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Conditions for Simple Harmonic Motion

Simple harmonic motion (SHM) is a specific type of oscillation

An oscillation is said to be SHM when:

The acceleration is proportional to the displacement

The acceleration is in the opposite direction to the displacement

Examples of oscillators that undergo SHM are:

The pendulum of a clock

A mass on a spring

Guitar strings

The electrons in alternating current flowing through a wire

Simple Harmonic Motion

13.1 Conditions for Simple Harmonic Motion



Time period, T:

The objects swings are periodic, meaning they are repeated in regular intervals

according to their frequency or time period

If an object swings freely it always takes the same time to complete one swing

Restoring force

When an object is moving in SHM a force, called the restoring force, F, is always trying to

return the object back to its equilibrium position. 

The force is proportional to the displacement, x, from that equilibrium position

F = -kx

Where: 

F  is the restoring force



x is the displacement of the object from the equilibrium position

k is a constant depending on the system

the negative sign shows that the acceleration will always be towards the centre of

oscillation  

Force, acceleration and displacement of a pendulum in SHM

This is why a person jumping on a trampoline is not an example of simple harmonic motion:

The restoring force on the person is not proportional to their distance from the

equilibrium position

When the person is not in contact with the trampoline, the restoring force is equal to

their weight, which is constant

This does not change, even if they jump higher

Worked Example

A 200g toy robot is attached to a pole by a spring, with a spring constant of 90 N

m , and made to oscillate horizontally.

(a) What force will act on the robot when it is at its amplitude position of 5 cm from

equilibrium? 

(b) How fast will the robot accelerate whilst at this amplitude position? 

Part (a) 

Step 1: Convert amplitude into m

5 cm = 0.05 m
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Step 2: Substitute values into the restoring force equation

F = -kx = -(90) x (0.05) = - 4.5 N

Step 3: Explain the answer

A force of 4.5 newtons will act on the robot, trying to pull it back towards the equilibrium

position. 

Part (b)

Step 1: Convert mass of robot into kg

200 g = 0.2 kg

Step 2: Substitute values into Newton's second law equation: 

F = ma

So, a =
F
m  = 

−4 .5
0 .2  = -22.5 m s

Step 3: Explain the answer

The train will decelerate at a rate of 22.5 m s when at this amplitude position

Exam Tip

Even with this topic you must make sure you convert all quantities into standard SI

units
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Equations for Simple Harmonic Motion

Acceleration and SHM

Acceleration a and displacement x can be represented by the defining equation of SHM:

a ∝ −x

The acceleration of an object oscillating in simple harmonic motion is:

a = −⍵ x

Where:

a = acceleration (m s )

⍵ = angular frequency (rad s )

x = displacement (m)

This is used to find the acceleration of an object with a particular angular frequency ⍵ at a

specific displacement x

The equation demonstrates:

The acceleration reaches its maximum value when the displacement is at a maximum

i.e.. x = A (amplitude)

The minus sign shows that when the object is displaced to the right, the direction of

the acceleration is to the left and vice versa (a and x are always in opposite directions

to each other)

Displacement and SHM

The graph of acceleration against displacement is a straight line through the origin sloping

downwards (similar to y = −x)

13.2 Equations for Simple Harmonic Motion
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The acceleration of an object in SHM is directly proportional to the negative displacement

The key features of the graph are:

The gradient is equal to −⍵

The maximum and minimum displacement x values are the amplitudes −A and +A

A solution to the SHM acceleration equation is the displacement equation:

x = A cos (⍵t)

Where:

A = amplitude (m)

t = time (s)

This occurs when:

An object is oscillating from its amplitude position (x = A or x = −A at t = 0)

The displacement will be at its maximum when cos(⍵t) equals 1 or −1, when x = A

This equation can be used to find the position of an object in SHM with a particular angular

frequency and amplitude at a moment in time

If an object is oscillating from its equilibrium position (x = 0at t = 0) then the displacement

equation will be:

x = A sin (⍵t)

The displacement will be at its maximum when sin(⍵t) equals 1 or −1, when x = A

This is because the sine graph starts at 0, whereas the cosine graph starts at a maximum

These two graphs represent the same SHM. The di�erence is the starting position
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Worked Example

A mass of 55 g is suspended from a fixed point by means of a spring.

The stationary mass is pulled vertically downwards through a distance of 4.3 cm

and then released at t = 0.

The mass is observed to perform simple harmonic motion with a period of 0.8 s.

Calculate the displacement x, in cm, of the mass at time t = 0.3 s.

Step 1: Write down the SHM displacement equation

Since the mass is released at t = 0 at its maximum displacement, the displacement

equation will be with the cosine function:

x = Acos( ⍵ t)

Step 2: Calculate angular frequency

ω=
2π
T =

2π
0 .8 =7 .85 rad s−1

Remember to use the value of the time period given, not the time passed

Step 3: Substitute values into the displacement equation

x = 4.3cos (7.85 × 0.3) = –3.0369… = –3.0 cm (2 s.f)

Make sure the calculator is in radians mode

The negative value means the mass is 3.0 cm on the opposite side of the equilibrium

position to where it started (3.0 cm above it)

Speed and SHM

The speed of an object in simple harmonic motion varies as it oscillates back and forth

Its speed is the magnitude of its velocity

The greatest speed of an oscillator is at the equilibrium position ie. when its displacement x

= 0

How the speed v changes with the oscillator’s displacement x in SHM is defined by:

v= ±ω ( )A2−x2

Where:

v = speed (m s )

A = amplitude (m)

± = ‘plus or minus’. The value can be negative or positive

⍵ = angular frequency (rad s )

x = displacement (m)
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This equation shows that when an oscillator has a greater amplitude A, it has to travel a

greater distance in the same time and hence has greater speed v

Although the symbol v is commonly used to represent velocity, not speed, exam questions

focus more on the magnitude of the velocity than its direction in SHM

Worked Example

A simple pendulum oscillates with simple harmonic motion with an amplitude of 15

cm.

The frequency of the oscillations is 6.7 Hz.

Calculate the speed of the pendulum at a position of 12 cm from the equilibrium

position.

Step 1: Write out the known quantities

Amplitude of oscillations, A = 15 cm = 0.15 m

Displacement at which the speed is to be found, x = 12 cm = 0.12 m

Frequency, f = 6.7 Hz

Step 2: Oscillator speed with displacement equation

v= ±ω ( )A2−x2

Since the speed is being calculated, the ± sign can be removed as direction does not

matter in this case

Step 3: Write an expression for the angular frequency

Equation relating angular frequency and normal frequency:

⍵ = 2πf = 2π × 6 .7 = 42.097…

Step 4: Substitute in values and calculate

v= ( )2π×6 ·7 × ( )0 ·15 2− ( )0 ·12 2

v = 3.789 = 3.8 m s  (2 s.f)

Exam Tip

Since displacement is a vector quantity, remember to keep the minus sign in your

solutions if they are negative, you could lose a mark if not! Also, remember that your

calculator must be in radians mode when using the cosine and sine functions. This is

because the angular frequency ⍵ is calculated in rad s , not degrees. You often have

to convert between time period T, frequency f and angular frequency ⍵ for many

exam questions – so make sure you revise the equations relating to these.
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Period of a simple pendulum

A simple pendulum is: 

An object moving from side to side

Attached to a fixed point above 

The time period of a simple pendulum can also be calculated using this equation:

T = 2π
l
g

Where: 

l is the length of the pendulum swing

g is the strength of gravity on the planet on which the pendulum is set up

Worked Example

A child is sitting on a swing that is 200 cm long. What is the period of oscillation?

Step 1: Convert length to meters

200 cm = 2 m

Step 2: Substitute the correct values

T = 2π
l
g = 2π

2
9 .81 =2.84 s 

Step 3: Confirm the answer

The time period of 1 oscillation of the swing is 2.84 s

13.3 Period of Simple Harmonic Oscillators





Period of a Mass-Spring System

A mass-spring system means:

An object moving up and down 

On the end of a spring

The equation for the restoring force in SHM F = - kx

is the same as the equation for Hooke's Law

The time period, T can be calculated using the equation:

T = 2π
m
k

Where: 

m is the mass of the object on the end of the pendulum

k is the spring constant of the material the pendulum is made from

Observing the Motion of a Mass-Spring System

An experimental and graphical method can be used to observe the motion of a simple

mass-spring system

Tie a pencil together with the mass and set the mass in free oscillations by displacing it

downwards slightly

The oscillations will move the pencil up and down

On a piece of graph paper, allow the pencil to trace the path of the oscillations by

pulling the paper sideways as the mass-spring system oscillates up and down

The oscillations will produce a curved, periodic graph

This will decrease in amplitude as the mass-spring system slows down



The motion of oscillator can be observed through a simple mass and spring system



Displacement-Time graph for an oscillator

The displacement of an object in simple harmonic motioncan be represented by a graph of

displacement against time

All undamped SHM graphs are represented byperiodic functions

This means they can all be described by sine and cosine curves

Key features of the displacement-time graph:

Theamplitudeof oscillations A can be found from the maximum value ofx

The time periodof oscillations T can be found from reading the time taken for one full

cycle

The graph might not always start at 0

If the oscillations starts at the positive or negative amplitude, the displacement will be

at its maximum

Exam Tip

This graph might not look identical to what is in your textbook, depending on where

the object starts oscillating from at t = 0 (on either side of the equilibrium, or at the

equilibrium). However, if there is no damping, they will all always be a general sine or

cosine curve.

13.4 Displacement-Time Graph for an Oscillator





Velocity-time graph for an oscillator

The velocity of an object in simple harmonic motion can be represented by a graph of

velocity against time

Key features of the velocity-time graph:

It is 90  out of phase with the displacement-time graph

Velocity is equal to the rate of change of displacement

So, the velocity of an oscillator at any time can be determined from the gradient of the

displacement-time graph:

An oscillator moves the fastest at its equilibrium position

Therefore, the velocity is at its maximum when the displacement is zero

13.5 Velocity-Time Graph for an Oscillator
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Worked Example

A swing is pulled 5 cm and then released.

The variation of the horizontal displacement x of the swing with time t is shown on

the graph below.

The swing exhibits simple harmonic motion.

Use data from the graph to determine at what time the velocity of the swing is first

at its maximum.

Step 1: The velocity is at its maximum when the displacement x = 0

Step 2: Reading value of time when x = 0

From the graph this is equal to 0.2 s





Exam Tip

These graphs might not look identical to what is in your textbook, depending on

where the object starts oscillating from at t = 0 (on either side of the equilibrium, or at

the equilibrium). However, if there is no damping, they will all always be a general sine

or cosine curves.





Resonance

The frequency of forced oscillations is referred to as the driving frequency, f, or the

frequency of the applied force

All oscillating systems have a natural frequency, f , this is defined as the frequency of an

oscillation when the oscillating system is allowed to oscillate freely

Oscillating systems can exhibit a property known as resonance

When the driving frequency approaches the natural frequency of an oscillator, the

system gains more energy from the driving force

Eventually, when they are equal, the oscillator vibrates with its maximum amplitude,

this is resonance

Resonance is defined as:

When the frequency of the applied force to an oscillating system is equal to its

natural frequency, the amplitude of the resulting oscillations increases

significantly

For example, when a child is pushed on a swing:

The swing plus the child has a fixed natural frequency

A small push after each cycle increases the amplitude of the oscillations to swing the

child higher. This frequency at which this push happens is the driving frequency

When the driving frequency is exactly equal to the natural frequency of the swing

oscillations, resonance occurs

If the driving frequency does not quite match the natural frequency, the amplitude will

increase but not to the same extent as when resonance is achieved

This is because, at resonance, energy is transferred from the driver to the oscillating system

most e�ciently

Therefore, at resonance, the system will be transferring the maximum kinetic energy

possible

Resonance

13.6 Resonance
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Resonance E�ects

Resonance occurs for any forced oscillation where the frequency of the driving force is

equal to the natural frequency of the oscillator

Examples include:

An organ pipe, where air resonates down an air column setting up a stationary wave in

the pipe

Glass smashing from a high pitched sound wave at the right frequency

A radio tuned so that the electric circuit resonates at the same frequency as the

specific broadcast

Standing waves forming inside an organ pipe from resonance



Core Practical 16: Investigating Resonance

Aim of the Experiment

Determine the value of an unknown mass by a graphical method by using the resonant

frequencies of the oscillation of known masses

Variables

Independent variable = mass (kg)

Dependent variable = time period (s)

Control variables:

The spring / oscillator

Equipment

Spring (standard 20−25 mm spring)

Slotted 100g masses and hanger

Retort stand and clamp

Digital timer

Unknown test mass

Digital scales

Method

�. Set up the spring with 100 g mass attached

�. On the stand make a clear fiducial mark about 5 cm below the bottom of the spring

�. Extend the spring so that the bottom is level with the fiducial marker, release and start

timing

�. Measure time for 10 oscillations

�. Repeat with the same mass two more times

�. Find the average time period of one oscillation

13.7 Core Practical 16: Investigating Resonance



�. Add 100 g and adjust the fiducial mark downwards so that it is 5 cm below the new level of

the spring

�. Repeat steps 3−7 until the total mass is 500 g

�. Plot a graph of T  on the y-axis against m on the x-axis 

Testing the unknown mass

Follow steps 2 - 6 for the test mass

Find the value of the time period, T and square it to find T

On the graph mark a horizontal from T to the graph line and where they intersect, take the

arrow vertically down to meet the x-axis

The value of m which this line coincides with is the mass of the test mass

Check the result using digital scales

Analysis

Analysis for this graph is based on three equations related to simple harmonic motion;

Angular velocity, ω=
k
m (equation 1)

Where k = spring constant (N kg ) and m = mass (kg) 

Angular velocity, ω=2πf (equation 2)

Where f = frequency of oscillations (Hz) 

Frequency, f =
1
T (equation 3)

Where T = time period for one oscillation (s) 

Substitute equations 2 into equation 1;

2πf =
k
m

Substitute equation 3 into equation 2

2π
T =

k
m

2
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Square both sides

4π2

T2 =
k
m

Make T  the subject

T2=m
⎛
⎜
⎜

⎝

⎞
⎟
⎟

⎠

4π2

k

Plot a graph of T  on the y-axis against m on the x-axis to get a straight line through the

origin with;

gradient = 
⎛
⎜
⎜

⎝

⎞
⎟
⎟

⎠

4π2

k

Safety Considerations

Clamp stand to the desk for stability

Wear safety glasses in case the spring flies o� or snaps

Place a cushion or catch-mat in case of falling masses

2
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Damped & Undamped Oscillating Systems

In practice, all oscillators eventually stop oscillating

Their amplitudes decrease rapidly, or gradually

This happens due to resistive forces, such friction or air resistance, which act in the

opposite direction to the motion of an oscillator

Resistive forces acting on an oscillating simple harmonic system cause damping

These are known as damped oscillations

Damping is defined as:

The reduction in energy and amplitude of oscillations due to resistive forces on the

oscillating system

Damping continues until the oscillator comes to rest at the equilibrium position

A key feature of simple harmonic motion is that the frequency of damped oscillations does

not change as the amplitude decreases

For example, a child on a swing can oscillate back and forth once every second, but

this time remains the same regardless of the amplitude

Damping on a mass on a spring is caused by a resistive force acting in the opposite direction

to the motion. This continues until the amplitude of the oscillations reaches zero

Types of Damping

There are three degrees of damping depending on how quickly the amplitude of the

oscillations decrease:

13.8 Damped & Undamped Oscillating Systems



Light damping

Critical damping

Heavy damping

Light Damping

When oscillations are lightly damped, the amplitude does not decrease linearly

It decays exponentially with time

When a lightly damped oscillator is displaced from the equilibrium, it will oscillate with

gradually decreasing amplitude

For example, a swinging pendulum decreasing in amplitude until it comes to a stop

A graph for a lightly damped system consists of oscillations decreasing exponentially

Key features of a displacement-time graph for a lightly damped system:

There are many oscillations represented by a sine or cosine curve with gradually

decreasing amplitude over time

This is shown by the height of the curve decreasing in both the positive and negative

displacement values

The amplitude decreases exponentially

The frequency of the oscillations remain constant, this means the time period of

oscillations must stay the same and each peak and trough is equally spaced

Critical Damping

When a critically damped oscillator is displaced from the equilibrium, it will return to rest at

its equilibrium position in the shortest possible time without oscillating

For example, car suspension systems prevent the car from oscillating after travelling

over a bump in the road



The graph for a critically damped system shows no oscillations and the displacement

returns to zero in the quickest possible time

Key features of a displacement-time graph for a critically damped system:

This system does not oscillate, meaning the displacement falls to 0 straight away

The graph has a fast decreasing gradient when the oscillator is first displaced until it

reaches the x axis

When the oscillator reaches the equilibrium position (x = 0), the graph is a horizontal line

at x = 0 for the remaining time

Heavy Damping

When a heavily damped oscillator is displaced from the equilibrium, it will take a long time to

return to its equilibrium position without oscillating

The system returns to equilibrium more slowly than the critical damping case

For example, door dampers to prevent them from slamming shut

A heavy damping curve has no oscillations and the displacement returns to zero after a long

period of time

Key features of a displacement-time graph for a heavily damped system:

There are no oscillations. This means the displacement does not pass 0

The graph has a slow decreasing gradient from when the oscillator is first displaced

until it reaches the x axis



The oscillator reaches the equilibrium position (x = 0) after a long period of time, after

which the graph remains a horizontal line for the remaining time

Worked Example

A mechanical weighing scale consists of a needle which moves to a position on a

numerical scale depending on the weight applied. Sometimes, the needle moves to

the equilibrium position after oscillating slightly, making it di�cult to read the

number on the scale to which it is pointing to. Suggest, with a reason, whether light,

critical or heavy damping should be applied to the mechanical weighing scale to

read the scale more easily.

ANSWER:

Ideally, the needle should not oscillate before settling

This means the scale should have either critical or heavy damping

Since the scale is read straight away after a weight is applied, ideally the needle should

settle as quickly as possible

Heavy damping would mean the needle will take some time to settle on the scale

Therefore, critical damping should be applied to the weighing scale so the needle can

settle as quickly as possible to read from the scale

Exam Tip

Make sure not to confuse resistive force and restoring force:

Resistive force is whatopposes the motionof the oscillator and causes

damping

Restoring force is what brings the oscillatorback to the equilibrium position







Free & Forced Oscillations

Free Oscillations

Free oscillations occur when there is no transfer of energy to or from the surroundings

This happens when an oscillating system is displaced and then left to oscillate

In practice, this only happens in a vacuum. However, anything vibrating in air is still

considered a free vibration as long as there are no external forces acting upon it

Therefore, a free oscillation is defined as:

An oscillation where there are only internal forces (and no external forces) acting

and there is no energy input

A free vibration always oscillates at its resonant frequency

Forced Oscillations

In order to sustain oscillations in a simple harmonic system, a periodic force must be

applied to replace the energy lost in damping

This periodic force does work on the resistive force decreasing the oscillations

It is sometimes known as an external driving force

These are known as forced oscillations (or vibrations), and are defined as:

Oscillations acted on by a periodic external force where energy is given in order to

sustain oscillations

Forced oscillations are made to oscillate at the same frequency as the oscillator creating

the external, periodic driving force

For example, when a child is on a swing, they will be pushed at one end after each cycle in

order to keep swinging and prevent air resistance from damping the oscillations

These extra pushes are the forced oscillations, without them, the child will eventually

come to a stop

13.9 Free & Forced Oscillations



Worked Example

State whether the following are free or forced oscillations:

(i) Striking a tuning fork

(ii) Breaking a glass from a high pitched sound

(iii) The interior of a car vibrating when travelling at a high speed

(iv) Playing the clarinet

(i) Striking a tuning fork

This is a free vibration. When a tuning fork is struck, it will vibrate at its natural frequency

and there are no other external forces

(ii) Breaking a glass from a high pitched sound

This is a forced vibration. The glass is forced to vibrate at the same frequency as the

sound until it breaks. The frequency of the high-pitched sound is the external driving

frequency

(iii) The interior of a car vibrating when travelling at a particular speed

This is a forced vibration. The interior of the car vibrates at the same frequency as the

wheels travelling over a rough surface at a high speed

(iv) Playing the clarinet

This is a forced vibration. The air from the player's lungs is used to sustain the vibration

in the air column in a clarinet to create and hold a sound. The air column inside the

clarinet mimics the vibrations at the same frequency as the air forced into the

mouthpiece of the clarinet (the reed).

Exam Tip

Avoid writing 'a free oscillation is not forced to oscillate'. Mark schemes are mainly

looking for a reference to internal and external forces and energy transfers







Resonance Graphs

A graph of driving frequency f against amplitude A of oscillations is called a resonance

curve. It has the following key features:

When f < f , the amplitude of oscillations increases

At the peak where f = f , the amplitude is at its maximum. This is resonance

When f > f , the amplitude of oscillations starts to decrease

The maximum amplitude of the oscillations occurs when the driving frequency is equal to

the natural frequency of the oscillator

13.10 Resonance Graphs
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Damping & Resonance

Damping reduces the amplitude of resonance vibrations

The height and shape of the resonance curve will therefore change slightly depending on

the degree of damping

Note: the natural frequency f of the oscillator will remain the same

As the degree of damping is increased, the resonance graph is altered in the following

ways:

The amplitude of resonance vibrations decrease, meaning the peak of the curve

lowers

The resonance peak broadens

The resonance peak moves slightly to the left of the natural frequency when heavily

damped

Therefore, damping reduced the sharpness of resonance and reduces the amplitude at

resonant frequency

As damping is increased, resonance peak lowers, the curve broadens and moves slightly to

the left

0



Damping & Plastic Deformation

Damping an oscillator a�ects its amplitude of oscillation: 

When damping is increased the amplitude decreased

damping and amplitude are inversely proportional to each other

As damping is increased, resonance peak lowers, the curve broadens and moves slightly to

the left

A Ductile material can be stretched for a long time before it snaps

We can say it undergoes a large amount of plastic deformation before it is

permanently deformed

13.11 Damping & Plastic Deformation



Examples of ductile materials include:

Most metals (particularly copper, gold and silver)

Non-metals are generally not ductile

Brittle and ductile materials on a stress-strain graph. These are the same on a force-

extension graph too

The amplitude of oscillations can be reduced due to the plastic deformation of a ductile

material

This happens because energy from the oscillations is used to deform the material

The kinetic energy of the oscillator is reduced and transferred into the deformation of

the material

A climbing rope is di�erent from a rescue rope or a bungee cord:

A climbing rope is designed to extend when loaded suddenly

 



The rope stretches to reduce the amplitude of the oscillation when a climber falls onto

it 

It provides critical damping by immediately stopping the climber from bouncing

A climber uses a dynamic rope that stretches when she falls onto it. This reduces the

amplitude of her oscillation and the force she experiences reducing injury.


