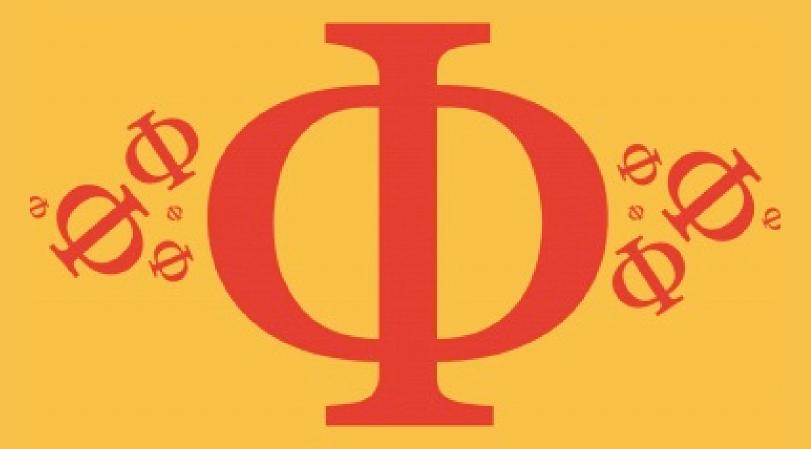


Boost your performance and confidence with these topic-based exam questions

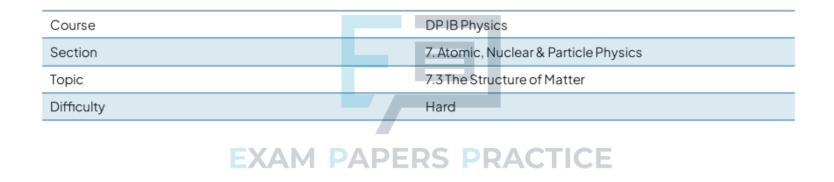

Practice questions created by actual examiners and assessment experts

Detailed mark scheme

Suitable for all boards

Designed to test your ability and thoroughly prepare you

7.3 The Structure of Matter Hard


PHYSICS

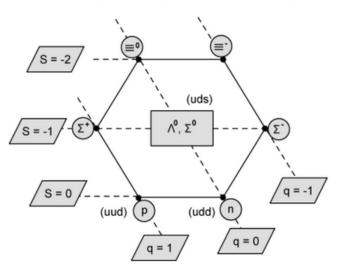
7.3 The Structure of Matter

Question Paper

Time allowed:	20
Score:	/10
Percentage:	/100

The Σ^0 baryon has strangeness of –1 and is produced through the strong interaction between a π^+ meson and a neutron.

 $\pi^+ + n \to \Sigma^0 + X$

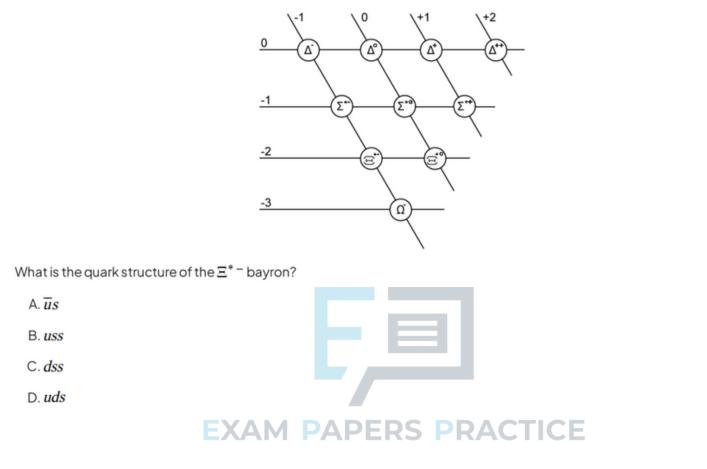

What is the quark composition of particle X?

- A. <u>us</u>
- В. *uud*
- C.ud
- D. *uus*

[1mark]

Question 2

Particles can be organised in a plot known as the 'eightfold way', as shown in the diagram below.



What are the quark compositions of $\Sigma^+, \Sigma^-, \Xi^0$ and Ξ^- ?

	Σ+	Σ-	Ξ ⁰	≅-
A	uus	dds	uds	dss
В	uud	dss	udd	ddd
С	uus	dds	uss	dss
D	uud	ddd	USS	dds

The diagram is an example of a 'baryon decuplet'. Baryons are organised along horizontal and diagonal axes, as shown in the diagram below.

Question 4

A collision between particles creates 4 mesons:

$s\overline{u} + d\overline{s} + X + Y$

[1mark]

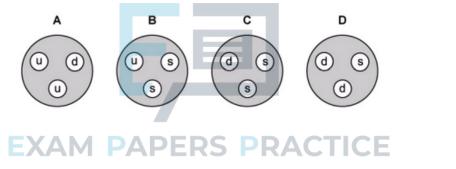
The overall charge and strangeness of the 4 mesons is zero.

What are possible quark combinations for X and Y?

	X	Y
А	$d\overline{u}$	sd
В	us	ud
С	$s\overline{s}$	ud
D	us	ss

The K⁻ is an example of a meson with strangeness -1.

Which of the following combinations of particles could the K⁻ particle decay to?


A. $\pi^+ + \pi^- + e^-$ B. $\pi^0 + \pi^- + n$ C. $\pi^- + e^- + \overline{v}_e$ D. $\pi^0 + \mu^- + \overline{v}_\mu$

[1mark]

[1mark]

Question 6

Which of the four hadrons shown could be Ξ^{0} ?

None of the following decay equations for baryons are permitted.

Equation 1:
$$n \rightarrow p + e^{-} + v_{e}$$

Equation 2: $\Delta^{+} \rightarrow \pi^{+} + \pi^{0}$
Equation 3: $p \rightarrow n + e^{-} + v_{e}$
Equation 4: $\equiv^{0} \rightarrow p + \overline{v} + \pi^{0}$

Which property is not conserved in each equation?

	Equation 1	Equation 2	Equation 3	Equation 4
А	charge	baryon number	charge and lepton number	baryon number
В	lepton number	baryon number	charge and lepton number	charge and lepton number
с	baryon number	lepton number	baryon number	lepton number and baryon number
D	lepton number	charge	charge	charge

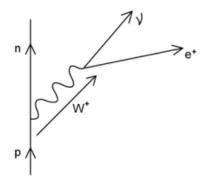
[1mark]

EXAM PAPERS PRACTICE

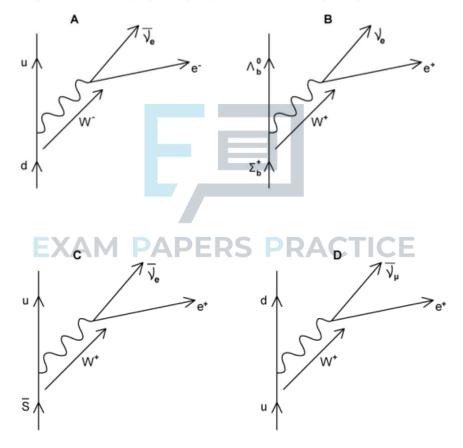
Question 8

The charmed sigma particle, Σ_c^{++} decays through the following equation:

$$\Sigma_c^{++} \rightarrow \Lambda_c^+ + \pi^+$$


Both $\Sigma_c^{+\, +}$ and Λ_c^{+} contain one charm quark and have strangeness of 0.

Which of the following could be the quark structure of the $\Sigma_c^{+\,+}$ and the $\Lambda_c^{+\,?}$


	Σ_{c}^{++}	Λ_{c}^{+}
Α	ddc	ūc
В	udc	dsc
С	uuc	udc
D	udc	иис

The following Feynman diagram shows the baryons and leptons in a nuclear decay

Which of the four Feynman diagrams, A to D, is physically equivalent to the diagram given for this decay?

[1 mark]

The Higgs Boson was discovered at CERN in 2012. It is not stable and decays into other particles.

Which of the following could not be a possible decay pathway for the Higgs Boson?

- A. $W^+ + W^-$ B. $p + e^- + v_e$
- r
- С. үү
- D. $b\overline{b}$

[1 mark]

