Q1.			
(a)			
()			1
(b)	E = 13 × 230		
			1
	E = 2990 (J)		1
	an answer 2990 (J) scores 2 marks		
(c)	charge flow = current \times time		
	allow $Q = It$		
			1
(d)	$1.52 = 1 \times 0.40$		1
			1
	$I = \frac{1.52}{0.40}$		
	0.40		1
	I = 3.8 (A)		
			1
	an answer of 3.8 (A) scores 3 marks		
(e)	E = 0.00175 × 205 000		
			1
	E = 359 (J)		
	marks		
	an answer of 250 (1) assess 2 morks		1
	an answer of 359 (5) scores Z marks		[9]
Q2.			
(a)	(i) earth wire	1	
		1	
	(ii) double	1	
(b)	if too much current flows through the wire		
(0)	accept power for current		
	do not accept electricity for current		
	accept if more than 20 amps flows through the wire	4	
		1	
	the fuse (overheats and) melts		
	accept blows for mens		

breaking the circuit accept stopping the current flow I (a) changes allow reverses I (b) dependent I (c) kettle C or 2.8 kW I highest power (output) allow higher power (output) I (d) values for gradient calculation shown on graph or on answer lines I power input = 2200 (W) accept an answer that rounds to 2200 (W) for 2 marks I (e) charge flow = current × time allow Q = It I (f) 2400 = I × 250 $I = \frac{2400}{250}$ $I = 9.6 (A)$ an answer of 9.6 (A) scores 3 marks I (a) current that is always in the same direction			1	
Q3. (a) changes <i>allow reverses</i> (b) dependent (c) kettle C or 2.8 kW highest power (output) <i>allow higher power (output)</i> (d) values for gradient calculation shown on graph or on answer lines power input = 2200 (W) <i>accept an answer that rounds to 2200 (W) for 2 marks</i> (e) charge flow = current × time <i>allow Q = It</i> (f) 2400 = 1 × 250 $1 = \frac{2400}{250}$ 1 = 9.6 (A) <i>an answer of 9.6 (A) scores 3 marks</i> (a) current that is always in the same direction		breaking the circuit		
Q3. (a) changes $allow reverses$ 1 (b) dependent 1 (c) kettle C or or 2.8 kW highest power (output) 1 $allow higher power (output)$ 1 (d) values for gradient calculation shown on graph or on answer 1 power input = 2200 (W) accept an answer that rounds to 2200 (W) for 2 marks (e) charge flow = current × time 1 $allow Q = lt$ 1 (f) 2400 = 1 × 250 1 $1 = \frac{2400}{250}$ 1 $1 = 9.6$ (A) an answer of 9.6 (A) scores 3 marks Q4. (a) current that is always in the same direction		accept stopping the current flow	1	
Q3. (a) changes allow reverses (b) dependent (c) kettle C or 2.8 kW highest power (output) allow higher power (output) (d) values for gradient calculation shown on graph or on answer lines power input = 2200 (W) accept an answer that rounds to 2200 (W) for 2 marks (e) charge flow = current × time allow Q = It (f) 2400 = 1 × 250 $l = \frac{2400}{250}$ l = 9.6 (A) an answer of 9.6 (A) scores 3 marks 1 Q4. (a) current that is always in the same direction				[5]
Q3. (a) changes allow reverses 1 (b) dependent 1 (c) kettle C or $Or 2.8 \text{ kW}$ 1 highest power (output) 1 (d) values for gradient calculation shown on graph or on answer 1 power input = 2200 (W) 1 accept an answer that rounds to 2200 (W) for 2 marks 1 (e) charge flow = current × time 1 allow Q = It 1 (f) 2400 = 1 × 250 1 $I = 2400$ 1 $I = 9.6 (A)$ 1 an answer of 9.6 (A) scores 3 marks 1 Q4. (a) current that is always in the same direction				
(a) changes allow reverses 1 (b) dependent (c) kettle C or 2.8 kW highest power (output) allow higher power (output) 1 (d) values for gradient calculation shown on graph or on answer lines power input = 2200 (W) accept an answer that rounds to 2200 (W) for 2 marks 1 power input = 2200 (W) accept an answer that rounds to 2200 (W) for 2 marks 1 (e) charge flow = current x time allow Q = lt 1 (f) 2400 = 1 x 250 1 1 = 9.6 (A) an answer of 9.6 (A) scores 3 marks 1 Q4. (a) current that is always in the same direction	Q3.			
(b) dependent (c) kettle C or 2.8 kW highest power (output) allow higher power (output) (d) values for gradient calculation shown on graph or on answer lines power input = 2200 (W) accept an answer that rounds to 2200 (W) for 2 marks (e) charge flow = current × time allow Q = lt (f) 2400 = 1 × 250 $1 = \frac{2400}{250}$ 1 = 9.6 (A) an answer of 9.6 (A) scores 3 marks 1 Q4. (a) current that is always in the same direction	(a)	cnanges allow reverses		
(b) dependent (c) kettle C or 2.8 kW highest power (output) allow higher power (output) (d) values for gradient calculation shown on graph or on answer lines power input = 2200 (W) accept an answer that rounds to 2200 (W) for 2 marks (e) charge flow = current × time allow Q = lt (f) 2400 = 1 × 250 $I = \frac{2400}{250}$ I = 9.6 (A) an answer of 9.6 (A) scores 3 marks 1 Q4. (a) current that is always in the same direction				1
(c) kettle C or 2.8 kW highest power (output) allow higher power (output) (d) values for gradient calculation shown on graph or on answer lines power input = 2200 (W) accept an answer that rounds to 2200 (W) for 2 marks (e) charge flow = current × time allow Q = lt (f) 2400 = 1 × 250 $I = \frac{2400}{250}$ I = 9.6 (A) an answer of 9.6 (A) scores 3 marks 1 Q4. (a) current that is always in the same direction	(b)	dependent		
(c) kettle C or 2.8 kW highest power (output) allow higher power (output) (d) values for gradient calculation shown on graph or on answer lines power input = 2200 (W) accept an answer that rounds to 2200 (W) for 2 marks (e) charge flow = current × time allow Q = It (f) 2400 = I × 250 $I = \frac{2400}{250}$ I = 9.6 (A) an answer of 9.6 (A) scores 3 marks 1 Q4. (a) current that is always in the same direction				1
C1 2.8 kW highest power (output) allow higher power (output) 1 (d) values for gradient calculation shown on graph or on answer lines power input = 2200 (W) accept an answer that rounds to 2200 (W) for 2 marks 1 (e) charge flow = current × time allow Q = lt 1 (f) 2400 = 1 × 250 1 $I = \frac{2400}{250}$ 1 I = 9.6 (A) an answer of 9.6 (A) scores 3 marks 1 Q4. (a) current that is always in the same direction	(c)	kettle C		
1 highest power (output) allow higher power (output) (d) values for gradient calculation shown on graph or on answer lines power input = 2200 (W) accept an answer that rounds to 2200 (W) for 2 marks 1 (e) charge flow = current × time allow $Q = lt$ 1 (f) 2400 = 1 × 250 $I = \frac{2400}{250}$ I = 9.6 (A) an answer of 9.6 (A) scores 3 marks 1 Q4. (a) current that is always in the same direction		2.8 kW		
highest power (output) allow higher power (output) (d) values for gradient calculation shown on graph or on answer lines power input = 2200 (W) accept an answer that rounds to 2200 (W) for 2 marks (e) charge flow = current × time allow Q = It (f) 2400 = I × 250 I $I = \frac{2400}{250}$ I I = 9.6 (A) an answer of 9.6 (A) scores 3 marks I Q4. (a) current that is always in the same direction				1
(d) values for gradient calculation shown on graph or on answer lines (d) values for gradient calculation shown on graph or on answer lines (e) charge flow = current × time allow Q = lt (f) 2400 = 1 × 250 $1 = \frac{2400}{250}$ 1 = 9.6 (A) an answer of 9.6 (A) scores 3 marks 1 Q4. (a) current that is always in the same direction		highest power (output)		
(d) values for gradient calculation shown on graph or on answer lines 1 power input = 2200 (W) accept an answer that rounds to 2200 (W) for 2 marks 1 (e) charge flow = current × time allow Q = lt 1 (f) 2400 = 1 × 250 1 $I = \frac{2400}{250}$ 1 I = 9.6 (A) an answer of 9.6 (A) scores 3 marks 1 Q4. (a) current that is always in the same direction		allow higher power (output)		1
(i) lines 1 power input = 2200 (W) accept an answer that rounds to 2200 (W) for 2 marks 1 (e) charge flow = current × time allow Q = lt 1 (f) 2400 = 1 × 250 1 $I = \frac{2400}{250}$ 1 I = 9.6 (A) an answer of 9.6 (A) scores 3 marks 1 Q4. (a) current that is always in the same direction	(d)	values for gradient calculation shown on graph or on answer		
power input = 2200 (W) accept an answer that rounds to 2200 (W) for 2 marks (e) charge flow = current × time allow Q = lt (f) 2400 = 1 × 250 $1 = \frac{2400}{250}$ 1 = 9.6 (A) an answer of 9.6 (A) scores 3 marks 1 Q4. (a) current that is always in the same direction		lines		1
power input = 2200 (W) accept an answer that rounds to 2200 (W) for 2 marks (e) charge flow = current × time allow Q = lt (f) 2400 = 1 × 250 $1 = \frac{2400}{250}$ 1 = 9.6 (A) an answer of 9.6 (A) scores 3 marks 1 Q4. (a) current that is always in the same direction				1
(e) charge flow = current × time allow Q = lt (f) 2400 = 1 × 250 $I = \frac{2400}{250}$ I = 9.6 (A) an answer of 9.6 (A) scores 3 marks 1 Q4. (a) current that is always in the same direction		power input = 2200 (W) accept an answer that rounds to 2200 (W) for 2 marks		
(e) charge flow = current × time allow Q = lt (f) 2400 = 1 × 250 $1 = \frac{2400}{250}$ 1 = 9.6 (A) an answer of 9.6 (A) scores 3 marks 1 Q4. (a) current that is always in the same direction				1
$allow Q = lt$ (f) $2400 = 1 \times 250$ $1 = \frac{2400}{250}$ $1 = 9.6 (A)$ an answer of 9.6 (A) scores 3 marks 1 Q4. (a) current that is always in the same direction	(e)	charge flow = current × time		
(f) $2400 = 1 \times 250$ $1 = \frac{2400}{250}$ 1 = 9.6 (A) <i>an answer of 9.6 (A) scores 3 marks</i> 1 Q4. (a) current that is always in the same direction		allow $Q = It$		1
(f) $2400 = 1 \times 250$ $I = \frac{2400}{250}$ I = 9.6 (A) <i>an answer of 9.6 (A) scores 3 marks</i> 1 Q4. (a) current that is always in the same direction	(6)			1
$I = \frac{2400}{250}$ $I = 9.6 (A)$ an answer of 9.6 (A) scores 3 marks 1 Q4. (a) current that is always in the same direction	(†)	$2400 = 1 \times 250$		1
I = 9.6 (A) an answer of 9.6 (A) scores 3 marks I Q4. (a) current that is always in the same direction		2400		
I = 9.6 (A) an answer of 9.6 (A) scores 3 marks 1 Q4. (a) current that is always in the same direction		250		1
 I = 9.6 (A) an answer of 9.6 (A) scores 3 marks Q4. (a) current that is always in the same direction 				1
Q4. (a) current that is always in the same direction		I = 9.6 (A)		
Q4. (a) current that is always in the same direction				1
Q4. (a) current that is always in the same direction				[10]
(a) current that is always in the same direction	04			
	حح. (a)	current that is always in the same direction		

(b) total resistance = 30 (Ω) 1

	$V = 0.4 \times 30$	1	
	12 (V)	1	
	allow 12 (V) with no working shown for 3 marks an answer of 8 (V) or 4 (V) gains 2 marks only	1	
(c)	$P = 0.4 \times 12 = 4.8$	1	
	5 (W)	1	
	allow 5 (W) with no working shown for 2 marks allow 4.8 (W) with no working shown for 1 mark	1	[6]
Q5.			
(a)	he may receive an electric shock		
	or		
	The may be electroculed	1	
	if he touches the live wire	1	
(b)	10 690 = I × 230	1	
	I = 10 690 / 230	1	
	46.478(260) (A)	1	
	46	1	
	allow 46 (A) with no working shown for 4 marks	1	
(c)	cost is higher	1	
	more energy is used (per second)	-	
		1	[8]
Q6.			
(a)	(because the) potential of the live wire is 230 V	1	
	(and the) potential of the electrician is 0 V	1	
	(so there is a) large potential difference between live wire and electrician	1	
		1	

	charge / current passes through his body	
	allow voltage for potential difference	1
(b)	diameter between 3.50 and 3.55 (mm) allow correct use of value of cross-sectional area of 9.5 to 9.9 (mm²) with no final answer given for 1 mark	2
(c)	$18000 = 1 \times 300$	1
	I = 18000 / 300 = 60	1
	13 800 = (60 ²) × R	1
	R = 13 800 / 60 ²	1
	3.83 (Ω)	1
	allow 3.83(Ω) with no working shown for 5 marks answer may also be correctly calculated using P = IV and V = IR if 230 V is used.	
		[11]

Q7.

$\langle \alpha \rangle$	20		
(a)	20		1
(b)	50		1
			-
(c)	(i)	115	1
			1
	(ii)	230	
			1
	(iii)	if one goes out the other still works	
		or	
		brighter	
		accept power (output) is greater	
		can be switched on/off independently is insufficient	
			1
(d)	the	outside/casing is plastic	
()		there is plastic around the wires is insufficient	
		it is plastic is insufficient	
			1
	and	nlastic is an insulator	
	ana	productions and modulator	
		an answer the light litting is double insulated gains both marks	
		mano	1

(residual current) circuit breaker accept RCCB accept RCBO accept RCCD accept RCB accept miniature circuit breaker / MCB trip switch is insufficient breaker is insufficient

do not accept earth wire

Q8.

(e)

(a) pin made from brass because it is (hard and) a (good electrical) conductor accept copper for brass metal is insufficient heat conductor on its own negates 1 outer case plastic/rubber because it is a (good electrical) insulator heat insulator on its own negates 1 (b) (i) live 1 (ii) makes it hot/warm melts is insufficient 1 (iii) 8.7 accept an answer that rounds to 8.7 allow 1 mark for correct substitution ie $2000 = 230 \times I$ an answer of 0.0087 or 0.009 or 3.0(4) or 5.65 or 5.7 gains 1 mark 2 a (large) current goes from the live wire to the earth wire (c) accept metal case for live wire accept a current goes from live to earth do not accept electricity for current 1 (which causes) the fuse to (overheat and) melt accept blow for melt break is insufficient do not accept snap / blow up for melt 1

(d) reduce chance of an electric shock

[8]

accept to reduce the risk of an accident
accept prevent electric shock
accept prevent electrocution
accept prevent or reduce the risk of an (electrical) fire
accept an electric shock can kill you
accept it can kill you
accept so you can use it safely

1

Q9.

(a)	cha	rge	1
(b)	(i)	blue	1
	(ii)	earth wire	1
		fuse	1
(c)	(i)	case is non-metal / non-conducting / plastic / insulator must refer to case / outside of appliance do not accept plastic coating / covering	1
	(ii)	earth (wire)	1
(d)	(i)	60 (W) <i>P</i> = 3 × 20 gains 1 mark provided no subsequent step shown	2
	(ii)	15 300 = 20 × Q or 20 = 300 / Q gains 1 mark	2
		C / coulombs must clearly be upper case C accept J / V or As	1 [11]
Q10.			

(a)	(i)	(3-pin) <u>plug</u>
		do not accept plug socket

(ii) live and neutral

	(iii)	double	
			1
(b)	dire	ect current (d.c.) only	1
(c)	(i)	live	
			1
	(ii)	too great a current flows	
		accept too great a power	
		do not accept voltage / energy / electricity too high	
			1
	(iii)	can be reset	
		accept does not need replacing	1
		(disconnects circuit) fast <u>er</u>	
		cheaper is insufficient does not melt is insufficient	
		quicker to fix / replace is insufficient	1
			[8]
011			
(a)	(i)	150	
			1
	(ii)	transferred to the surroundings by heating	
		Telefence to sound negates mark	1
	(iii)	0.75	
		450 / 600 gains 1 mark accept 75% for 2 marks	
		maximum of 1 mark awarded if a unit is given	
			2
	(iv)	20 (s) correct answer with or without working gains 2 marks	
		correct substitution of 600 / 30 gains 1 mark	2
(1.)			2
(d)	(1)	to avoid dias	1
	(ii)	use less power and last longer	
			1
		1 LED costs £16, 40 filament bulbs cost £80	

		filament costs (5 times) more in energy consumption	1	
	(iii)	any one from:		
		 availability of bulbs colour output temperature of bulb surface 	1	[10]
Q12.				
(a)	(i)	generator	1	
	(ii)	alternating current	1	
	(iii)	voltmeter / CRO / oscilloscope / cathode ray oscilloscope	1	
(b)	(i)	time	1	
	(ii)	peaks and troughs in opposite directions	1	
		amplitude remains constant dependent on first marking point	1	
(c)	any	two from:		
	• •	increase speed of coil strengthen magnetic field increase area of coil		
		do not accept larger	2	[8]

Q13.

(a) (i) any **six** from:

or

- switch on
 read both ammeter and voltmeter allow read the meters
- adjust variable resistor to change the current
- take further readings
- draw graph
- (of) V against I allow take mean
- R = V / I

allow take the gradient of the graph

	(ii)	resistor would get hot if current left on	1	
		so its resistance would increase	1	
	(iii)	12 (V) <i>0.75 × 16 gains 1 mark</i>	2	
	(iv)	15 (Ω)	1	
		16 is nearer to that value than any other	1	
(b)	if cu	urrent is above 5 A / value of fuse	1	
	fuse	melts		
		allow blows / breaks		
		do not accept exploded	1	
	brea	aks circuit		
			1	161
			I	[15]
Q14.				
(a)	atte	empt to draw four cells in series	1	
	corr	ect circuit symbols		
		circuit symbol should show a long line and a short line, correctly joined together		
		example of correct circuit symbol:		
		─┤ ₽ ─┤ ₽ ─┤ ₽ ─		
			1	
(b)	(i)	6 (V)		
		allow 1 mark for correct substitution, ie		
		$V = 3 \times 2$ scores 1 mark		
		provided no subsequent step	2	
	(ii)	12 (V)		
		ecf from part (b)(i)		
		18 - 6		
		or 18 – their part (b)(i) scores 1 mark		
			2	
	(iii)	9 (Ω)		
		ecf from part (b)(ii) correctly calculated		

		3 + their part (b)(ii) / 2 or	
		18/2 scores 1 mark	
		provided no subsequent step	2
(c)	(i)	need a.c.	1
		battery is d.c.	
			1
	(ii)	3 (A)	
	()	allow 1 mark for correct substitution, ie	
		$18 \times 2 = 12 \times I_s$ scores 1 mark	
			2 [12]
Q15.			
(a)	ther	e is a magnetic field (around the magnet)	
()		5 (5 /	1
	(this	magnetic field) changes / moves	
	(0.00	magnetie nera, enangee, mevee	1
	and	aute through coil	
	anu	accont links with coil	
			1
	so a	p.d. <u>induced</u> across coll	1
	the c	coil forms a complete circuit	1
			-
	so a	current (<i>i</i> s induced)	1
			1
(b)	amn	neter reading does not change	
		must be in this order	
		accept ammeter has a small reading / shows a current	4
			I
	zero		
			1
	grea	ter than before	
		accept a large(r) reading	
			1
	sam	e as originally but in the opposite direction	
		accept a small reading in the opposite direction	
			1
(c)	0.30)	
(-)		allow 1 mark for correct substitution. ie $0.05 = Q / 6$	

allow A s

1 [13]

Q16.

(a)	risk of elect	ric shock (if someone touched the case) allow risk of electrocution (if someone touched the case)	1
(b)	2530 = I × 2	230 this mark may be awarded if P is incorrectly / not converted	1
	$I = \frac{2530}{230}$	this mark may be awarded if P is incorrectly / not converted	1
	I = 11 (A)	this answer only an answer of 0.011 (A) scores 2 marks	1
		an answer of 11 (A) scores 3 marks	1
(c)	E = 2530 ×	14 this mark may be awarded if P is incorrectly / not converted	1
	E = 35 420	(J) this answer only	1
	35 420 = m	$x 4200 \times 70$ allow their calculated $E = m \times 4200 \times 70$	1
	$m = \frac{3542}{4200 \times 100}$	0 70	
		allow $m = \frac{\text{their calculated } E}{4200 \times 70}$	1
	m = 0.12 (k	g) allow an answer that is consistent with their calculated value of E	1

[9]

Q17.

(a) (i) live

	(ii)	react faster				
	(iii)	live and neutral	1			
(b)	(i)	ammeter	1			
		to measure current accept to measure amps	1			
		plus any one from:				
		 <u>variable</u> resistor (1) to vary current (1) accept variable power supply accept change or control switch (1) 				
		to stop apparatus getting hot / protect battery or to reset equipment (1)				
		 fuse (1) to break circuit if current is too big (1) 	2			
	(ii)	any two from:				
		 use smaller mass(es) move mass closer to pivot reduce gap between coil and rocker more turns (on coil)<i>coil / loop</i> <u>iron</u> core in coil accept use smaller weight(s) 	2			
Q18.						
(a)	any f	wo from:				
	•	nuclear oil (natural) gas	2			
(b)	4 (ho	ours)	1			
(c)	a sys	stem of cables and transformers	1			
(d)	The power output of wind turbines is unpredictable					

[9]

(e)	150	1500 / 0.6		
	250	0 (wind turbines)	_	
		allow 2500 with no working shown for 2 marks	1	
(f)	Mos	t energy resources have negative environmental effects.	1	[8]
Q19.				
(a)	(bla	ack) is a good absorber of (infrared) radiation	1	
(b)	(i)	amount of energy required to change (the state of a substance) from solid to liquid (with no change in temperature)		
			1	
		unit mass / 1kg	1	
	(ii)	$5.1 \times 10^{6} (J)$		
		accept 5 x 10° allow 1 mark for correct substitution ie $E = 15 \times 3.4 \times 10^5$	2	
(c)	(i)	mass of <u>ice</u>		
		allow volume / weight / amount / quantity of <u>ice</u>	1	
	(ii)	to distribute the salt throughout the ice	1	
		to keep all the ice at the same temperature	1	
	(iii)	melting point decreases as the mass of salt is increased		
		accept negative correlation		
		do not accept inversely proportional	1	
(d)	60	000 (J)		
		allow 2 marks for correct substitution ie $E = 500 \times 2.0 \times 60$		
		allow 2 marks for an answer of 1000 or 60		
		allow 1 mark for correct substitution ie $F = 500 \times 2.0 \text{ or } 0.50 \times 2.0 \times 60$		
		allow 1 mark for an answer of 1		
			3	

(e) Marks awarded for this answer will be determined by the Quality of Communication (QC) as well as the standard of the scientific response.

Examiners should also apply a 'best-fit' approach to the marking.

0 marks No relevant content

Level 1 (1–2 marks)

There is an attempt at a description of some advantages or disadvantages.

Level 2 (3–4 marks)

There is a basic description of some advantages **and / or** disadvantages for some of the methods

Level 3 (5-6 marks)

There is a clear description of the advantages and disadvantages of all the methods.

examples of the points made in the response

extra information

energy storage

advantages:

- no fuel costs
- no environmental effects

disadvantages:

- expensive to set up and maintain
- need to dig deep under road
- dependent on (summer) weather
- digging up earth and disrupting habitats

salt spreading

advantages:

- easily available
- cheap

disadvantages:

- can damage trees / plants / drinking water / cars
- needs to be cleaned away

undersoil heating

advantages:

- not dependent on weather
- can be switched on and off

disadvantages:

- costly
- bad for environment

Q20.			
(a)	(i)	50 (Hz)	1
	(ii)	2760 (W)	1
(b)	12		
		allow 1 mark for correct substitution, ie 2400/200	
		or	
		allow 1 mark for 2760/230 provided no subsequent step shown	
			2
	amps		
			1
(c)	the ch	narge is directly proportional to the time switched on for	
		accept for 1 mark the longer time (to boil), the greater amount of charge	
		or positive correlation	
		or they are proportional	
			2

[7]

Q21.

(a) (i)

Wire	Plug terminal
Live	С
Neutral	А
Earth	В

all 3 correct for **2** marks allow **1** mark for 1 correct

(ii) plastic

or

rubber

accept: ABS UF / urea formaldehyde nylon PVC

(b) (i) 600

allow **1** mark for correct substitution, ie $P = \frac{30\ 000}{50}$ provided no subsequent step

2

	(ii)	power is greater than 820 (W) power is 1200 W is insufficient	1	
		the lead /cable / wire <u>will</u> overheat / get (too) hot accept lead / cable will melt may overheat / get hot is insufficient	1	
		so there is a risk of fire accept causing a fire	1	
(C)	Х			
	any	one from:		
	•	most / more efficient		
	•	smallest energy input (per second)		
	•	cheapest to operate mark only scores if X is chosen mark is for the reason accept smallest input (power) for same output (power) accept wastes least energy smallest (power) input is insufficient		
		uses least electricity is insufficient	1	[9]
Q22.				
(a)	wat	accept IR / energy for radiation	1	
	wate	er used to heat buildings / provide hot water allow for 1 mark heat from the Sun heats water if no other marks given references to photovoltaic cells / electricity scores 0 marks	1	
(b)	2 (n	ninutes)	1	
	,	$\frac{168 \times 10^{3}}{t}$ 1.4 × 10 ³ = $\frac{t}{t}$ gains 1 mark calculation of time of 120 (seconds) scores 2 marks		
			3	
(c)	(i)	150 (kWh)	1	

(ii) <u>£</u>60(.00) or 6000 (p)

an answer of £6000 gains **1** mark allow **1** mark for 150 × 0.4(0) 150 × 40 allow ecf from **(c)(i)**

25 (years) *an answer of 6000 / 240 or 6000 / their (c)(ii) × 4 gains 2 marks an answer of 6000 / 60 or 6000 / their (c)(ii) gains 1 mark, ignore any other multiplier of (c)(ii)*

- (iv) any **one** from:
 - will get £240 per year accept value consistent with calculated value in (c)(iii)
 - amount of light is constant throughout the year
 - price per unit stays the same
 - condition of cells does not deteriorate

(d) any **one** from:

(iii)

- angle of tilt of cells
- cloud cover
- season / shade by trees
- amount of dirt

Q23.

do not accept electricity for current

(ii) temperature of the bulb increases accept bulb gets hot(ter) accept answers correctly

expressed in terms of collisions between (free) electrons and ions / atoms

bulb gets brighter is insufficient

1

2

3

1

1

[13]

(iii) 36

allow **1** mark for correct substitution, ie 12×3 provided no subsequent step shown

watt(s) / W accept joules per second / J/s do **not** accept w

(b) Marks awarded for this answer will be determined by the Quality of Written Communication (QWC) as well as the standard of the scientific response. Examiners should also refer to the information in the <u>Marking guidance</u>, and apply a 'best-fit' approach to the marking.

0 marks

No relevant content.

Level 1 (1-2 marks)

There is a basic comparison of either a cost aspect or an energy efficiency aspect.

Level 2 (3-4 marks)

There is a clear comparison of either the cost aspect or energy efficiency aspect

OR

a basic comparison of both cost and energy efficiency aspects.

Level 3 (5-6 marks)

There is a detailed comparison of both the cost aspect and the energy efficiency aspect.

For full marks the comparisons made should support a conclusion as to which type of bulb is preferable.

Examples of the points made in the response:

cost

- halogen are cheaper to buy
 simply giving cost figures is insufficient
- 6 halogen lamps cost the same as one LED
- LEDs last longer
- need to buy 18 / more halogen lamps to last the same time as one LED
- 18 halogens cost £35.10
- costs more to run a halogen than LED
- LED has lower maintenance cost (where many used, eg large departmental store lighting)

energy efficiency

- LED works using a smaller current
- LED wastes less energy
- LEDs are more efficient
- LED is 22% more energy efficient
- LED produces less heat
- LED requires smaller input (power) for same output (power)

[11]

6

3

1

1

1

1

[7]

Q24.

(a) 35

an answer with more than 2 sig figs that rounds to 35 gains 2 marks allow 2 marks for correct method, ie $\frac{230}{6.5}$ allow 1 mark for l = 6.5 (A) or $R = \frac{230}{26}$ an answer 8.8 gains 2 marks an answer with more than 2 sig figs that rounds to 8.8 gains 1 mark (maximum) current exceeds maximum safe current for a 2.5 mm² wire accept power exceeds maximum safe power for a 2.5 mm² wire

or

(b)

(maximum)	current exceeds 20 (A)
	(maximum) current = 26 (A) is insufficient

- a 2.5 mm² wire would overheat / melt accept socket for wire do **not** accept plug for wire
- (c) a.c. is constantly changing direction accept a.c. flows in two directions accept a.c. changes direction a.c. travels in different directions is insufficient
 - d.c. flows in one direction only

Q25.

(a) iron

	haird	dryer		1	
	kettl	е			
			answers can be in any order	1	
(b)	(i)	Y		1	
	(ii)	bar	drawn with any height greater than Y <i>ignore width of bar</i>	1	
(c)	(big	ger vo	lume) takes more time (to boil)	1	
		-	accept explanation using data from graph	1	
	(so)	more	energy transferred do not accept electricity for energy	1	
	(and	l) this o	costs more money		
			ignore reference to cost of water wasting more money because heating more water than needed is insufficient	1	[8]
Q26.					
(a)	(i)	50(Hz) ignore any unit given	1	
	(ii)	any	two from:		
		•	(some) current flows to Earth accept ground for Earth		
		•	current flows through copper braid accept current flows through the earth wire accept electricity for current in either the first or second marking point but not both		
		•	RCCB detects difference between current in live and neutral wire	2	
	(iii)	can b	e reset accept does not need replacing		
		or			
		faste	r acting accept switches circuit off faster	1	

(b)	(i)	79 200	
		allow 1 mark for correct substitution, ie $11 = \frac{Q}{2 \times 3600}$	
		an answer 22 gains 1 mark	
			2
		coulombs / C	
		do not accept c	
			1
	(ii)	18 216 000	
		accept for 2 marks 18 216 kJ or 18.216 MJ	
		or	
		$220 \dots \text{their} (h)(i)$ correctly coloulated	
		230 × their (b)(i) correctly calculated allow 1 mark for correct substitution is 230 × their (b)(i) or	
		allow 1 mark for power calculated as 2530(W)	
			2
(c)	inc	reases temperature of thermistor	
			1
	cha	nges resistance (of thermistor)	
		do not accept increases resistance (of thermistor)	
		an answer decreases resistance (of thermistor) gains 2	
		marks	1
			[11]
Q27.			
(a)	(i)	connect the earth wire (to pin)	
		answers must be in terms of correcting the faults	1
			1
		screw cable grip (across cable)	
		accept tighten the cable grip	1
	<i>/</i> ···		
	(11)	any two from:	
		fuse gets (very) hot	
		fuse melts	
		accept blows for melts	
		uo not accept break / shap fuse / blow up	
		circuit breaks / switches off	
		accept stops current flowing	2
			-
(b)	any	two from:	
	•	hairdryer is plugged into mains (electricity socket)	
		it refers to hairdryer	
		hairdryer works from the mains	

hairdryer is using 230 V

accept 240 for 230

- water conducts electricity ٠ do not accept water and electricity don't mix
- radio is low power / current / pd / voltage accept radio not connected to the mains do not accept radio is waterproof
- (the current in / pd across) hairdryer more likely to give a (fatal) electric shock

accept the idea of electrocution if hairdryer is wet accept the idea of radio not causing electrocution if wet

2

[6]

Q28.

• -		
(a)	d.c. flows in (only) one direction	1
	a.c. <u>changes</u> direction (twice every cycle) accept a.c. constantly changing direction	
	ignore references to frequency	1
(b)	a current flows through from the live wire / metal case to the earth wire accept a current flows from live to earth	
	do not accept on its own if the current is too high	1
	this current causes the fuse to melt	
	accept blow for melt	
	do not accept break / snap / blow up for melt	1
		[4
Q29.		
(a)	Α	
	only scores if A chosen	1
	it is alternating / a.c.	
	accept because B and C are d.c.	
	it changes direction/p.d.	

accept voltage for p.d. it goes up and down is insufficient it is constantly changing is insufficient an answer B and/or C with the reason because it is direct current/d.c scores 1 mark

or

(b) too much current (through socket)

accept electricity for current accept too much power accept socket/circuit overloaded do not accept voltage/p.d for current

wiring / socket gets hot

accept melts for gets hot accept risk of fire risk of fire in appliances is insufficient ignore reference to sparking overloaded plugs and plugs getting hot or fuses melting is insufficient

Q30.

- (a) (i) 50 000
 - allow 1 mark for correct substitution, ie $6 = 0.00012 \times R$ or $6 = 0.12 \times R$ or answers of 25 000 or 50 gain 1 mark or allow 1 mark for an incorrect answer caused by one error only ie using 3V or an incorrect conversion of current

ohm / Ω

an answer $50k\Omega$ gains 3 marks

(ii) (body) resistance changes

or

body fat/resistance affected by (many) factors accept named factor, eg age, gender, height, fitness, bone structure, muscle, drinking water related to body fat / resistance
(iii) gives misleading / wrong/inaccurate value do not credit if specifically linked to a change in mass / weight
(because) high water content changes body resistance accept a specific change to resistance water changes body mass is insufficient 1

1

2

1

1

1

1

[4]

(b)	(i)	RCCB – detects difference between current in live and neutral (wires) accept RCCB can be reset		
			1	
		fuse – (overheats and) melts		
		accept blows for melts	1	
	(ii)	switches the circuit / hedge trimmers off within 60 milliseconds		
		allow for 1 mark the RCCB / It is (Very) fast. do not accept the bigger the current the faster the RCCB switches off		
			2	[10]
Q31				
(a)	(i)	720		
	()	allow 1 mark for correct substitution,		
		ie 72 \times 10 provided no subsequent step shown	2	
	()	700	-	
	(11)	or		
		their (a)(i)	1	
(1)			1	
(b)	(i)	gravitational potential		
		allow potential		
			1	
	(ii)	432		
		21600		
		allow 1 mark for correct substitution, ie 50 provided no subsequent step shown		
		Subsequent step shown	2	
		watt / W		
			1	[7]
				[1]
Q32.				
(a)	(i)	0.6		
		or 60%		
		720		
		allow 1 mark for correct substitution ie $\frac{1200}{1200}$ provided no		
		subsequent step shown		
		an answer of 0.6 / 60 with a unit gains 1 mark only		
		an answer or oo gams I mark only	2	

(ii) heat

(b)	12 0 or £12(00 p			
		-	to score both marks the unit must be consistent with the numerical answer numerical answer answers 12,000 and 120 gain 1 mark only		
			allow 1 mark for correct substitution ie 800×15 or 800×0.15		
			provided no subsequent step shown	2	[5]
033					
Q33. (a)	(i)	circu	uit not complete accept circuit is broken		
			accept switch / s are open / off	1	
	(ii)	9	allow 1 mark for correct substitution, ie 0.5 \times 18 provided no subsequent step shown		
	(iii)	36		2	
	()			1	
(b)	can	be sw	itched on / off from top or bottom of stairs	1	
(c)	(i)	(elec	ctric) shock accept fitting becomes live accept answers giving a possible consequence of electric shock and death		
			Shock, eg dealh	1	
	(ii)	conn	ect the <u>earth</u> wire	1	[7]
Q34.					
(a)	(i)	D		1	
	(ii)	plast	ic or rubber accept a specific type of plastic accept electrical insulator	1	
(b)	460				

2

allow 1 mark for correct substitution ie 2 × 230

(c) any **two** from:

•

not all appliances need a 13 A fuse	
idea that 13 A is (much) bigger than required by many appliances	
do not accept some appliances require more than 13 A	4
do not accept 13 A fuse will blow	

- can choose the most suitable fuse (for the appliance) accept install correct fuse for the appliance
- (in the event of a fault) 13 A fuse may allow too much current to flow through an appliance

 or
 fuse may not melt (before appliance is damaged)
 - may already have the fuse idea of reusing a fuse do **not** accept cheaper unless explained correctly

[6]

2

Q35.

(a)	(i)	0.25 (A)	1
	(ii)	75	
		allow 1 mark for converting 5 minutes to 300 seconds	
		or allow 1 mark for correct substitution	
		allow 1 mark for an answer 1.25	
		allow 1 mark only for their (a)(i) \times 300 correctly calculated	2
		coulombs or C	
		do not accept c	1
(b)	any	two from:	
	•	fault not repaired	
		accept if a fault was to occur	
	•	larger current will (still) flow	
	•	aluminium foil will not melt (if a fault) accept aluminium foil needs a higher current / charge to melt	
	•	wiring will overheat / (may) cause a fire accept idea of fire hazard do not accept explode etc	