

Cell recognition and the immune system 1

Level: Edexcel A Level 9BN0 Subject: Biology Exam Board: Suitable for all boards Topic: Cell recognition and the immune system 1 Type: Mark Scheme

To be used by all students preparing for Edexcel Biology A Level 9BN0 foundation or higher tier but also suitable for students of other boards.

Mark schemes

1	(a)	Virus / fungus / protozoan; Neutral: named example	
	(b)	Produces toxins; Neutral: infects / colonises / invades cells	1
		Damages cells / tissues / example given e.g. cell lysis;	2
	(c)	 (Antibodies) produced from a single clone of B cells / plasma cells; Accept: hybridoma cell line instead of B cell / plasma cell Reject: idea that antibodies are cloned 	
		OR	
		(Antibodies) produced from the same B cell / plasma cell;	1
		(ii) (Specific) primary structure / order of amino acids;	
		(Specific) tertiary / 3D structure;	
		(So) Only binds to / fits / complementary to one antigen; Reject: 'active site' for either point 2. or 3. only once	3
	(d)	(Rapid) treatment of carriers / infected cattle / disease; Neutral: reference to rapid identification of infected cattle	
		Can isolate / cull carriers / infected cattle / infected (dairy) products not sold / consumed / tracked;	
		Reduces spread of disease / no need to kill / prevents the death of non-infected animals;	
		Neutral: ethical arguments	3
2	(a)	 Antibody has tertiary structure; Complementary to binding site on protein. 	[10] 2
	(b)	 Prevents false negative results; (Since) shows antibody A has moved up strip / has not bound to any <i>Plasmodium</i> protein. 	2
	(c)	 Person is infected with <i>Plasmodium</i> / has malaria; Infected with (<i>Plasmodium</i>) vivax; Coloured dye where antibody C present; That only binds to protein from vivax / no reaction with antibody for falciparum. Person is infected with P. vivax / Plasmodium vivax = 2 marks (MP1 and MP2) 	4

[8]

3	(a)	1. 2. 3.	Outside of virus has antigens / proteins; With complementary shape to receptor / protein in membrane of cells; (Receptor / protein) found only on membrane of nerve cells.		
			Accept converse argument	3	
	(b)	1. 2.	No more (nerve) cells infected / no more cold sores form; (Because) virus is not replicating.	2	
	(c)	Prev	rents replication of virus.	1	
	(d)	Micro 1. 2. 3. 4.	oRNA binds to cell's mRNA (no mark) (Binds) by specific base pairing; (So) prevents mRNA being read by ribosomes; (So) prevents translation / production of proteins; (Proteins) that cause cell death.	4	
				-	[10]
4	(a)	1. 2. 3. 4. 5. 6. 7.	Vaccine contains antigen from pathogen; Macrophage presents antigen on its surface; T cell with complementary receptor protein binds to antigen; T cell stimulates B cell; (With) complementary antibody on its surface; B cell secretes large amounts of antibody; B cell divides to form clone all secreting / producing same antibody.	5 max	
	(b)	1. 2. 3. 4. 5. 6.	Active involves memory cells, passive does not; Active involves production of antibody by plasma cells / memory cells; Passive involves antibody introduced into body from outside / named source; Active long term, because antibody produced in response to antigen; Passive short term, because antibody (given) is broken down; Active (can) take time to develop / work, passive fast acting.	5 max	[40]
5	(a)	(To c 1. 2.	diagnose AIDS, need to look for / at) (AIDS-related) symptoms; Number of <u>helper</u> T cells. <i>Neutral: 'only detects HIV antibodies' as given in the question stem</i>	2	[10]
	(b)	1.	HIV antibody is not present; Accept HIV antibodies will not bind (to antigen)	-	
		2.	(So) second antibody / enzyme will not bind / is not present.	2	

(c)	1. 2.	Children receive (HIV) antibodies from their mothers / maternal antibodies; (So) solution will always turn blue / will always test positive (before 18 months).		
		Allow 1 mark for the suggestion that the child does not produce antibodies yet so test may be negative		
		antibodies yet so test may be negative	2	
(d)	(Shc	ows that)		
(u)	1.	Only the enzyme / nothing else is causing a colour change;		
	2.	Washing is effective / all unbound antibody is washed away.		
			2	
				[8]
(a)	1.	Rank all STs in ascending order;		
	2.	Find value with same number (of people) above and below.		
		Accept find middle value		
			2	
(b)	Not	ethical to fail to treat cancer.		
			1	
(c)	Yes	since with ipilimumab:		
	1.	Median ST increased by 2.1 months;		
	2.	Percentage of patients showing reduction in tumours increased from 10.3% to 15.2%;		
	Not	pecause:		
	3.	No standard errors shown / no (Student) t- test / no statistical test carried out;		
	4.	(So) not able to tell if differences are (statistically) significant / due to chance (alone);		
	5.	Improvement might only be evident in some patients / no improvement in some patients;		
	6.	Quality of (extra) time alive not reported;		
		If answers relate only to 'Yes' or 'No', award 2 marks max		
			4 max	
(d)	1.	Faulty protein recognised as an antigen / as a 'foreign' protein;		
	2.	T cells will bind to faulty protein / to (this) 'foreign' protein;		
	3. ⊿	(Sensitised) T cells will stimulate clonal selection of B cells;		
	4.	(Resulting in) release of antibodies against faulty protein.	3 max	
				[10]

APERS P	RACTICE

1. Vaccine/it contains antigen (from HPV); (a) Term 'antigen' may be first mentioned with point 2 2. Displayed on antigen-presenting cells; Accept named example, e.g. macrophage/phagocyte/B cells 3. Specific <u>helper T cell</u> (detects antigen and) stimulates specific B cell; Accept 'helper T cell with receptor on surface' for 'specific' and B cells with receptor/antibody on surface that bind to antigen for 'specific' 4. B cell divides/goes through mitosis/forms clone to give plasma cells; 5. B cell/plasma cell produces antibody; 4 max Two (doses) because got more antibody; (b) 1. Accept more effective in producing antibody 2. With three doses, second dose/dose at 1 month doesn't lead to production of any more antibody (than the two-dose group)/get same/similar response; 3. Three doses would be more expensive/less popular with parents/girls (and serves no purpose); Accept 'less painful' 2 max (c) t-test, because comparing two means; Mark for correct test and explanation correct Accept 'comparing the mean' Reject 'to show that the results/means are significant' 1 (d) 1. Compare (base sequences of) DNA; 2. Look for mutations/named mutations (that change the base sequence); 3. Compare (base sequences of) (m)RNA; 1 and 3 accept triplet/codon sequences for comparisons Ignore references to 'introns/non-coding DNA'

2 max

[9]

8

(a)

7

Feature	Bacterium	Human immunodeficiency virus (HIV) particle
RNA	√	\checkmark
Cell wall	√	
Enzyme molecules	√	√
Capsid		\checkmark

1 mark for each correct vertical column

(b) 1. (Complementary) nucleotides/bases pair **OR**

A to T and C to G;

Ignore '(DNA polymerase) forms base pairs/nucleotide pairs'

- 2. DNA polymerase;
- 3. Nucleotides join together (to form new strand)/phosphodiester bonds form;

Ignore '(DNA polymerase) forms base pairs/nucleotide pairs' If clearly writing rote answer about DNA replication <u>2 max</u> e.g.

helicase or separating strands

(c) 1. DNA double stranded/double helix **and** mRNA single-stranded;

Contrast requires both parts of the statement

2. DNA (very) long **and** RNA short;

Accept 'RNA shorter' or 'DNA bigger/longer'

- 3. <u>Thymine/T</u> in DNA and <u>uracil/U</u> in RNA;
- 4. Deoxyribose in DNA and ribose in RNA;

R Deoxyribonucleic/ ribonucleic acid

Ignore ref. to histones

Ignore ref. to helix and straight chain alone

- 5. DNA has base pairing **and** mRNA doesn't/ DNA has hydrogen bonding and mRNA doesn't;
- 6. DNA has introns/non-coding sequences **and** mRNA doesn't;

Ignore ref to splicing

3 max

	(a)	1. 2.	Virus can't bind (to receptor)/ can't enter cells; So can't be replicated/ multiply;		
			Accept can't reproduce		
		3.	So, doesn't damage cell(s)/tissues (and cause symptoms);		
			Accept no toxins released		
				2 max	
	(h)	1	Antigon/alveopratoin on Eholo hinds to/stimulatos (a specific)		
	(b)	1.	Antigen/glycoprotein on Ebola binds to/stimulates (a specific) B cell;		
			Accept correct reference to stimulation of B cells by T cells		
		2.	(Binding causes) replication/cloning of B cell;		
			Accept replication/cloning of plasma cell;		
		3.	Plasma cells/B cells release/produce antibodies;		
				2 max	
	(c)	1.	Lots of antibodies (against Ebola) in recovered patient;		
	()	2.	Transfusion/plasma contains antibodies;		
			Ignore reference to cells		
		3.	Antibodies (specific so) will bind with (Ebola) antigen;		
		4.	(In recipient) virus destroyed/cannot enter cell;		
			Antigen destroyed is insufficient		
				3 max	
	(d)	4	(High mutation rate loads to) antigens change (antigenia		
	(d)	1.	(High mutation rate leads to) antigens change/antigenic variability;		
			-		
			Accept (high mutation rate leads to) changes in base sequence coding for antigen;		
		2.	Vaccine contains specific antigen;		
		2. 3.	Antibodies not complementary to (changed) antigen / won't bind to		
		0.	(changed) antigens;		
				3	
					[10]
	(a)	1.	Antigen stimulates immune response / activates B/T cells;		
וו	(0.)	2.	B/T cells divide OR antibodies produced;		
		3.	Antibodies/T cells attack myelin sheaths;		
			Ignore references to antigen binding to myelin		
				3	
	(4-)	4			
	(b)	1.	Fewer cristae/smaller surface area (of cristae);		
		2. 3.	So less electron transport/oxidative phosphorylation; (So) not enough ATP produced		
		0.	OR		
			Not enough energy to keep neurones alive;		
			1. Accept 'inner membrane' as 'cristae'		
			2. Accept fewer ATP synthase enzymes		
			2. Accept lower rate of electron transfer/oxidative phosphorylation		
			3. Accept less use/stimulation of neurone leads to death of cell		
			3. Accept no/less ATP produced/no energy to keep neurones alive		
			3. Ignore references to glycolysis/ Krebs cycle	-	
				2	

	(c)	(i)	(Transmission) electron (microscope) – no mark	
			Need high resolution (to see structure of mitochondria)	
			Accept 'scanning electron microscope' /TEM/SEM	
			Accept – optical microscope not high enough resolution	
			1	
		(ii)	1. Took photographs/areas at random;	
		()	2. Counted total number (of normal) and number of	
			unusual mitochondria;	
			3. Divided number of unusual mitochondria by total	
			number and multiplied by 100;	
			1. Accept (very) large number of areas/photos/samples	
			$MP \ 3 = 2 \ marks \ (includes \ MP2)$	
			3	[10]
	(a)	1.	(Releases) toxins;	
11	(u)	2.	Kills cells / tissues.	
			2. Accept any reference to cell / tissue damage	
			Ignore infecting / invading cells	
				2
	(b)	1.	Water potential in (bacterial) cells high <u>er</u> (than in honey) / water potential in	
	()		honey low <u>er</u> (than in bacterial cells);	
			Q candidates must express themselves clearly	
			1. Must be comparative e.g. high WP in cell and low WP in honey	
		2.	Water leaves bacteria / cells by osmosis;	
		3.	(Loss of water) stops (metabolic) reactions.	
			3. Needs a reason why lack of water kills the cell	
				3
10	(a)	Any	two from:	
12		1.	(Decrease linked to) few(er) cases of whooping cough;	
		2.	(Decrease linked to) risk of / fear of side effects;	
		3.	Insufficient vaccine available / too expensive to produce / distribute.	
			3. Too expensive unqualified is insufficient for mark	2 max
				2 max
	(b)	1.	Vaccination rate increases;	
		2.	Fewer people to spread the disease / whooping cough / more people immune /	
			fewer susceptible.	
			2. Neutral – greater herd effect	
			2. Allow description of immune	
			Q Reject 'resistant'.	2
				4

[5]

(c) 1. More people are immune / fewer people carry the pathogen;

If neither point 1 or 2 awarded

Herd immunity = 1 mark

Unvaccinated does not mean infected

- 1. Q Do not accept disease for pathogen
- 2. So susceptible / unvaccinated people less likely to contact infected people.

[6]

2

1

2

(a) Regulator protein.

13

Accept regulator protein antigen Reject regulator protein receptor Ignore regular protein

- (b) 1. Lipid soluble / hydrophobic
 2. Enters through (phospholipid) bilayer
 - OR
 - 3. (Protein part of) LDL attaches to receptor
 - 4. Goes through carrier / channel protein.
 - 4. Accept by facilitated diffusion or active transport
 - 4. Reject active transport through channel protein
- (c) Any two from:
 - 1. (Monoclonal antibody) has a specific tertiary structure / variable region / is complementary to regulator protein

Do not award MP1 if reference to active site.

- 2. Binds to / forms complex with (regulator protein) *"It" refers to monoclonal antibody in MP1 and MP2*
- (So regulator protein) would not fit / bind to the receptor / is not complementary to receptor

3. Reject receptor on LDL

2 max

- (d) 1. Injection with salt solution 1. Accept inject placebo in salt solution
 - 2. Otherwise treated the same.

[7]

QWC

- 1. (Phagocyte engulfs) to form vacuole / vesicle / phagosome; Accept surrounds bacteria with membrane
- 2. Lysosome empties contents into vacuole / vesicle / phagosome; Accept joins / fuses
- 3. (Releasing) enzymes that digest / hydrolyse bacteria; Ignore breakdown / destroy / lytic enzymes
- (b) Two suitable structures;;

Examples,

- 1. Cell wall;
- 2. Capsule / slime layer;
- 3. Circular DNA; *Reject "circular <u>chromosome</u>"*
- 4. Naked DNA / DNA without histones;
- 5. Flagellum;
- 6. Plasmid;
- 7. Pilus;

15

- 8. 70s / smaller ribosomes;
- 9. Mesosome;

2 max

3

- (a) (i) 1. (Tumour suppressor) gene inactivated / not able to control / slow down cell division;
 - Ignore: references to growth
 - Rate of cell division too fast / out of control.
 1 and 2 Accept: mitosis
 1 and 2 Reject: meiosis

2

14

(a)

- (ii) 1. (Genetic) code degenerate;
 Accept: codon for triplet
 Accept description of degenerate code, e.g. another triplet codes for the same amino acid
 - 2. Mutation in intron. Accept: mutation in non-coding DNA

1 max

- (b) 1. Antibody has specific tertiary structure / binding site / variable region; Do not accept explanations involving undefined antigen
 - Complementary (shape / fit) to receptor protein / GF / binds to receptor protein / to GF;

Ignore: same shape as receptor protein / GF

3. Prevents GF binding (to receptor).

[6]

3

(a) (i) **(Whole-cell vaccine)**,

Accept converse statements for other vaccine Reject references to the vaccine being alive or the disease reproducing etc

- 1. Heat(ing) supposed to kill bacteria;
- 2. Some might be alive / active / viable; Accept active pathogens present
- 3. (If so) bacteria could reproduce;
- 4. Bacterium makes or contains toxin;
- 5. Toxin might not be affected / all destroyed by heat;
- 6. Bacteria or toxins attacking / killing person's cells;

(ii) (Whole-cell vaccine),

Ignore references to more / greater antigens unqualified. It is the <u>variety</u> of antigens that matters

- 1. (Contains) many different / greater range of antigens;
- Each antigen causes its own immune response / production of / has a specific (type of) antibody;

2

 (b) 1. Only patients who had whooping cough have toxin / antibody / immune response;

Accept converse e.g. those without antibody had another disease

- 2. Toxin is an antigen and is (only) produced by this bacterium;
- 3. Leading to presence of specific antibody / only 4% had this antibody / 13% did not have antibody;
- (c) 1. There may not be large rises;
 - 2. Might be the result of wrong diagnosis / reference to difference in figures / 13% diagnosed with whooping cough didn't have it;
 - Ignore reference to new strains or antigenic variability

[10]

3

2

17

(a)

- (i) 1. (Scientists) can't show bias / influence / may have a vested interest / work for the company developing the vaccine; *Relates to the scientists*
 - (Volunteers) can't show psychological / mental effects / 'placebo effect' / expectations;
 Relates to the volunteers
 Accept: reduces the 'Hawthorne effect' / demand characteristics
 Neutral: so they have no idea what they are taking

- (ii) Any **two** suitable suggestions, eg
 - Neutral: refs. to age and health
 - Amount of nicotine in cigarettes; Neutral: different types of cigarette / different ways / frequency of smoking
 - Amount inhaled / absorbed / time since last cigarette; Neutral: absorption by gut / digestion Accept: absorption by mouth
 - (Different) amounts excreted / metabolism / rate of binding (of nicotine) to protein;
 Accept: broken down (differently)
 - 4. (Different) blood volumes; Neutral: different body masses
 - 5. Nicotine from passive smoking / other smokers / other sources;
 - Some volunteers received the vaccine / placebo;
 Accept: some volunteers would have / would not have the antibodies

- (b) (i) 1. Antibodies to nicotine produced / antibodies bind to nicotine;
 Q Reject: vaccine contains / produces antibodies
 Q Neutral: antibodies digest / kill / fight nicotine
 - (So) nicotine does not bind to protein / does not reach the brain;
 Q Reject: any reference to 'active site' Neutral: idea that the antibodies bind to the protein
 - (So) cigarettes / smoking does not satisfy addiction / reward smokers / release (reward) chemicals;

(ii) (Agree):

- 1. People choose to smoke / know the risks;
- 2. Should spend this money on education / preventing people from starting to smoke / treating other health problems / vaccines are expensive;

(Disagree):

- 3. Unethical not to treat;
- 4. Less money needed to treat the effects of smoking / cancer / smokers pay taxes so are entitled to treatment;

 (c) 1. High antibody responders have a high % to stop smoking / are more likely to stop smoking;

> 'People producing a high concentration of antibodies' is equivalent to 'high antibody responders' Accept: reference to values from the table

2. Only a few may be high antibody responders / no numbers on how many are high / medium / low antibody responders;

Neutral: not all people are high antibody responders

 Percentage who stopped smoking is similar for placebo group and low / medium responders / some / % of placebo group (still) stopped smoking / placebo has the lowest value / % to stop smoking;

Accept: reference to values from the table

- 4. Large sample size / double blind **so** reliable / representative;
- Antibody levels peak at / drop after <u>5 months</u> / boosters may be needed at / after 5 months;
- 6. May start smoking again after 5 / 6 months / do not know the percentage who stopped smoking after 5 / 6 months;
 - <u>Nicotine</u> is not the only factor responsible for making people smoke; *Must mention nicotine Do not accept: correlation does not mean causation / could be due to other factors*

5 max

1

[15]

(a) (i) Substance that causes an immune response / production of antibodies; Ignore foreign / non-self

(ii) 1. Not lipid soluble;

- 2. Too large (to diffuse through the membrane);
- 3. Antigens do not have the complementary shape / cannot bind to receptor / channel / carrier proteins (in membranes of other epithelial cells);

2 max

7.

- (b) 1. (Vaccine contains) antigen / attenuated / dead pathogen; 1. Reject if in context of injection of vaccine
 - 2. T-cells activate B-cells;
 - 3. B-cells divide / form clone / undergo mitosis;
 - 4. Plasma cells produce antibodies;
 - 5. Memory cells produced meaning more antibodies / antibodies produced faster in secondary response / on reinfection;

[8]

Infected by / susceptible to (other) pathogen(s) / named disease caused by a pathogen (from environment);
 Context is where immune system cannot prevent or stop these events

Allow attack / kill

- Pathogen(s) reproduce / cause diease (in host);
 MPs not given in context of HIV
- 3. Damage cells / tissues / organs;
- 4. Release toxins;

(a)

19

3 max

- (b) (i) 1. (HIV enters cells) before antibodies can bind to / destroy it; *Ignore SAFETY comments* 1. and 2. Relate to antibodies
 - 2. Antibodies cannot enter cells (to destroy HIV) / stay in blood;

OR

- 3. (Enters cells) before (secondary) immune response caused / before memory cells have time to respond;
 3. and 4. Relate to virus
- 4. So no antibodies present (to attack HIV);

OR

- Vaccine taken up too quickly to cause immune response;
 and 6. Relate to vaccine
- 6. So no antibodies / memory cells formed;

- (ii) 1. Antigen (on HIV) changes; Accept mutates
 - (Specific) antibody / receptor no longer binds to (new) antigen; Ignore SAFETY comments

OR

- 3. Many different strains of HIV / many antigens present on HIV;
- 4. Not possible to make a vaccine for all antigens / vaccine may not stimulate an antibody for a particular antigen;

2 max

3 suitable suggestions;;; QWC ignore reference to HIV cells

E.g.

(c)

20

- 1. Inactive virus may become active / viral transformation;
- 2. Attenuated virus might become harmful;
- 3. Non-pathogenic virus may mutate and harm cells;
- 4. Genetic information / protein (from HIV) may harm cells;
- 5. People (may) become / test HIV positive after vaccine used; Vaccinated people may develop disease from a different strain to that in the vaccine
- 6. This may affect their work / life; May continue high risk activities and develop or pass on HIV

3 max

[10]

(a) (Micro)organism that causes disease / harm to body / an immune response;
 Accept: named microorganism that causes disease
 Allow infection

(b)	1.	Phagocyte attracted by a substance / recognises (foreign) antigen;
		Accept named substance eg chemical / antigen

- 2. (Pathogen)engulfed / ingested; Accept: description
- 3. Enclosed in vacuole / vesicle / phagosome;
- 4. (Vacuole) fuses / joins with lysosome;
- 5. Lysosome contains enzymes; Accept named example of enzyme
- Pathogen digested / molecules hydrolysed; Neutral: Destroyed

4 max

(c) 1. Antigens (on pathogen) are a specific shape / have specific tertiary / 3D structure;

1 / 3 Structure alone is insufficient

 Antibody fits / binds / is complementary to antigen / antibody-antigen complex forms;

Reject - active site

OR

- 3. Antibodies are a specific shape / have specific tertiary / 3D structure;
- 4. Antigens (on pathogen) fit / bind / are complementary to antibody / antibodyantigen complex forms;

[7]

2

1

21 (a) Hydrolysis (reaction); *Accept phonetic spelling*

- (b) 1. Too big / wrong shape; Wrong charge - neutral Accept insoluble
 - To fit / bind / pass through (membrane / into cell / through carrier / channel protein);
 - 3. Carrier / channel protein; Accept carrier / channel protein not present
- (c) Foreign / (act as) antigen / non-self; Reject foreign cells

3

- (d) 1. Dose to be given; Accept: interaction with other drugs
 - 2. No (serious) side effects;
 - 3. How effective;
 - 4. Cost of drug;

			2 max	[7]
22	(a)	Has more than one / four polypeptide chains / made up of polypeptide chains;	1	
	(b)	1. Antibody / variable region has specific amino acid sequence / primary structure;		
		 2. The shape / tertiary structure of the binding site is complementary to / fits / binds with these antigens; 2. Do not accept active site for this point. 		
		3. Forms complex between antigen and antibody;	3	
			5	[4]
23	1.	Vaccines contain antigens / dead / weakened pathogens / antigens dead / weakened pathogens are injected;		
		Ignore references to T or B cells.		
	2.	Memory cells made;		
	3.	On second exposure memory cells produce antibodies / become active / recognise pathogens;		
		3. Idea of memory cells responding.		
	4.	<u>Rapidly</u> produce antibodies / produces <u>more</u> antibodies; <i>4. Production of antibodies must be qualified for mark. Underlined</i> <i>ideas essential.</i>		
	5.	Antibodies destroy pathogens; 5. Accept bacteria / viruses etc but not disease		[5]
24	(a)	Nitrification; Accept nitrifying. Do not accept nitrogen fixing.	1	[0]
	(b)	1. Uptake (by roots) involves active transport; Reject all references to bacteria	1	
		2. Requires ATP / aerobic respiration;		

- (c) (i) 1. Not enough time / fast flow washes bacteria away;
 "Not enough time for bacteria to convert all the ammonia to nitrate" gains 2 marks
 - 2. (Not all / less) ammonia converted to nitrate / less nitrification;
 - (ii) 1. Algal bloom / increase in algae blocks light / plants / algae die;
 - 2. Decomposers / saprobionts / bacteria break down dead plant materials;
 - Bacteria / decomposers / saprobionts use up oxygen in respiration / increase BOD causing fish to die;
 - 3. Accept alternatives such as microbes / saprophytes.

[8]

3

2

(a) (i) <u>Protein</u> on (surface of) <u>chlamydia;</u>

That initiates an immune response (in mice) / causes antibody production; Neutral "foreign protein"
Do not accept glycoprotein.
2. Accept description of initiating immune response.

- (ii) 1. Antibodies / memory cells against chlamydia (protein / antigen) are present;
 - 2. Protein on heart (muscle) similar to chlamydia protein / antigen so T cells / antibodies (attack heart muscle cells);
 - 2. Look for idea that both proteins are similar
 - 2. Detail of what is attacking the heart muscle cells

2

2

(b) FOR

- 1. Prevents / reduces heart disease / attacks;
- 2. Cheaper to vaccinate than treat heart disease;

AGAINST

- 3. Vaccination costly;
- 4. Don't know frequency of chlamydia infection;
- 5. Research in mice might not be replicated in humans / humans might have a different protein;
- Vaccine could cause heart disease or immune response against heart (muscle);
 2 max for arguments against Accept other valid answers

3 max

2

1

2

1

[7]

(a) (i) Antibiotics kill other bacteria / *Clostridium* is resistant;

Less / no competition so (*Clostridium*) reproduces / replicates / multiplies / increases in number; *Reference to bacteria being 'immune' negates first marking point. Reference to mitosis negates second marking point.*

 Immune system less effective / more likely to have other infections / been in hospital;

Accept: 'Weak / lower' immune system'.

(b) Attaches to <u>active site</u> (of enzyme);
 (Methicillin) is a competitive inhibitor / prevents monomers / substrate attaching (to enzyme);

'Competes for active site' = 2 marks. Neutral: 'Prevents monomers joining / attaching to each other'. Allow one mark max for answers relating to non-competitive inhibitor changing active site / preventing substrate attaching. Do not penalise Methicillin forms an enzyme / substrate complex.

 (c) (i) Have other illness / medical condition / 'weak' immune system / disease / infection;

Reject: Due to 'other factors', 'are smokers', 'are obese' unless related to disease or illness.

- (ii) Increase up to 2006 / 20 (per 100 000) then decreases;
- (iii) Correct answer in range of 52 - 59.1% = two marks;

Incorrect answer but shows change as between 4.8 – 5.2 / shows correct subtraction giving this change e.g. 14 - 9 = one mark.

1

2

- Phagocyte attracted to bacteria by chemicals / recognise antigens on bacteria as (a) 1. 27 foreign;
 - 2. Engulf / ingest bacteria;
 - 3. Bacteria in vacuole / vesicle;
 - 4. Lysosome fuses with / empties enzymes into vacuole;
 - 5. Bacteria digested / hydrolysed;
 - 1. Accept names chemical e.g. toxin
 - 2. Allow description of engulfing
 - 3. Accept: bacteria in phagosome
 - 5. Neutral: Break down
 - 5. Accept digestive enzymes destroy bacteria
 - 5. Do not accept "destroy bacteria" as it is in question stem

4 max

- (b) 1. Microvilli provide a large / increased surface area;
 - 2. Many mitochondria produce ATP / release or provide energy (for active transport);
 - 3. Carrier proteins for active transport;
 - 4. Channel / carrier proteins for facilitated diffusion;
 - 5. Co-transport of sodium (ions) and glucose or symport / carrier protein for sodium (ions) and glucose;
 - 6. Membrane-bound enzymes digest disaccharides / produce glucose;
 - 1. Reject villi on epithelial cells
 - 1. Accept brush border
 - 2. Accept large SA:vol ratio
 - 3. Need idea of "lots"
 - 4. Reject: energy produced
 - 5. Accept Na⁺K⁺ pump
 - 6. Neutral: Channel proteins
 - 7. Accept named example

28	(a)	Straight lines point to point as not possible to predict intermediate values / values betw points;	veen	
		F	1	
	(b)	Increases then levels / falls;		
		Maximum antibody production 180 units / at dose of 0.25 g per kg;	2	
	(c)	Two marks for correct answer of 57.14 / 57.1;;		
		One mark for incorrect answer in which candidate clearly divides difference in antibody production / 60 by 105;		
			2	
	(d)	Takes into account different masses of mice / allows comparison;		
		Accept different weights of mice.		
		Do not accept different size.	1	
	(e)	Sheep red blood cells have antigens (on their surface);		
		Antigens are proteins foreign to mice / are non-self; Stimulate B cells to produce antibodies;		
			3	
	(f)	Response only observed in mice;		
	()	Disease organisms not investigated;		
		Not all disease caused by pathogens / cured by <u>antibodies;</u> <i>i.e. not tested on humans</i>		
			2 max	
				[11]
29	(a)	 To show whether immune response occured / because cats are (genetically) relation to cheetahs; 	ated	
		Ignore reference to control.		
			1	
		 (ii) To show that rejection did not normally occur / skin could (successfully) be grafted; 		
			1	
	(b)	 Rapid rejection between unrelated (domestic) cats / cats are not <u>genetically</u> similar; 		
		Rapid rejection between (domestic) cat and cheetah / cats and cheetahs are not genetically similar;		
		Slow / no rejection in cheetahs / cheetahs are genetically similar;	3	
		(ii) Sample size small:		
		 Sample size small; Time observed was short; 		
			1 max	
		(iii) Similar (antigens on all cheetahs);		
		Accept same / not very different	-	
			1	

(iv) Protein / antigen production determined by alleles / genes / base sequence on DNA;

The more similar the proteins the more similar their alleles / genes / base sequence on DNA / the more they are genetically similar;

2

1

2

[9]

 Girls are not sexually active / not likely to carry HPV / vaccine may not work if already infected / few girls sexually active (at this age);

> Neutral: girls are not sexually mature Neutral: to provide better protection Accept: provides immunity before sexually active Neutral: girls are less likely to have '**it** as could mean the vaccine from the question stem

(b) Other (HPV) types have different antigens;

No memory cells for other types / memory cells not activated / antibodies cannot attach to antigen / correct antibodies not produced / antibodies are not complementary;

Accept: refs. to antigenic variability Accept: B cells for memory cells Accept: memory cells cannot recognise antigen for 'not activated' Accept: examples of memory cell activation

(c) More antigen;

30

More memory cells;

So more antibodies produced / antibodies produced quicker (if infected);

Accept: 'many' / 'enough' instead of 'more' Neutral: primary / secondary response Accept: T cells / B cells / plasma cells instead of 'antibodies' Reject: the idea that vaccines contain antibodies **Q** Reject: antibodies 'fight' / 'antibiotics'

2 max

(d) Cancer takes years to develop / develops later in life;

Takes time for females to become sexually active / females must become sexually active to obtain data;

Few people / only teenagers vaccinated;

Neutral: will take time to vaccinate 80% of young girls Accept: do not develop cancer instantly

 (e) (Cervical cancer) can be caused by other types of HPV / other factors / example given;

OR

(Some) women may have been infected (with HPV) before receiving the vaccine;

OR

(As a precaution) in case vaccine does not work / a way of monitoring if the vaccine has worked;

Accept: 'caused by other types of HPV' in the context of mutation Neutral: to check for abnormal cells / that they are immune to the virus

(f) Virus cannot replicate / is destroyed / is not carried (in vaccinated people);

Non-vaccinated people more likely to contact vaccinated people;

Neutral: 'do not spread virus' as in question stem Must be in context of the individual and not the population as in question stem **Q** Do not allow 'disease is destroyed' Neutral: 'herd effect' as given in the question stem

31

(a) (yes):

Many women (with cervical cancer) have HPV 16 (18 & 31);

(no):

Few women (with cervical cancer) have HPV 6 / 11;

(HPV infection does not mean causation because): Could be caused by another factor / example given / may be due to coincidence;

No control group / did not study HPV in healthy women / did not study all HPV types / having cancer may increase susceptibility to HPV / does not add up to 100% / not all women with cancer have HPV / individual may have more than one HPV type;

Neutral: correlation between HPV (16) and cervical cancer Reject: many women with <u>HPV 16 (18 &31)</u> have cervical cancer / not all women have cancer Accept: figures from graph for 'many' and 'few' Accept: minor errors in reading HPV frequencies from graph Reject: does not mean HPV <u>vaccine</u> causes cancer; Neutral: refs. to sample size and factors that should have been kept constant

3 max

1

2

[10]

(b)	(i)	Protein / glycoprotein / glycolipid / polysaccharide;		
		Causes immune response / antibody production; Accept: B / T cell production	2	
	(ii)	Memory cells produced / remain / stored (from previous infection); Neutral: antibodies produced / remain		
		(When individual) comes into contact with virus / antigen (again); Neutral: 'cell' instead of 'virus' Reject: 'bacteria' once only		
		Rapid / secondary / greater response / many or more antibodies produced; Accept: B cells / T cells		
		Destroys virus / antigen before it can cause harm / symptoms / cancer; Reject: if destroys the virus / antigen in the vaccine before it can cause harm		
		Q Do not allow 'fights HPV'		
		Q Do not allow 'memory cells remember'	3 max	
(c)	HP∨	destroyed in males / prevents males being carriers of HPV;		
		Neutral: prevents males catching HPV		
		vents males passing on HPV (to unvaccinated females) / HPV cause (other) cancers in males;		
		Accept: reference to herd effect protecting the population		
			2	[10]

		Accept glycoprotein / glycolipid / polysaccharide	
	2.	(that) stimulates an immune response / production of antibody;	2
(b)	1.	A protein / immunoglobulin specific to an antigen;	
	2.	Produced by B cells	
		OR	
		Secreted by plasma cells;	2
(c)	1750	D(%);	1
(d)	1.	Sample 1 / before vaccination no antibody released because patients not yet encountered vaccine / antigen / virus; Accept 'produced' for 'released'	
	2.	(Sample 2 / primary response / after first dose) activation / clonal selection / expansion of <u>B cells</u> into plasma cells;	
	3.	Plasma cells <u>release</u> antibodies;	
	4.	(Sample 3 / secondary response / after second dose) <u>memory cells</u> produce more antibodies / produce antibodies more quickly;	4
			- +

(a)

1. Foreign protein;