Nucleic acids 2

Level: Edexcel A Level 9BNO Subject: Biology
Exam Board: Suitable for all boards
Topic: Nucleic acids 2
Type: Mark Scheme

To be used by all students preparing for Edexcel Biology A Level 9BNO foundation or higher tier but also suitable for students of other boards.

Mark schemes

1
(a) (Pentose) sugar/deoxyribose and phosphate; Reject ribose and phosphorus
(b) Semi-conservative replication;

Complementary pairing;
Hydrogen bonding (of bases/nucleotides);
Condensation/described of nucleotides;
DNA polymerase involved;
Accept example (A, T and C, G)

2 (a) Two suitable differences between DNA and RNA;
1 mark per correct row to 2 max
e.g.

DNA is double stranded, RNA is single stranded;
DNA has thymine present, RNA has Uracil present;
Accept T and U
DNA is larger/heavier/longer, RNA is smaller/lighter/shorter;
DNA has a deoxyribose sugar, RNA has a ribose sugar;
DNA stays in the nucleus, RNA leaves the nucleus;
(b) Three suitable examples;
e.g.

Carries coded information about the sequence of amino acids;
Copied from DNA/gene;
Code is in sequence of bases / triplet / three bases / a codon codes for one amino acid;
Moves out of nucleus/goes into cytoplasm;
To ribosomes;
Accept codons allow anticodons / tRNA to bind
Accept carries 'start' and 'stop' codes
Accept moves through ribosomes

3
(a) Any two of:

DNA	RNA
Large molecule	Smaller
Double stranded	Single stranded
Contains Thymine (T)	Contains Uracil (U)
Contains deoxyribose	Contains ribose

(b) Base sequence (on DNA/in gene);

Determines sequence of amino acids;
By determining base sequence on (messenger) RNA;
Code is a triplet code/three base code for an amino acid;
(c) Pairs of chromosomes/two chromosomes;

With genes for same features / with same genes;
At same loci / in same sequence;
Accept same alleles
(a) Decreases by 50%;

Per generation / per division;
Only accessible if linked to first marking point
OR
${ }^{15} \mathrm{~N}$ makes up $1 / 2$ after 1 division;
Makes up $1 / 4$ after $2^{\text {nd }}$ division;
(b) In DNA replication strands separate;

Each acts as template (for formation of new strand);
One strand in each new molecule / semi-conservative replication;
New strands made using ${ }^{14} \mathrm{~N}$.
(a) D phosphate;

E pentose sugar/deoxyribose;
F (nitrogenous) base/ organic base/ thymine/adenine/ cytosine/guanine;
In D reject phosphorous
$\ln E$
Accept 5-carbon sugar
Reject sugar alone
(b)

	DNA	RNA
	double-stranded	single-stranded
	deoxyribose	ribose
	Thymine/T	Uracil/U
	very large/long	very small/short

Accept double helix for DNA
Accept longer and shorter
Need comparison but could be in one box
List rule applies.

6
(a)

\checkmark	\checkmark	\checkmark	
			\checkmark
		\checkmark	\checkmark

One mark for each correct column
Mark ticks only and ignore crosses
(b) 1. Two marks for box round two hydrogens and one of the oxygens from OH groups on carbons 1 and 4;;
2. One mark from incorrect answer involving any two hydrogens and an oxygen from carbons 1 and 4;

Do not award marks if all atoms concerned are on same carbon atom or are on carbon atoms other than 1 and 4 or where the answer does not have two hydrogen and one oxygen
(c) (i) 1. Holds chains / cellulose molecules together / forms cross links between chains / cellulose molecules / forms microfibrils, providing strength / rigidity (to cellulose / cell wall);
2. Hydrogen bonds strong in large numbers; x

Principles here are first mark for where hydrogen bonds are formed and second for a consequence of this.
Accept microfibres
(ii) Compact / occupies small space / tightly packed;

Answer indicates depth required. Answers such as "good for storage", "easily stored" or "small" are insufficient.

7 (a) (i) Deoxyribose;
pentose / 5C sugar = neutral
(ii) Phosphate / Phosphoric acid;
phosphorus $/ P=$ neutral
(b) Hydrogen (bonds);
(c) $381 / 384 / 387$;
(d) (GIn) Met Met Arg Arg Arg Asn;
(e) Change in (sequence of) amino acids / primary structure;

Change in hydrogen / ionic / disulfide bonds leads to change in tertiary structure / active site (of enzyme);

Substrate cannot bind / no enzyme-substrate complexes form;
Q Reject $=$ different amino acids are formed
(a)

DNA	\mathbf{v}	2
mRNA	\mathbf{r}	1
tRNA	1	

One mark for each correct column
Regard blank as incorrect in the context of this question
Accept numbers written out: two, one, one
2
(b) (i) Marking principles 1 mark for complete piece transcribed;

Correct answer
UGU CAU GAA UGC UAG

1 mark for complementary bases from sequence transcribed;
but allow 1 mark for complementary bases from section transcribed, providing all four bases are involved
(ii) Marking principle

1 mark for bases corresponding to exons taken from (b)(i)
Correct answer
UGU UGC UAG
If sequence is incorrect in (b)(i), award mark if section is from exons. Ignore gaps.

9 (i) sugar or phosphate / S-P / nucleotide chain / backbone / original / parent DNA;
(ii) X thymine; Y guanine; Z adenine;
(Allow T, G and A) Reject: thiamine
(a) each strand copied / acts as a template; (daughter) DNA one new strand and one original / parent strand;
(b) (i) ${ }^{15} \mathrm{~N} /$ tube \mathbf{B} (DNA), more / greater density; (reject heavier)
(ii) DNA with one heavy and one light strand; new / synthesised strand, made with ${ }^{14} \mathrm{~N} /$ light strand;
(c) 32 ;

2832 26;
(a) (i) ATA;
(ii) $A \cup A$;
(b) tRNA 'clover leaf’ shape; (allow reference to loop / folded structure)
tRNA standard length;
tRNA has an amino acid binding site;
tRNA has anticodon available / three exposed bases;
tRNA has hydrogen bonds (between base pairs);

12 (a) different form of a gene;
(b) hydrogen bonds broken;
semi-conservative replication / both strands used (as templates);
nucleotides line up complementary / specific base pairing / A and T/C and G;
DNA polymerase;
(c) deletion causes frame shift / alters base sequence (from point of mutation); changes many amino acids / sequence of amino acids (from this point); substitution alters one codon / triplet / one amino acid altered / code degenerate / same amino acid coded for;
(a) X, phosphate;

Y, deoxyribose / pentose / 5-carbon sugar;
Z, (nitrogenous) base;
(accept named base)
(b) (specific) hydrogen (bonds);
(c) thymine 28% so adenine 28%
therefore 44% cytosine and guanine; therefore 22\% cytosine;
(idea of equal amounts T and A, C and G-1 mark, correct answer 2 marks)

14 (a) appropriately placed box;
(b) (i) B ;
(ii) A ;
(c) (i) determines (sequence of) amino acids / specific protein produced / mRNA formation;
(ii) hydrogen bonds;
(iii) stability / protects bases / replication;
(a) (i) Joins nucleotides (to form new strand).

Accept: joins sugar and phosphate / forms sugar-phosphate backbone
Reject: (DNA polymerase) forms base pairs / hydrogen bonds
(ii) (Prokaryotic DNA)

1. Circular / non-linear (DNA);

Accept converse for eukaryotic DNA
Ignore: references to nucleus, binary fission, strands and plasmids
2. Not (associated) with proteins / histones;

Accept does not form chromosomes / chromatin
3. No introns / no non-coding DNA.

Accept only exons
Q Neutral: no 'junk' DNA
(b) (i) 1. Have different genes;

Reject: different alleles
2. (Sobases / triplets) are in a different sequence / order;

Accept: base sequence that matters, not percentage
3. (So) different amino acid (sequence / coded for) / different protein / different polypeptide / different enzyme.
Unqualified 'different amino acids' does not gain a mark
Reject: references to different amino acids formed
Ignore: references to mutations / exons / non-coding / introns
2 max
(ii) (Virus DNA)

1. A does not equal T / G does not equal C ;

Accept: similar for equal
Accept: virus has more C than G / has more A than T
2. (So) no base pairing;
3. (So) DNA is not double stranded / is single stranded.
(a) 1. DNA replicated;

Reject: DNA replication in the wrong stage
2. (Involving) specific / accurate / complementary base-pairing;

Accept: semi conservative replication
3. (Ref to) two identical / sister chromatids;
4. Each chromatid / moves / is separated to (opposite) poles / ends of cell.

Reject: meiosis / homologous chromosomes / crossing over
Note: sister chromatids move to opposite poles / ends $=2$ marks for mp 3 and mp 4
Reject: events in wrong phase / stage
(b) (i) 1. To allow (more) light through;

Accept: transparent
2. A single / few layer(s) of cells to be viewed.

Accept: (thin) for better / easier stain penetration
(ii) 1. More / faster mitosis / division near tip / at 0.2 mm ;

Neutral: references to largest mitotic index
2. (Almost) no mitosis / division at / after 1.6 mm from tip;

Accept: cell division for mitosis
Penalise once for references to meiosis
3. (So) roots grow by mitosis / adding new cells to the tip.

Accept: growth occurs at / near / just behind the tip (of the root)
Accept: converse arguments
(a) (i) Repeating units / nucleotides / monomer / molecules;

Allow more than one, but reject two
(ii) 1. $\mathrm{C}=$ hydrogen bonds;
2. $\mathrm{D}=$ deoxyribose;

Ignore sugar
3. $E=$ phosphate;

Ignore phosphorus, Ignore molecule

EXAM PAPERS PRACTICE
(iii)

Name of base	Percentage
Thymine	34
Cytosine / Guanine	16
Adenine	34
Cytosine / Guanine	16

Spelling must be correct to gain MP1
First mark = names correct
Second mark = \% correct, with adenine as 34\%
(b) (i) 153;
(ii) Some regions of the gene are non-coding / introns / start / stop code / triplet / there are two DNA strands;

Allow addition mutation
Ignore unqualified reference to mutation
Accept reference to introns and exons if given together
Ignore 'junk' DNA / multiple repeats
(a) (i) Anaphase
(ii) 1. Sister / identical chromatids / identical chromosomes;

Reject: Homologous chromosomes separate.
Allow any reference to chromatids / chromosomes being identical e.g. same DNA
2. To (opposite) poles / ends / sides;
(b) (i) 1 . 8.4 / cells with twice DNA content $=$ replicated DNA / late interphase / prophase / metaphase / anaphase;
Any reference to interphase must suggest towards end of interphase.
'Chromosomes replicate' is not enough for DNA replicates.
2. $\quad 4.2=$ DNA not replicated / (early) interphase / telophase / cell just divided / finished mitosis;
(ii) 2.1;
(a) (i) Spindle formed / chromosome / centromere / chromatids attaches to spindle;

Chromosomes / chromatids line up / move to middle / equator (of cell);

Do not award second mark for answers referring to chromosomes 'pairing up'.
Ignore reference to homologous chromosomes unless context suggests pairing which negates second mark.
Neutral: Details on nuclear membrane.
Accept: Diagram for second marking point.
(ii) Chromosome / centromere splits / chromatids / 'chromosomes' separate / pulled apart;

To (opposite) sides / poles / centrioles (of cell);
Reject: Homologous chromosomes separate for first marking point.
Accept: Diagram for second marking point.
Chromatids / 'chromosomes' move to poles / sides / centrioles = 2 marks.
(b) (i) Form / replace cells quickly / rapidly / divide / multiply / replicate rapidly;

Neutral: Repair cells.
Answers must convey idea of 'speed'.
(li) Correct answer = 774 minutes $/ 12$ hours 54mins $=2$ marks;;

Incorrect answer but indicates 3 cell cycles involved = one mark;
(c) Prevents / slows DNA replication / doubling / prevents / slows mitosis;

New strand not formed / nucleotides (of new strand) not joined together / sugar-phosphate bonds not formed;

First marking point must be in context of DNA replication not cell replication.
Do not negate first marking point if role of DNA polymerase is described incorrectly e.g. Reject: 'joins bases / strands together'. Role of DNA polymerase must be correct for last marking point.

