic motion.

Use data fromthe graph to determine at what time the velocity of the swingis first
atits maximum.

Step 1: Thevelocity is atits maximum when the displacementx =0
Step 2: Readingvalue of timewhenx=0

x/cm

XN W rE A

0 0.1 0.6 0.7 0.8

t/s

Fromthe graphthisisequalto0.2s



¢) ExamTip
¥ These graphs might notlook identical to what is in your textbook, depending on
where the object starts oscillating from at t = O (on either side of the equilibrium, or at
the equilibrium). However, if there is no damping, they will all always be a general sine

orcosine curves.



Resonance

¢ Thefrequency of forced oscillations is referred to as the driving frequency, f, or the
frequency of the applied force

» Alloscillating systems have a natural frequency, fy, this is defined as the frequency of an
oscillation when the oscillating systemis allowed to oscillate freely
o Oscillating systems can exhibit a property known as resonance

|
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* When the driving frequency approaches the natural frequency of an oscillator, the
system gains more energy from the driving force

o Eventually, when they are equal, the oscillator vibrates with its maximum amplitude,
this is resonance

e Resonanceis defined as:

When the frequency of the applied force to an oscillating systemis equal toits
natural frequency, the amplitude of the resulting oscillations increases
significantly

e Forexample, when a childis pushed on a swing:

o The swingplus the child has a fixed natural frequency

o Asmallpush aftereach cycleincreases the amplitude of the oscillations to swing the
child higher. This frequency at which this push happens is the driving frequency

o Whenthedriving frequency is exactly equal to the natural frequency of the swing
oscillations, resonance occurs

o Ifthedriving frequency does not quite match the natural frequency, the amplitude will
increase butnottothe same extentas whenresonanceis achieved

e Thisis because, atresonance, energy is transferred from the driverto the oscillating system
most efficiently
o Therefore, atresonance, the systemwill be transferring the maximum kinetic energy
possible



Resonance Effects

e Resonance occurs forany forced oscillation where the frequency of the driving forceiis
equalto the natural frequency of the oscillator
e Examplesinclude:
o Anorgan pipe, where airresonates down an aircolumn setting up a stationary wavein
the pipe
o Glass smashing from a high pitched sound wave at theright frequency
o Aradiotunedsothatthe electric circuitresonates at the same frequency as the
specific broadcast

THE COLUMN OF AIR
RESONATES, SETTING UP
A STATIONARY WAVE
IN THE PIPE

Standing waves forming inside an organ pipe fromresonance



Core Practical 16: Investigating Resonance
Aim of the Experiment

e Determine thevalue of an unknown mass by a graphical method by using the resonant
frequencies of the oscillation of known masses

Variables

¢ Independentvariable =mass (kg)
e Dependentvariable = time period(s)
e Controlvariables:

o Thespring/ oscillator

Equipment
e Spring(standard 20-25 mm spring)
e Slotted100gmasses andhanger
¢ Retortstandandclamp
» Digitaltimer
¢ Unknowntestmass
¢ Digitalscales

Method

= > SPRING
FIDUCIAL MARK e

\@ASS ON HANGER

1. Setupthe springwith100 gmass attached

2.0nthe stand make a clearfiducialmark about 5 cm below the bottom of the spring

3.Extendthe spring so that the bottomis level with the fiducial marker, release and start
timing

4.Measure time for10 oscillations

5. Repeat with the same mass two more times

6.Find the average time period of one oscillation



7.Add100 gandadjust the fiducial mark downwards so thatitis 5 cm below the new level of

the spring

8. Repeat steps 3-7 untilthe totalmassis 500 g
9.Plota graph of T2 on the y-axis against m on the x-axis

Testing the unknown mass

Follow steps 2 - 6 forthe test mass

Find the value of the time period, T and square it to find T2

On the graph mark a horizontal from T2 to the graph line and where they intersect, take the
arrow vertically down to meet the x-axis

Thevalue of mwhich this line coincides with is the mass of the test mass

Checktheresult using digital scales
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7
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Analysis

Analysis for this graphis based on three equations related to simple harmonic motion;

/ k
o Angularvelocity, o = E (equationT)

Where k = spring constant (N kg™) and m = mass (kg)
Angularvelocity, ® =21f (equation 2)

Where f = frequency of oscillations (Hz)

1
o Frequency, f= T (equation 3)

o

o]

(e}

o Where T =time period for one oscillation (s)

¢ Substitute equations 2into equationT;

k
2Tt = —
m
¢ Substitute equation 3into equation 2
2n [k
T \\m



e Squareboth sides

o Make T2the subject

4
T“’“(T)

« Plota graph of T2 on the y-axis against m on the x-axis to get a straight line through the

origin with;
g 4m?
gradient = X

Safety Considerations

e Clamp standto the desk for stability
o Wearsafety glassesin casethe spring flies off orsnaps
e Placeacushionorcatch-matin case of fallingmasses



Damped & Undamped Oscillating Systems

e Inpractice, all oscillators eventually stop oscillating
o Theiramplitudes decreaserapidly, or gradually

e This happens duetoresistive forces, such friction orairresistance, which actin the
opposite direction to the motion of an oscillator
e Resistive forces acting on an oscillating simple harmonic system cause damping
o Theseareknown as damped oscillations

¢ Dampingis defined as:

Thereductionin energy and amplitude of oscillations due toresistive forces on the
oscillating system

¢ Damping continues until the oscillator comes torest at the equilibrium position
¢ Akey feature of simple harmonic motion s that the frequency of damped oscillations does
not change as the amplitude decreases
o Forexample, a childon a swing can oscillate back and forth once every second, but
this time remains the sameregardless of the amplitude
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Damping onamass onaspringis causedby aresistive forceactingin the opposite direction
to the motion. This continues until the amplitude of the oscillations reaches zero

Types of Damping

e There are three degrees of damping depending on how quickly the amplitude of the
oscillations decrease:



o Lightdamping
o Criticaldamping
o Heavy damping

Light Damping

¢ When oscillations are lightly damped, the amplitude does not decrease linearly
o |tdecays exponentially with time

¢ When alightly damped oscillatoris displaced from the equilibrium, it will oscillate with
gradually decreasing amplitude
o Forexample, a swinging pendulum decreasing in amplitude untilit comes to a stop
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A graphforalightly dampedsystem consists of oscillations decreasing exponentially

+ Key features of adisplacement-time graph for alightly damped system:

o Thereare many oscillations represented by a sine or cosine curve with gradually
decreasing amplitude overtime

o Thisis shown by the height of the curve decreasingin both the positive and negative
displacementvalues

o The amplitude decreases exponentially

o Thefrequency of the oscillations remain constant, this means the time period of
oscillations must stay the same and each peak and trough is equally spaced

Critical Damping

¢ When a critically damped oscillatoris displaced from the equilibrium, it willreturn torest at
its equilibrium positionin the shortest possible time without oscillating
o Forexample, carsuspension systems prevent the car from oscillating after travelling
overabumpintheroad
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The graph for a critically damped system shows no oscillations and the displacement
returns to zero in the quickest possible time

» Key features of adisplacement-time graph for a critically damped system:
o This system does not oscillate, meaning the displacement falls to O straight away

o The graph has a fast decreasing gradient when the oscillatoris first displaced until it
reaches the x axis

o Whenthe oscillatorreaches the equilibrium position (x = 0), the graph is a horizontal line
atx=0 fortheremainingtime

Heavy Damping

¢ When a heavily damped oscillatoris displaced from the equilibrium, it will take a long time to
return toits equilibrium position without oscillating
¢ Thesystemreturns to equilibrium more slowly than the critical damping case
o Forexample, doordampers to prevent them from slamming shut
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A heavy damping curve has no oscillations and the displacement returns to zero after along
period of time

* Key features of adisplacement-time graph for a heavily damped system:
o Thereareno oscillations. This means the displacement does not pass O

o Thegraph has a slow decreasing gradient from when the oscillatoris first displaced
untilitreaches the x axis



o Theoscillatorreaches the equilibrium position (x = O) afteralong period of time, after
which the graph remains a horizontal line for the remaining time

*> Worked Example

Amechanical weighing scale consists of a needle which moves to a positionon a

numerical scale depending on the weight applied. Sometimes, the needle moves to
the equilibrium position after oscillating slightly, making it difficult to read the
numberon the scale to which itis pointing to. Suggest, with areason, whetherlight,
critical orheavy damping should be applied to the mechanical weighing scale to
readthe scale more easily.

ANSWER:

¢ |deally, the needle should not oscillate before settling
o This means the scale should have either critical orheavy damping

e Sincethescaleisreadstraight away afteraweightis applied, ideally the needle should
settle as quickly as possible

¢ Heavy dampingwould mean the needle willtake some time to settleon the scale

e Therefore, critical damping should be applied to the weighing scale so the needle can
settle as quickly as possible toread fromthe scale

(") Exam Tip
¥ Make surenot to confuseresistive force and restoring force:

¢ Resistive forceis what opposes the motion of the oscillatorand causes
damping
¢ Restoring forceis what brings the oscillatorback to the equilibrium position



Free & Forced Oscillations

Free Oscillations

¢ Freeoscillations occurwhen thereis no transfer of energy to or from the surroundings
o This happens when an oscillating systemis displaced and then left to oscillate

¢ Inpractice, this only happensin avacuum. However, anything vibrating in airis still
considered a free vibration as long as there are no external forces actingupon it
¢ Therefore, a free oscillationis defined as:

An oscillation where there are only internal forces (and no external forces) acting
and thereis no energy input

¢ Afreevibration always oscillates atits resonant frequency

Forced Oscillations

e Inordertosustain oscillations in a simple harmonic system, a periodic force must be
appliedtoreplace the energy lostin damping
o This periodic force does work on the resistive force decreasing the oscillations
o Itis sometimes known as an external driving force

e These areknown as forced oscillations (orvibrations), and are defined as:

Oscillations acted on by a periodic external force where energy is givenin order to
sustain oscillations

e Forcedoscillations aremade to oscillate at the same frequency as the oscillator creating
the external, periodic driving force
e Forexample,when a childis on a swing, they willbe pushed at one end aftereach cyclein
orderto keep swinging and prevent airresistance from damping the oscillations
o Theseextra pushes are the forced oscillations, without them, the child will eventually
cometoastop




*> Worked Example

State whetherthe following are free or forced oscillations:
(i) Striking a tuning fork
(i) Breaking a glass from a high pitched sound
(iii) The interior of a carvibratingwhen travelling at a high speed

(iv) Playing the clarinet

(i) Striking a tuning fork

This is a free vibration. When a tuning fork is struck, it will vibrate atits natural frequency
andthere are no other external forces

(ii) Breaking a glass from a high pitched sound

This is a forcedvibration. The glass is forced to vibrate at the same frequency as the
sounduntilitbreaks. The frequency of the high-pitched sound is the external driving
frequency

(iii) The interior of a car vibrating when travelling at a particular speed

This is a forced vibration. The interior of the carvibrates at the same frequency as the
wheels travelling over arough surface at a high speed

(iv) Playing the clarinet

This is a forcedvibration. The air from the player's lungs is used to sustain the vibration
intheaircolumnin a clarinet to create and hold a sound. The aircolumninside the
clarinet mimics the vibrations at the same frequency as the air forcedinto the
mouthpiece of the clarinet (the reed).

(') ExamTip

- ; . , \ . q . ' ;
Avoid writing 'a free oscillation is not forced to oscillate'. Mark schemes are mainly
looking for a reference to internal and external forces and energy transfers



Resonance Graphs

¢ Agraph of driving frequency fagainst amplitude A of oscillations is called a resonance
curve. [thas the following key features:
o Whenf <fp, theamplitude of oscillations increases
o Atthepeakwheref=fg, the amplitudeis atits maximum. This is resonance
o Whenf> fg, the amplitude of oscillations starts to decrease
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Damping & Resonance

Dampingreduces the amplitude of resonance vibrations
The height and shape of theresonance curve will therefore change slightly depending on
the degree of damping

o Note: the naturalfrequency fp of the oscillator willremain the same

As the degree of dampingis increased, theresonance graphis alteredin the following
ways:
o The amplitude of resonancevibrations decrease, meaning the peak of the curve
lowers
o Theresonance peak broadens
o Theresonance peak moves slightly to theleft of the natural frequency when heavily
damped

e Therefore, dampingreducedthe sharpness of resonance andreduces the amplitude at
resonant frequency
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As dampingis increased, resonance peak lowers, the curve broadens and moves slightly to
the left



Damping & Plastic Deformation

¢ Damping an oscillator affects its amplitude of oscillation:
o Whendampingis increased the amplitude decreased
o damping andamplitude are inversely proportional to each other
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As dampingis increased, resonance peak lowers, the curve broadens and moves slightly to
theleft

¢ ADuctile material can be stretched foralongtime beforeit snaps
o We cansayitundergoes alarge amount of plastic deformation beforeitis
permanently deformed
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e Examples of ductile materials include:
o Mostmetals (particularly copper, gold and silver)
o Non-metals are generally notductile
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Brittle and ductile materials on a stress-strain graph. These are the same on a force-
extensiongraphtoo

¢ The amplitude of oscillations can bereduced due to the plastic deformation of a ductile
material
¢ This happens because energy from the oscillations is used to deform the material
o Thekinetic energy of the oscillatoris reduced and transferredinto the deformation of
the material
e Aclimbingropeis different from arescue rope orabungee cord:
o Aclimbingropeis designed to extend when loaded suddenly



o Therope stretches toreduce the amplitude of the oscillation when a climber falls onto
it
o Itprovides critical damping by immediately stopping the climber from bouncing

A climber uses a dynamic rope that stretches when she falls ontoit. This reduces the
amplitude of her oscillation and the force she experiences reducinginjury.



