E目

Studying cells 2

Level: Edexcel A Level 9BN0 Subject: Biology
Exam Board: Suitable for all boards
Topic: Studying cells 2
Type: Mark Scheme

To be used by all students preparing for Edexcel Biology A Level 9BNO foundation or higher tier but also suitable for students of other boards.

Mark schemes

1

(a) Correct answer: 1.25;

Ignore working
OR (if wrong answer)
$\frac{\text { measurement in } \mu \mathrm{m}}{40000}$ / measurement in $\mathrm{mm}(10 \mathrm{mark}$
125 but wrong order of magnitude $=1$ mark
(ii) \mathbf{C} has myosin / thick (and actin / thin) filaments;

OR
A has only actin / thin (/ no myosin / no thick) filaments;
(b) When contracted:

Thick \& thin filaments/myosin \& actin overlap more;
Interaction between myosin heads \& actin / cross-links form;
Movement of myosin head;
Thin filaments / actin moved along thick filaments / myosin;
Movement of thin filaments / actin pulls Z-lines closer together;
Displacement of tropomyosin to allow interaction;
Role of Ca^{2+};
Role of ATP;
Allow ref. to 'sliding filament mechanism’/
described if no other marks awarded
(c) (i) 8 has DMD but 3 and 4 do not / 12 has DMD but 6 and 7 do not / neither parent has the condition but their child has;

Allow parents 3 and 4 give 8, parents 6 and 7 give 12
(ii) 4 AND 7;
(iii) Parental genotypes: 6 $=\mathbf{X}^{\mathrm{D}} \mathbf{Y}$ AND $7=\mathbf{X}^{\mathrm{D}} \mathbf{X}^{\mathrm{d}}$

AND

Gametes correct for candidate's P genotypes - e.g.
\mathbf{X}^{D} and $\mathbf{Y}+\mathbf{X}^{\mathrm{D}}$ and \mathbf{X}^{d};
Offspring genotypes correctly derived from gametes e.g.
$\mathbf{X}^{D} \mathbf{X}^{\mathrm{D}}+\mathbf{X}^{\mathrm{D}} \mathbf{X}^{\mathrm{d}}+\mathbf{X}^{\mathrm{D}} \mathbf{Y}+\mathbf{X}^{\mathrm{d}} \mathbf{Y} ;$
Male offspring with MD correctly identified: $\mathbf{X}^{d} \mathbf{Y}$;
Probability $=0.25$ / correct for candidates offsprings genotypes;
Accept $1 / 4 / 4$ in 4 / 1:3/25\%
NOT '3:1’/‘1:4’
(d) (i) No gene fragment G;
(ii) Only one copy of gene fragment \mathbf{F};

Male has only one X-chromosome / is XY
(c.f. female has two / is XX);
(iii) 10 has only one copy of gene fragment \mathbf{G};

10 has only one normal X-chromosome / has one abnormal /
has only one normal allele / has one $X^{d} /$ is $X^{D} X^{d}$ / is heterozygous;
11 has two normal X-chromosomes / has 2 normal alleles /
is $X^{D} X^{D}$ / has not got $X^{d} /$ has 2 copies of (F and) G;
(e) (i) To prevent rejection / prevent antibody production vs. injected cells / injected cells have (foreign) antigen (on surface);
(ii) Shows effect of cells / not just effect of injection / not just effect of salt solution;
(iii) Only one person tested so far - need more to see if similar results / need more to see if reliable;

Need to assess if new (dystrophin positive) muscle fibres are functional / if muscle becomes functional;

Can't tell how widespread effect is in the muscle / sample taken near injection site;

Need to test for harmful side effects;
Need to test if successful for other mutations of dystrophin gene;
Need to assess permanence / longevity of result/insufficient time allowed in investigation;
(In this patient) only small response / \%;
Further sensible suggestion;
4 max

2
(a) Differentiation / specialisation
(b) (i) (cellulose) Cell wall;
(ii) Two marks for correct answer 2350-2500;;

Accept measured and real lengths in different units for one mark.
One mark for a measured length divided by real length;
(iii) Chloroplasts absorb light;

Q Do not accept chlorophyll as alternative to chloroplasts
Or
Large vacuole pushes chloroplasts to edge (of cell);
Or
Thin / permeable (cell) wall to absorb carbon dioxide;

3 (a) Single layer of cells / few layers of cells;
So that light that can pass through / cells absorb light;
(b) Method of determining area of field of view / area seen using microscope;

Count number of stomata in field of view;
Repeats and calculation of mean;
(c) Water vapour accumulates / increased humidity / reduced air movement (around stomata);

Water potential / diffusion gradient reduced;
(a) (Group of) similar / identical cells / cells with a common origin;

Q Ignore references to function
(b) (i) Add iodine / stain specific for starch to the slide / cells / tissue / add iodine / stain specific for starch and examine under microscope;

Blue-black / blue / black / purple;
Reject sample
(ii) Need a single layer of cells / only a few cells thick / not too many layers / detail obscured by cells underneath;

Light must be able to pass through;
(c) Both are polymers / made of monomers;

Joined by condensation / molecules can be broken down by hydrolysis;
Both have 1-4 links;
Contain $\mathrm{C}($ arbon $), \mathrm{H}$ (ydrogen) and O (xygen) / both made up of glucose;
Both insoluble;
Both contain glycosidic bonds;
Accept other valid answers.
Ignore ref to unbranched.

Advantages:
1 Small objects can be seen;
2 TEM has high resolution as wavelength of electrons shorter;
Accept better
Limitations:
3 Cannot look at living cells as cells must be in a vacuum / must cut section / thin specimen;

4 Preparation may create artefact
5 Does not produce colour image;
(b) Yes - curve on graph with bromelain present remains approximately constant / rises very slightly;
Would decrease if killing of cells occurred / would increase if cells still dividing;
(c) Use of mouse cells (rather than human);
(Carried out) in vitro / not in living organisms;
Only tested on one type of cancer;
Not possible to predict effect on humans (as no data collected);
(d) The faster the rate of division the faster the cancer would grow; By measuring rate of cell division you could see how effective the treatment was;
(c) Not ethical to replace conventional treatment; As life of patient is at risk (if bromelain not effective);
(a) (i) break open cells / release cell contents;
(ii) keep pH the same / controls pH ; prevent change to / denaturing of proteins / enzymes;
(b) (i)

(ii) site of respiration which releases energy / ATP; required for movement against concentration gradient; ignore first point for thermodynamically incorrect statements such as "making energy".
(a) Several / more than one polypeptide chain in molecule;

Evidence must only relate to 4° structure
(b) Chemical bonds formed between sulphur-containing groups /

R-groups / form stronger disulphide bonds;
Bind chain(s) to each other;
(c) Different number / sequences of amino acids;

Bonds in different places which gives different shape;
(d) Outer layer of skin cells are dead / do not respire Do not contain mitochondria / do not produce ATP / release energy; Cells do not have required proteins / carriers;
(e) Advantages:

1 Small objects can be seen;
2 TEM has high resolution as wavelength of electrons shorter; Accept better

Limitations:
3 Cannot look at living cells as cells must be in a vacuum;
4 must cut section / thin specimen;
5 Preparation may create artefact
6 Does not produce colour image;

9 (a) (i) Chloroplast;
(ii) Photosynthesis;

Uses light (energy);
To produce carbohydrates / starch / glucose / sugars / ATP / reduced NADP;

Note that candidates cannot be expected to have a detailed knowledge of photosynthesis.
(b) (i) \mathbf{A};
(ii) \mathbf{C};
(c) (i) Slows enzymes / prevents enzymes being denatured / prevents / stops self-digestion;

Ignore references to bacteria. Reject enzymes not working
(ii) To remove organelle C / nuclei; Which are larger / more dense;
(a) removes debris / intact cells / sand; which would contaminate sediment A / interfere with the results;
(b) (i) nuclei;
(ii) ribosomes / endoplasmic reticulum / membrane / Golgi;
(c) density / size / mass / weight;
(d) an electron microscope has a higher resolution; electrons with shorter wavelength;
(a) 1. e.m. gives high resolution due to short wavelength of electrons;
2. antibodies attach specifically to target proteins;
3. gold particles are electron dense;
4. electrons must pass through a vacuum so material must be dead / fixed for e.m.;
5. cross-bridge cycling requires living cells / metabolism / named aspect-e.g. ATP synthesis;
(b) 1. Ca^{2+} removes blocking molecules / uncovers binding site on actin;
2. correct references to Ca^{2+} binding to troponin / moving tropomyosin;
3. allows myosin heads to attach to actin filaments;
4. allows sliding of the actin and myosin filaments;
5. binding of ATP causes myosin (head) to detach (from actin);
6. (hydrolysis of) ATP releases energy;
7. which changes the configuration / cocking of the myosin head;

12 (a) (i) Mitochondria site of respiration;
Production of ATP / release of energy;
For contraction;
Do not award credit for making or producing energy.
(ii) Enzymes are proteins;

Proteins synthesised / made on ribosomes;
(b) Lysosomes produce / contain enzymes;

Which break down / hydrolyse proteins / substances / cells of tail;
(c) 1. Chop up (accept any reference to crude breaking up);
2. Cold;
3. Buffer solution;
4. Isotonic / same water potential;
5. Filter and centrifuge filtrate;
6. Centrifuge supernatant;
7. At higher speed;
8. Chloroplasts in (second) pellet;
(a) (i) Golgi;
(ii) Exocytosis;
(b) (i) Joining together of amino acids / synthesis / production of thyroglobulin / makes protein;

Do not credit synthesis of amino acids
(ii) Electron microscope has high / greater resolution;

Because it uses electrons which have smaller wave(length);

14 (a) (i) A mitochondrion and B nucleus;
(need both for one mark)
1
(ii) increased surface area;
for respiration / enzymes;
(b) any suitable feature
e.g. plasmid / capsule / 70S ribosomes / smaller ribosomes / complex cell wall / mesosome / no nucleus;
(c) use of differential centrifugation / or description;
first / low-spin pellet discarded / spin at low speed to remove cell wall material / cell debris;
supernatant re-spun at higher speed / until pellet with chloroplasts is found; method of identifying chloroplasts e.g. microscopy;
(a) two environmental or developmental variables and explanation;
examples,
all plants of the same age, so same time for cell divisions / differentiation; all plants given the same watering, so same amount of water for cell expansion;
(reject reference to photosynthesis)
all plants given same light, so same rate of photosynthetic;
same temperature, so enzymes / named metabolic process at
optimum temperature;
same named ion / minerals in soil(e.g. nitrate), so same available for a named function, (e.g. amino acid / protein synthesis);
(b) count cells using microscope;
count number of cells in cell division / where chromosomes visible; and then the total number of cells in field of view;
(c) only cells at tip have ability to divide / cells further back don't divide; cells further back differentiating / named example of (accept reference to loss of totipotent cells) differentiated tissue / too old / reduction in plant hormone; cell wall too thick / vacuole too large to allow division;
(d) new cells added at tip;
cells increase in volume / larger;
increase in length (of cells);
as vacuole s get larger; due to uptake of water (by osmosis);

16 (i) cold - no / reduced enzyme action / e.g. stops autolysis;
(reject "cell activity reduced")
isotonic - stops osmotic effects / description of effect on cells or organelles; buffer - prevents damage to enzymes / proteins;
(ii) break open the cells / release the cell contents;
(iii) supernatant / liquid above the pellet; spun at a high(er) speed;
(mark as independent points)

17
(a) (i) homogeniser / blender / pestle and mortar / description e.g. grind with sand;
(ii) centrifuge / description e.g. spin at high speeds;
(b) (i) chloroplast;

18 (a) (i) microvilli; (reject brush border)
(ii) increased surface area (for diffusion);
(b) (i) $\frac{16 \times(1000)}{0.1} /$ principle of $\frac{\text { measuring scale bar }}{\text { dividing by } 0.1}$;

160000;
(correct answer award 2 marks)
(ii) electron microscope has a greater resolving power / objects closer together can be distinguished; electron (beams) have a shorter wavelength;
(c) short diffusion pathway / short pathway to the centre / large SA:V ratio for faster, more diffusion;

19 (a) $X=$ mitochondria;
$Y=$ (rough) endoplasmic reticulum;
Accept ribosomes/ER/RER for Y
Reject smooth endoplasmic reticulum for Y
(b) (i) (Sections cut at) different angles/in different planes;

Ignore name given to organelle
(ii) Z modifies/packages/transports/secretes mucus/ Z adds sugars to proteins; X provides ATP/energy (for this);

Accept makes in relation to Z but not X Ignore names of organelles if function correct
(a) (i) Mitochondrion;

Neutral: cristae
(ii) (Site of aerobic) respiration / ATP production / energy release;

Q Reject: anaerobic respiration
Q Reject: energy produced
Active transport / transport against the concentration gradient;
Accept: energy produced in the form of ATP
(b) 89-91 gains 2 marks;

Correct answer gains 2 marks outright
Principle of:
$\frac{\text { correct measured length }}{\text { magnification }}$ gains 1 mark;
89-91 (mm) / 1000 or 8.9-9.1 (cm) / 1000 gains 1 mark
(c) Suitable explanation given e.g.

Accept: converse arguments
Reduced surface area; (So) less absorption;
Neutral: structure Z incorrectly named
(Membrane-bound) enzymes less effective;
(So) proteins / polypeptides not digested;
Reduced surface area for absorption gains 2 marks
Cell membranes damaged;
(So) Fewer / less effective carrier / channel proteins;
Accept: references to diffusion and active transport for 'absorption'
Carrier / channel proteins damaged;
(So) less absorption;
Reject: active transport if linked to channel proteins

