Transport across cell membranes 2

Level: Edexcel A Level 9BN0 Subject: Biology
Exam Board: Suitable for all boards Topic: Transport across cell membranes 2 Type: Mark Scheme

To be used by all students preparing for Edexcel Biology A Level 9BNO foundation or higher tier but also suitable for students of other boards.

Mark schemes

(a) Does not have the resolution / cannot distinguish between points this close together; As light has longer wavelength;
The key ideas in marking this part of the question are resolution and wavelength.
(b) Lipid soluble / small / non-polar / not charged;
(c) (i) Concentration of sodium ions (outside cell);

As concentration / independent variable increases so does the rate of diffusion;
(ii) Sodium ions are passing through the channels / pores at their maximum rate; Rate is limited by the number of sodium channels / another limiting factor;
(a) 1. Cell wall not formed / production inhibited;

1. Q Accept: weakened cell wall, but do not accept 'cell wall is broken down'
2. Lower water potential in bacterium;
3. Accept: converse
4. Must be clear that the lower water potential is in the bacterium
5. Water enters and causes lysis / expansion / pressure;
(b) Human cells lack enzyme (B) / have a different enzyme / produce different fatty acids / use different substrates;

Neutral: 'human cells do not have cell walls' as out of context
(c) 1. Change in base sequence (of DNA / gene) leading to change in amino acid sequence / primary structure (of enzyme);

1. Accept: different amino acids coded for
2. Reject: different amino acids produced
3. Change in hydrogen / ionic / disulphide bonds leading to change in the tertiary structure / active site (of enzyme);
4. Neutral: alters 3D structure / 3D shape
5. Substrate not complementary / cannot bind (to enzyme / active site) / no enzyme-substrate complexes form;

3
(a) 1. Flatten / moves down;

1. Ignore: additional information about rib movements
2. (Diaphragm muscle) contracts;
(b) 1. Diaphragm contracts / moves down / flattens;

Ignore refs to rib movement
2. Increases volume (of thorax) and decrease in pressure;
2. Accept pressure lower than atmospheric pressure
3. Air moves from high to lower pressure / down pressure gradient;
3. Reject: by diffusion
(c) 1. Diffusion;

Accept down diffusion gradient
2. Across (alveoli) epithelium / (capillary) endothelium;
2. Accept: capillary epithelium / squamous cell
(a) 2 marks for correct answer 0.2

Accept concentration \div time
1 mark for 6 / 30;
(b) 1. (Uptake) decreases / slower, then no further uptake / uptake stops;
2. (Decreases) to 20-22 / no uptake after 20 / 22 minutes;

Accept: (only) 1.6 (arbitrary units) absorbed / (only) drops to 8.4 Is for correct use of data from graph
(c) 1. Stops / reduces / inhibits respiration;

Accept: inhibits respiratory enzymes
2. No / less energy released / ATP produced;

Ignore: less energy produced / made
3. (ATP / energy needed) for active transport;

Accept ref to Na^{+}pump / description of active transport Ignore consequences of less Na^{+}in cell
(a) 1. Add Benedict's;

Hydrolyse with acid negates mp1
2. Heat;

Accept warm, but not an unqualified reference to water bath
3. Red / orange / yellow / green (shows reducing sugar present);

Accept brown
(b) (i) 1. Starch hydrolysed / broken down / glucose / maltose produced;

Neutral: Sugar produced
2. Lower water potential;
3. Water enters by osmosis;
(ii) Only 2 pHs studied / more pHs need to be tested;

Accept: different amylase may have a different optimum pH
(a) Hydrolysis (reaction);

Accept phonetic spelling
(b) 1. Too big / wrong shape;

Wrong charge - neutral
Accept insoluble
2. To fit / bind / pass through (membrane / into cell / through carrier / channel protein);
3. Carrier / channel protein;

Accept carrier / channel protein not present
(c) Foreign / (act as) antigen / non-self;

Reject foreign cells
1
(d) 1. Dose to be given; Accept: interaction with other drugs
2. No (serious) side effects;
3. How effective;
4. Cost of drug;
(a) (i) 1. Increases (surface) area / inside surface exposed / more cells exposed / shorter distance for water to move;
2. Producing water loss;

Accept better answers, such as diffusion or osmosis relating to water loss.
(ii) 1. Sucrose solution / water / liquid (on the slices) would add to the mass / weight of the slices;
2. Would vary;

Ignore references to reliability
(b) This is initial mass / the time is too short for water to have left / the time is too short for osmosis / have not been treated;
(c) 1. Percentage loss in mass increases with time;
2. Texture decreases then levels out;

Only credit answers that refer to decreasing and levelling out.
3. (Texture levels out) after first 2 hours;
(d) 1. Plot graph of percentage loss in mass against time;
2. Draw curve (of best fit);

Although curve is the technical term accept references to line etc
3. Extrapolate / record when no further change in mass / record when curve flattens out;
(a) (i) Diffusion;

Ignore references to structures, membrane components etc
Allow simple diffusion
Reject facilitated diffusion
(ii) 1. (Thin / flat body) so short distance for diffusion / short diffusion pathway; Ignore references to membrane, wall, body surface
2. (Thin / flat body so) large surface area to volume ratio;
'It' refers to flatworm's body
(b) (i) A group of tissues;

Ignore references to function Group = more than one
(ii) 1. (Carbon dioxide enters) via stomata;

Reject stroma
2. (Stomata opened by) guard cells;
3. Diffuses through air spaces;

Allow concentration gradient. Reject along gradient unless direction made clear
4. Down diffusion gradient;
(a) (i) 1. Allows results to be compared;
2. Because initial masses may have been different;
(ii) 1. Quantitative measure (of cooking);
2. Ensures all cooked to same extent as not all turkey pieces same shape / thickness;
2 Emphasis here must be on being cooked to the same extent. Do not accept reference to all being cooked.
(iii) 1. (Yes) Loss of water results in loss in mass;
2. (No) Loss of other substances / other substances being burnt;

No marks should be given for "Yes" or "No"
(b) 1. Water potential in brine lower than in cells / meat;

Accept water potential more negative or converse answers
2. Water would move out of the meat / water does not move out of the meat;
(a) (i) 1. Water potential same (inside and outside) / no water potential gradient;
Accept symbol Ψ or abbreviation WP as alternatives to water potential.
2. Water does not enter / leave spores;
3. By osmosis / prevents osmotic damage;

Answer must refer to osmosis.
(ii) Prevents growth (before ready) / stops growth of (other) microorganisms / slows enzyme action / prevents enzymes being denatured;
(b) 1. Nitrogen / N / sulfur / S;
2. Catalase is a protein / catalase is made up of amino acids / enzymes are proteins / enzymes are made up of amino acids;

Specific reference needed to proteins or amino acids.
(c) 1. Prevents contamination by (other) microorganisms;

Accept alternatives such as microbes, bacteria, other fungi.
2. Which also produce the enzyme / catalase / which would produce substances that affect catalase;
(d) (i) 90 hours;

Hours must be specified in answer to (c)
(ii) 70-80 (hours);

Allow with no reference to units.
Incorrect units negates answer.
(e) 1. Extra steps (with intracellular enzymes);
2. Cells have to be broken open;
3. Cell walls / bits of cells have to be removed / separated from enzyme;
4. Needs to be separated from all the other enzymes in the cell;

1. Vaccines contain antigens / dead / weakened pathogens / antigens dead / weakened pathogens are injected;

Ignore references to T or B cells.
2. Memory cells made;
3. On second exposure memory cells produce antibodies / become active / recognise pathogens;
3. Idea of memory cells responding.
4. Rapidly produce antibodies / produces more antibodies;
4. Production of antibodies must be qualified for mark. Underlined ideas essential.
5. Antibodies destroy pathogens;
5. Accept bacteria / viruses etc but not disease
(a) Nitrification

Accept nitrifying.
Do not accept nitrogen fixing.
(b) 1. Uptake (by roots) involves active transport;

Reject all references to bacteria
2. Requires ATP / aerobic respiration;
(c) (i) 1. Not enough time / fast flow washes bacteria away;
"Not enough time for bacteria to convert all the ammonia to nitrate" gains 2 marks
2. (Not all / less) ammonia converted to nitrate / less nitrification;
(ii) 1. Algal bloom / increase in algae blocks light / plants / algae die;
2. Decomposers / saprobionts / bacteria break down dead plant materials;
3. Bacteria / decomposers / saprobionts use up oxygen in respiration / increase BOD causing fish to die;
3. Accept alternatives such as microbes / saprophytes.
2. Against concentration gradient / low to high concentration;
3. Does not use channel proteins / only uses carrier proteins;

Assume "it" refers to active transport.

1. Facilitated diffusion is passive - neutral
2. Along / across concentration gradient - neutral

Accept up / down concentration gradient
Accept AT does not need concentration gradient.
(b) (i) To see the effect of the drug / effect not due to anything else in the tablet;

Neutral "to compare results"
(ii) Placebo / dummy drug / tablet without drug;
(Otherwise) treated the same;
No drug - neutral
Accept: Example e.g. tablet given at same time
(c) Decrease for 3 hours;

Accept decreases from 1-4 hours

14 (a) (i) Hydrolysis;
Accept phonetic spelling.
Ignore reaction.
(ii) (Alpha) glucose;

Accept a glucose.
Reject β glucose / beta glucose
(b) (i) Add Benedict's (reagent) and heat / warm;

Red / orange / yellow / green (colour);
Reject Add HCl
Accept brown, reject other colours
(ii) 2 products / 2 sugars produced;

Look for idea of two
Accept named monosaccharides produced.
"More" insufficient for mark
Neutral if incorrect products named
Neutral "lactose is a polysaccharide"
Neutral "lactose is not a reducing sugar"
Neutral: Reference to surface area.
(c) 1. Galactose is a similar shape / structure to lactose / both complementary;

Q Reject: Same shape / structure
2. (Inhibitor / Galactose) fits into / enters / binds with active site (of enzyme);

Accept blocks active site
3. Prevents / less substrate fitting into / binding with (active site) / fewer or no E-S complexes;

Look for principles:

1. Shape
2. Binding to active site
3. Consequence

2 max
(a) Cell wall;

Starch (store);
Chloroplast;
Accept: phonetic spelling
(b) Insoluble;

Reduces / 'stops' water entry / osmosis / does not affect water potential / is osmotically inactive;

Accept: description for first point e.g. 'does not dissolve'.
(c) Light sensitive eyespot / eyespot detects light;

Flagellum enables movement towards light;
Chloroplast / chlorophyll absorbs light / for photosynthesis;
Do not penalise references to 'many chloroplasts'.
(a) Water will affect the mass / only want to measure water taken up or lost;

Amount of water on cylinders varies / ensures same amount of water on outside;
Neutral: removes water
Accept: '(sodium chloride) solution' for water
Do not accept 'sodium chloride'
Neutral: refs. to fair testing
(b) $4 \mathrm{~cm}^{3}$ (of $1.0 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium chloride solution) and $16 \mathrm{~cm}^{3}$ (of distilled water);

Reject: factors and multiples of these figures e.g. $2 \mathrm{~cm}^{3}$ and $8 \mathrm{~cm}^{3}$, as final volume should be $20 \mathrm{~cm}^{3}$
(c) Allows comparison / shows proportional change;

Idea that cylinders have different starting masses / weights;
Reject: if comparison is in context of the start and final mass of the same cylinder
Neutral: different masses
Neutral: different starting sizes
(d) (Allows) anomalies to be identified / ignored / effect of anomalies to be reduced / effect of variation in data to be minimised;

Makes the average / mean / line of best fit more reliable / allows concordant results;
Accept: 'outliers' instead of anomalies
Q Reject: abnormalities
Reject: idea of not recording anomalies / preventing anomalies from occurring
Accept: 'cancels out anomalies' as bottom line response
Q Reject: makes the average / mean more accurate
Neutral: makes the average / mean more valid
Neutral: makes 'it' / results / conclusion more reliable
(e) $\quad 0.35\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$
(a) 1. (Simple / facilitated) diffusion from high to low concentration / down concentration gradient;

Q Do not allow across / along / with concentration gradient
2. Small / non-polar / lipid-soluble molecules pass via phospholipids / bilayer;

Reject: named molecule passing through membrane by an incorrect route
Accept: diagrams if annotated

OR

Large / polar / water-soluble molecules go through proteins;
3. Water moves by osmosis / from high water potential to low water potential / from less to more negative water potential;
4. Active transport is movement from low to high concentration / against concentration gradient;

Only penalise once if active transport is not named
e.g. 'movement against the concentration gradient involves proteins and requires ATP' = 2 marks
5. Active transport / facilitated diffusion involves proteins / carriers;

Accept: facilitated diffusion involves channels
Reject: active transport involves channels
6. Active transport requires energy / ATP;
7. Ref. to Na^{+}/ glucose co-transport;

Credit ref. to endo / exocytosis as an alternative
(b) 1. Many alveoli / alveoli walls folded provide a large surface area;

Neutral: alveoli provide a large surface area
2. Many capillaries provide a large surface area;
3. (So) fast diffusion;

Neutral: greater / better diffusion
Neutral: fast gas exchange
Allow 'fast diffusion' only once
4. Alveoli or capillary walls / epithelium / lining are thin / short distance between alveoli and blood;

Reject: thin membranes / cell walls
Accept: one cell thick for 'thin'
5. Flattened / squamous epithelium;

Accept: endothelial
6. (So) short diffusion distance / pathway;
7. (So) fast diffusion;
8. Ventilation / circulation;

Accept: descriptions for ventilation / circulation
9. Maintains a diffusion / concentration gradient;
10. (So) fast diffusion;

Do not double penalise if description lacks detail
e.g. thin membranes so a short diffusion distance $=1$ mark
(a) (i) (Lactose +) $\underline{\text { Water; }} \rightarrow$ (Glucose +) Galactose;

Accept: $\mathrm{H}_{2} \mathrm{O}$ for water
(ii) Hydrolysis;

Accept: if phonetically correct
(b) (i) (Add Biuret reagent to both solutions) - no mark;

Neutral: positive / negative result
Lactase / enzyme will give purple / lilac / mauve;
Neutral: incorrect reference to the method
OR
Lactose / reducing sugar will not give purple / lilac / mauve / will remain blue;
(ii) Lactase / enzyme is a protein;

Accept: lactase / enzyme contains peptide bonds

Affects germination of Y more than (germination of) X ;
After four days:
No effect on (germination of) X up to 15 ($\mathrm{mmol} \mathrm{dm}^{-3}$) and then constant decrease / (causes) sharp decrease in (germination of) Y up to $15\left(\mathrm{mmol} \mathrm{dm}^{-3}\right)$ and then more gradual decrease;

After eight days:
Decrease in (germination of) X up to $45\left(\mathrm{mmol} \mathrm{dm}^{-3}\right)$ and then no further decrease / sharp decrease in (germination of) Y up to $15\left(\mathrm{mmol} \mathrm{dm}^{-3}\right.$) and then more gradual decrease;

20 (a) (i) 1.08;
Must be to 3 significant figures, as in the table
(ii) Allows comparison / shows proportional change;

Neutral: sizes / amounts
Idea that discs had different starting masses / weights;
Neutral: different masses
(iii) (Allows)

Accept: outliers instead of anomalies
Anomalies to be identified / effect of anomalies to be reduced / effect of variation in data to be minimised;

Reject: idea of not recording anomalies / preventing anomalies from occurring

A mean to be calculated;
Neutral: average
(b) (i) Plot (sodium chloride) concentration against ratio / draw line of best fit;

Reject: if wrong axes or type of graph
Find (sodium chloride concentration from the graph) where the ratio is 1 / there is no change in mass;
(ii) Line / curve of best fit is more reliable / precise;

Neutral: graph
Intercept / point where line crosses axis is more reliable / precise;
Reject: references to 'more accurate'

OR

Can plot SD values / error bars;
(To show) variability about the mean / how spread out the results are;

21 (a) (Blood) plasma;
(b) More / larger proteins / less urea / carbon dioxide / more glucose / amino acids / fatty acids / oxygen / high(hydrostatic) pressure;

Q Reference to blood cells / water potential = neutral
Q No Protein should not be credited
(c) (i) Contracts;

Q Do not accept pumping of heart / heart beating
(ii) Loss of fluid / volume;

Friction / resistance (of capillary wall);
Q Reference to a narrow lumen is not sufficient to gain a mark unless friction or resistance is mentioned.
(d) Water potential (in capillary) not as low / is higher / less negative / water potential gradient is reduced;

More tissue fluid formed (at arteriole end);
Less / no water absorbed (into blood capillary) by osmosis; (into blood capillary); Q The last two marking points must be in context of movement into the blood capillary

1

1

22 (a) No effect on dry mass / small increase in dry mass;
Decrease in fresh mass;
Ignore reference to figures.
(b) Water potential inside tomato plant becomes higher / less negative;

Water drawn out of tomato plants / more difficult for tomato plants to take up water;
By osmosis;
Most of the fresh mass is (mass of) water;
(a) Lengthways / down the root;

Through one tissue only / through same part / same proportion of tissues;
(b) To prevent the water from evaporating / prevent evaporation;

Changing the concentrations / water potential (of solution);
2
(c) (i) Plot data on a graph;

Find (sucrose concentration) from the graph where the ratio is 1 ;
(ii) No, because the results are given as a ratio / as a proportion of initial length;
(a) (i) Many people do not go to the doctor;
(ii) 36000;

No marks awarded for working here as calculation is very straightforward
(b) Same sugars / antigens on bacteria / nerve cells;

Do not accept references to same shape as equivalent to complementary.

Bind with antibody / form antigen-antibody complex;
Reject react
Have complementary shape / fit binding site;
Reject active site
(c) Diaphragm will not move down / flatten / contract;
lgnore references to breathing out
Thoracic cavity / lung volume not increased so cannot breathe in;

25 (a) (i) no cell wall / only has (plasma) membrane;
(ii) has capsule / slime layer;
(b) correct approach which makes use of scalebar; ignore reference to units.
(c) cellulose / starch / amylose / amylopectin;
(d) (i) water potential lower / more negative in cell; (water enters by) osmosis;
(ii) plant cell wall made of a different substance / cellulose / penicillin does not affect cellulose;
(a) Measure diameter of field with ruler; And proportion taken up by the cell; or Measure length with (eyepiece) graticule / eyepiece scale; Calibrated against stage micrometer / something of known length;

Reject divide apparent length by magnification
(b) Membrane / cytoplasm shrinks / pulls away from cell wall / cell plasmolysed / goes flaccid; Water moves down water potential gradient / to lower / more negative water potential; By osmosis;
(c) (i) Reaches equilibrium / no further / maximum change in length;

Reject osmosis takes time
(ii) Line / curve of best fit; Extrapolate (and read off) / find where it crosses x-axis;
(iii) Greater decrease / length smaller; More water removed;

Greater difference in water potential / cell with higher / less negative water potential; Starch is insoluble / has no effect on osmosis
(a) partially / selectively permeable accept semi-permeable allows water to pass through but not potassium nitrate / solute;
(b) potassium nitrate (solution);
cell wall permeable;
(c) water potential more negative / lower in cell E; water removed; greater solute / sap concentration (in cell);
(a) Several / more than one polypeptide chain in molecule;

Evidence must only relate to 4° structure

(b) Chemical bonds formed between sulphur-containing groups /

R-groups / form stronger disulphide bonds;
Bind chain(s) to each other;
(c) Different number / sequences of amino acids;

Bonds in different places which gives different shape;
(d) Outer layer of skin cells are dead / do not respire Do not contain mitochondria / do not produce ATP / release energy; Cells do not have required proteins / carriers;
(e) Advantages:

1 Small objects can be seen;
2 TEM has high resolution as wavelength of electrons shorter;
Accept better
Limitations:
3 Cannot look at living cells as cells must be in a vacuum;
4 must cut section / thin specimen;
5 Preparation may create artefact
6 Does not produce colour image;
(a) greater rate of oxygen consumption / leads to greater rate of respiration and greater rate of uptake;
(allow this mark even if spread through account but cause and effect must be within the correct context)
oxygen required for respiration;
respiration produces ATP / releases energy;
(ignore ref to producing or making energy)
potassium ions taken up by active transport / against concentration gradient;
(b) (i) $0.25\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$;
(ii) 1 mark Incorrect answer but derived from ratio of 1.2 and initial length of 90 mm
2 marks Correct answer of 108 mm ;
(iii) water potential inside potato higher / less negative than in solution; water moves out by osmosis;
(a) antibiotic has diffused / spread / moved into agar; killed / inhibited bacteria;
(b) largest clear area / inhibition zone / killed the most bacteria;
(c) disrupts cell wall / prevents cell wall synthesis; stops DNA replication;

31 (a) (i) Made of (different) tissues / more than one tissue;
(ii) 1. (Muscle) contracts;

Assume that 'they' or 'it' = muscle
2. (Arteriole) narrows / constricts / reduces size of lumen / vessel / vasoconstriction;
Ignore: references to pressure
Q Correct context for muscle contracts, vessel constricts
(b) (i) Short diffusion distance / pathway;

Accept: thin diffusion pathway
(ii) (More) time for exchange / diffusion (of substances);

Accept: example of more time for specific substance to be exchanged
(c) 1. Water potential (in capillary) not as low / is higher / less negative / water potential gradient is reduced;

Accept: 'blood or plasma' instead of 'capillary'
2. Less / no water removed (into capillary);

Accept converse: water remains in the tissue
3. By osmosis (into capillary);

Q Marking points 2. and 3. must be in the context of movement into the capillary
Neutral: reference to more tissue fluid being formed as in the question stem
Neutral: reference to lymphatic drainage

