E,目

Cell structure 2

Level: Edexcel A Level 9BN0 Subject: Biology
 Exam Board: Suitable for all boards Topic: Cell structure 2 Type: Mark Scheme

To be used by all students preparing for Edexcel Biology A Level 9BNO foundation or higher tier but also suitable for students of other boards.

Mark schemes

(a) \mathbf{A} - receptor /extrinsic (protein);

Accept glycoprotein/antigen
B - transmembrane/intrinsic/channel/carrier (protein);
Accept hydrophobic tail
C - phospholipid;
Ignore ref. to bilayer
(b) Cell wall;

Accept smaller/70S ribosome(s)
Capsule/slime layer;
Accept DNA without histone
(Bacterial) flagellum;
Reject capsid
Circular DNA/chromosome;
Plasmid;
Mesosome;
2 max

2
(a) $\mathrm{X}=$ mitochondria;
$\mathrm{Y}=$ (rough) endoplasmic reticulum;
Accept ribosomes/ER/RER for Y
Reject smooth endoplasmic reticulum for Y
(b) (i) (Sections cut at) different angles/in different planes;

Ignore name given to organelle
(ii) Z modifies/packages/transports/secretes mucus/ Z adds sugars to proteins;

X provides ATP/energy (for this);
Accept makes in relation to Z but not X
Ignore names of organelles if function correct

3 (a) (i) Ribosome(s);
(ii) Plasma/cell (surface) membrane;

Accept membrane unless disqualify with, e.g. nuclear membrane
(b) Two suitable comparisons, accepting bacterial cell has;

Examples,
Bacterial cell has capsule/slime layer;
Cell wall;
(Bacterial) flagellum;
Mesosome;
Different size ribosomes;
Circular DNA;
Human cell has nucleus;
Membrane-bound organelles;
Two named examples of membrane-bound organelles;
Reject ref to thin and flat
(c) Carry genetic information/genes;

Reject/ignore to carry DNA to carry genetic code
Accept genetic material with coded information information for protein synthesis
Ignore genetic material on its own
(a) (i) no cell wall / only has (plasma) membrane;
(ii) has capsule / slime layer;
(b) correct approach which makes use of scalebar; ignore reference to units.
(c) cellulose / starch / amylose / amylopectin;
(d) (i) water potential lower / more negative in cell; (water enters by) osmosis;
(ii) plant cell wall made of a different substance / cellulose / penicillin does not affect cellulose;
(a) (i) Chloroplast;
(ii) Photosynthesis;

Uses light (energy);
To produce carbohydrates / starch / glucose / sugars / ATP / reduced NADP;

Note that candidates cannot be expected to have a detailed knowledge of photosynthesis.
(b) (i) \mathbf{A};
(ii) \mathbf{C};
(c) (i) Slows enzymes / prevents enzymes being denatured / prevents / stops self-digestion;

Ignore references to bacteria. Reject enzymes not working
(ii) To remove organelle $\mathrm{C} /$ nuclei; Which are larger / more dense;

6 (a) presence of nuclei;
(b) (i) 1 mark growth clearly calculated from difference between lengths at beginning and end of lesson

2 marks correct answer of $300 \mu \mathrm{~m}$
(Allow for slight measurement errors)
(ii) divide by time (between measurements);
(c) blue-black / dark blue / purple / black;
iodine added to slide / specimen / granules;

7 (a) Measure diameter of field with ruler; And proportion taken up by the cell; or Measure length with (eyepiece) graticule / eyepiece scale;
Calibrated against stage micrometer / something of known length;
Reject divide apparent length by magnification
(b) Membrane / cytoplasm shrinks / pulls away from cell wall / cell plasmolysed / goes flaccid; Water moves down water potential gradient / to lower / more negative water potential; By osmosis;
(c) (i) Reaches equilibrium / no further / maximum change in length;

Reject osmosis takes time
1
(ii) Line / curve of best fit; Extrapolate (and read off) / find where it crosses x-axis;
(iii) Greater decrease / length smaller; More water removed;

Greater difference in water potential / cell with higher / less negative water potential; Starch is insoluble / has no effect on osmosis
(a) Any two from:

Loop of DNA; Non-cellulose cell wall;
Plasmid;
Capsule;
Flagellum;
Mesosome;
Accept small ribosomes
(b) (i) (Granules) turn blue-black / dark blue / black / purple with iodine;
(ii) Cellulose / pectin;
(c) Use principle:

Feature of starch;
Consequence in terms of storage;
e.g.

Insoluble;
Therefore will not "wash" out of cell / affect water
potential / affect osmosis;
OR
Molecule coiled / branched;
Therefore large amount stored in small space / compact
OR
Does not affect water potential;
So no effect on entry of water (into cell);

9 (a) removes debris / intact cells / sand;
which would contaminate sediment A / interfere with the results;
2
(b) (i) nuclei;
(ii) ribosomes / endoplasmic reticulum / membrane / Golgi;
(c) density / size / mass / weight;
(d) an electron microscope has a higher resolution; electrons with shorter wavelength;
(a) (i) Mitochondria site of respiration;

Production of ATP / release of energy; For contraction;

Do not award credit for making or producing energy.
(ii) Enzymes are proteins;

Proteins synthesised / made on ribosomes;
(b) Lysosomes produce / contain enzymes;

Which break down / hydrolyse proteins / substances / cells of tail;
(c) 1. Chop up (accept any reference to crude breaking up);
2. Cold;
3. Buffer solution;
4. Isotonic / same water potential;
5. Filter and centrifuge filtrate;
6. Centrifuge supernatant;
7. At higher speed;
8. Chloroplasts in (second) pellet;
(a) (i) Golgi;
(ii) Exocytosis;
(b) (i) Joining together of amino acids / synthesis / production of thyroglobulin / makes protein;

Do not credit synthesis of amino acids
1
(ii) Electron microscope has high / greater resolution; Because it uses electrons which have smaller wave(length);

12 (a) Epithelium of alveolus, capillary wall / epithelium / endothelium, plasma;
(b) Cell wall;

Capsule;
Flagellum;
Mesosomes;
Plasmid;
Genetic material / DNA / nucleoid;
Ribosomes;
Accept references to size only if some idea of range is given
(c) Large (surface) area;

For diffusion;
or
Short distance to centre of cell / to all haemoglobin;
For diffusion;
(d) (i) Correct answer of approximately $7800 / 8000=2$ marks Incorrect answer but clearly derived by dividing diameter of cell A by 7 = 1 mark
(ii) Idea of cut through maximum diameter / middle;

13 (a) (i) $31 / 31.2$;
(ii) Ratio would be less / smaller;

Cell is thin / has large surface area / (adapted) for diffusion;
Accept converse. Must relate to concept of ratio.
(b) (i) 6 ;
(ii) 11;
(c) Water potential inside vesicle more negative / lower; Water moves into vesicle by osmosis / diffusion;
(d) Mitochondria supply energy / ATP; For active transport / absorption against concentration gradient / synthesis / anabolism / exocytosis / pinocytosis;

Do not credit references to making, creating or producing energy.
(e) 1 Phospholipids forming bilayer / two layers;

2 Details of arrangement with "heads" on the outside;
3 Two types of protein specified;
e.g. passing right through or confined to one layer /
extrinsic or intrinsic /
channel proteins and carrier proteins /
two functional types
4 Reference to other molecule e.g. cholesterol or glycoprotein;
5 Substances move down concentration gradient / from high to low concentration;

Reject references to across or along a gradient
6 Water / ions through channel proteins / pores;
7 Small / lipid soluble molecules / examples pass between phospholipids / through phospholipid layer;
8 Carrier proteins involved with facilitated diffusion;
Ignore references to active transport.
Credit information in diagrams.

14 (a) On diagram, correctly labelled:
Light-dependent: granum / thylakoid membranes - labelled ' X '
AND
Light-independent: stroma - labelled ' Y ';
(b) Any two from:
(Water) forms H^{+}/ hydrogen ions and electrons / e^{-};
O_{2} / oxygen formed; [NOT'O', NOTO -]
(Light) excites electrons / raises energy level of electrons / electrons to chlorophyll / to photosystem;
(c) (ATP) Provides energy for GP \rightarrow TP / provides \underline{P} for RuP / TP \rightarrow RuBP;
(Reduced NADP) Provides $\underline{\underline{H} / \text { electrons for } G P \rightarrow T P / r e d u c e s ~ G P ~ t o ~ T P ; ~}$
(a) (i) A mitochondrion and B nucleus; (need both for one mark)
(ii) increased surface area; for respiration / enzymes;
(b) any suitable feature
e.g. plasmid / capsule / 70 S ribosomes / smaller ribosomes / complex cell wall / mesosome / no nucleus;
(c) use of differential centrifugation / or description; first / low-spin pellet discarded / spin at low speed to remove cell wall material / cell debris; supernatant re-spun at higher speed / until pellet with chloroplasts is found; method of identifying chloroplasts e.g. microscopy;
(a) 16 gains 2 marks;
(accept 15.5. 16.5)
(principal of calculation i.e.
measured distance (31-33mm / 3.1-3.3cm) gains 1 mark) Mag
(b) relevant adaptation;
and explanation for second mark; e.g.
idea of many chloroplasts / lots of chlorophyll; to trap or absorb light (energy);
elongated cells;
idea of maximum light absorption / light penetration;
chloroplasts move;
to trap or absorb light (energy);
range of pigments;
can absorb a range of wavelengths / colours / for max light absorption;
large S.A. or cell wall feature e.g. thin / permeable;
for (rapid) CO_{2} absorption;
(a) matrix;
(b) pyruvate;

ADP;
P / inorganic phosphate; reduced NAD; oxygen;
(c) larger surface area for electron carrier system / oxidative phosphorylation; provide ATP / energy for contraction;
(a) (i) D plasmid / ribosome(s) / cytoplasm / storage granules; (accept any sensible structure)

E (slime / mucous) capsule
OR
slime / mucous layer;
(ii) protection / maintain shape / prevent lysis / strength / support;
(b) two of the following: nucleus;

OR
nuclear envelope / mitochondria / chloroplasts / sER / rER / golgi apparatus / 80s ribosomes
linear DNA / chromosomes / lysosomes / vacuole / vescicles / cellulose cell wall;
(c) (i) starch digested / broken down; by amylase / carbohydrase;
(ii) any sensible suggestion e.g. no secretion of amylase / functional amylase /
piece of fungus might have died;
(accept carbohydrase / enzyme for amylase)
(reject "no digestion" without qualification)
(a) (i) homogeniser / blender / pestle and mortar / description e.g. grind with sand;
(ii) centrifuge / description e.g. spin at high speeds;
(b) (i) chloroplast;

20 (a) X protein synthesis / translation; Y movement;
(b) (i) cytoplasm;
ribosomes;
phospholipid membranes / cell membrane / semipermeable membrane;
(accept folded membrane for two marks)
(ii) (it = bacterium)
cell wall;
capsule;
flagellum;
mesosome;
no nucleus / nuclear membrane / DNA free;
no mitochondria;
(accept 'no membrane-bound organelles' if neither nucleus nor mitochondria mark scored)
no microvilli;
no Golgi;
no ER;
70S / smaller ribosomes;
(a) chloroplast, so cell photosynthesises and moves to optimum / best light intensity for photosynthesis;
avoids damage due to bright light;
(b) (i) 2700
(ii) $\frac{242 \times 7500 \times 900}{60}=27225000 / 27 \times 10^{6}=2$ marks
(allow 1 mark for principle: $\frac{\text { amino acids } \times \text { proteins }}{\text { time }}$)
(c) (i) rate slightly slower / not affected in first 20 / 30 minutes / lower peak than control; then decreases / much lower (than control);
(allow 1 mark for increase in first 20 / 30 minutes, then decreased, if not compared with control / normal)
(disqualify flagellum grows longer)
(ii) 1. actinomycin has no effect (on growth of flagella); even though mRNA production / transcription prevented;
(accept references to 'expt 1')
2. (re)growth little affected by puromycin at first;
protein synthesis inhibited, so likely to be using proteins present;

22
(a) A mitochondria;

B ribosomes (accept ribosomes and rER)
(b) idea of sections or cuts;
idea of mitochondria orientated differently or in different positions / description of 3D structure of mitochondria, e.g. sausage-shaped;
(c) translation / protein / polypeptide synthesis;
(d) provide / produce energy or ATP (reject create energy);
(disqualify first mark if for respiration)
high respiration (rate) (accept lots) for active uptake / transport
(accept description);
absorption of digested food / substances / products / correctly named product (only accept monosaccharides, amino acids, dipeptides);

23 (a) A - granum / thylakoid;
chlorophyll molecules to trap light / light absorbing pigments / light dependent reaction / part of light dependent reaction;

B - stroma;
(contains enzymes for) carbon dioxide fixation / light-independent reaction / part of light-independent reaction; (allow ribosome role of protein in photosynthesis)
(b) (i) C - starch;
(ii) from glucose in a condensation / polymerisation reaction / many glucose molecules joined together;

24 (i) named organelle e.g. nucleus / nuclear envelope; vacuole; chloroplast; RER; mitochondrion; no membrane bound organelles;
(only award if no organelles named) (reject ribosomes, cell membrane, cell wall)
ref to large (r) size
(ii) $94 / 95 / 96 \times \frac{10}{44 / 45 / 46} \frac{(\text { measured distance } \mathbf{Y}-\mathbf{Z} \text {) }}{\text { lenght of scale bar }}$
20.4-21.8
(iii) no cell wall (permanent) / (large) vacuole / chloroplasts / smaller;
(accept microvilli)

25 (a) memory B / I cells do not recognise (new antigens); antibodies previously produced are not effective as shape not complementary to new antigen;
(b) (i) antigen in membrane presented to lymphocytes / produce cytokinins;
(ii) mitochondria provide (more) ATP / energy;
(more) RER / ribosomes synthesise proteins;
(more) Golgi body secretes / modifies or packages proteins / produces glycoproteins;
(B lymphocytes) produces antibodies;

26 (a) (i) microvilli; (reject brush border)
(ii) increased surface area (for diffusion);
(b) (i) $\frac{16 \times(1000)}{0.1} /$ principle of $\frac{\text { measuring scale bar }}{\text { dividing by } 0.1}$;

160000;
(correct answer award 2 marks)
(ii) electron microscope has a greater resolving
power / objects closer
together can be distinguished;
electron (beams) have a shorter wavelength;
(c) short diffusion pathway / short pathway to the centre / large SA:V ratio for faster, more diffusion;

27 (a) phospholipids in a double layer / area covered is twice total surface area of red blood cells; evidence of calculation of number \times surface area $\left(4.74 \times 10^{9} \times 99.4 \mu \mathrm{~m}^{2}\right) /$
calculation of area of 1 cell $\frac{0.92}{4.74 \times 10^{-9}}$;
$0.471 \mathrm{~m}^{2} \approx 0.5 \times 0.92 \mathrm{~m}^{2} / 194 \mu \mathrm{~m} \approx 2 \times 99.4 ;$
(b) EITHER feature + explanation
red blood cells do not contain organelles / nucleus;
so only surface membrane / no internal membranes in macerate;
OR
red blood cells have simple / regular / spherical shape;
so easy to calculate surface area;
OR
any two features, e.g.
simple / regular shape;
all same size;

28 (a) Nucleus;
(b) Enables organism to remain in area (of food source) / prevent its removal;

Q To attach' is not sufficient unless qualified
(c) (i) Correct answer of 222(\%);;

Incorrect answer that clearly identifies difference in number of cases as 5800 -1800 or 5.8-1.8;

Correct answer gains two marks
(ii) More water-related activities / more 'organisms' with increased temperature;

Q Allow any reference to growth or replication of 'organisms'. Do not penalise reference to bacteria.
Q Do not allow increase in water consumption.
(d) (i) All have same shape / only binds to Giardia / one type of / specific antigen;
(ii) Has complementary (shape) / due to (specific) tertiary structure / variable region (of antibody);

Q Binds / fits not sufficient unless qualified;
(iii) Enzyme / second antibody would remain / is removed by washing;

Enzyme can react with substrate (when no antigen is present);
(a) (Group of) similar / identical cells / cells with a common origin;

Q Ignore references to function
(b) (i) Add iodine / stain specific for starch to the slide / cells / tissue / add iodine / stain specific for starch and examine under microscope;

Blue-black / blue / black / purple;
Reject sample
(ii) Need a single layer of cells / only a few cells thick / not too many layers / detail obscured by cells underneath;

Light must be able to pass through;
(c) Both are polymers / made of monomers;

Joined by condensation / molecules can be broken down by hydrolysis;
Both have 1-4 links;
Contain C(arbon), H(ydrogen) and O(xygen) / both made up of glucose;
Both insoluble;
Both contain glycosidic bonds;
Accept other valid answers.
Ignore ref to unbranched.
2 max

30 Advantages:
1 Small objects can be seen;
2 TEM has high resolution as wavelength of electrons shorter;
Accept better
Limitations:
3 Cannot look at living cells as cells must be in a vacuum / must cut section / thin specimen;

4 Preparation may create artefact
5 Does not produce colour image;

