

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme

Suitable for all boards

Designed to test your ability and thoroughly prepare you

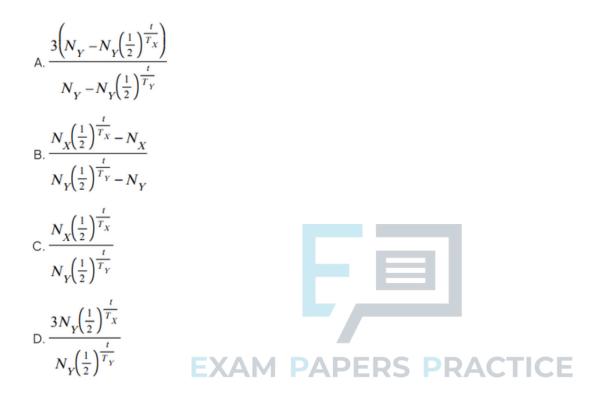
12.2 Nuclear Physics Hard

PHYSICS

12.2 Nuclear Physics

Question Paper

Course	DP IB Physics		
Section	12. Quantum & Nuclear Physics (HL only)		
Торіс	12.2 Nuclear Physics		
Difficulty	Hard		


EXAM PAPERS PRACTICE

Time allowed:	20
Score:	/10
Percentage:	/100

Two radioactive elements X and Y have half-lives T_X and T_Y respectively. Initially samples of S, N_X contains three times as many atoms of Y, N_Y .

After a certain time t, which of the expressions for $\frac{number \ of \ decayed \ atoms \ of \ X}{number \ of \ decayed \ atoms \ of \ Y}$ is correct?

A radioactive source **X** consists of 10.4×10^{11} atoms of a nuclide of half-life 5 days. A second source **Y** consists of 5.2×10^{10} atoms of another nuclide of half-life 6 days.

After how many days will the number of radioactive atoms in X be equal to Y?

A. $\frac{30\ln(2)}{\ln(20)}$ B. $\frac{\ln(20)}{30\ln(2)}$ C. $\frac{30\ln(20)}{\ln(2)}$

 $D. \frac{\ln(2)}{30\ln(20)}$

The initial activity of a radioactive source is 160 counts per second. After a time *T*, its activity becomes 5 counts per second.

If the half-life of the source is 18 hours, what is T?

A.
$$\frac{\ln(32)}{18\ln(2)}$$
 hours
B. $\frac{18\ln(32)}{\ln(2)}$ hours
C. $\frac{\ln(2)}{18\ln(32)}$ hours
D. $\frac{18\ln(2)}{\ln(32)}$ hours

[1 mark]

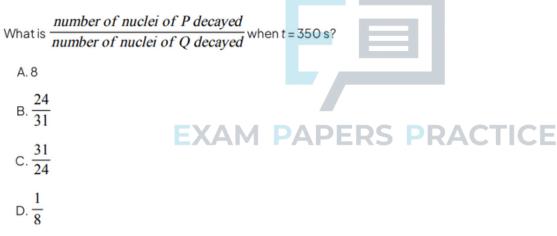
Question 4

A pure sample of a radioactive nuclide has mass m, half-life $T_{1/2}$ and initial activity A_0 .

Identify the half-life and initial activity of another sample which is otherwise identical but has mass 3m.

	Half-life	Initial activity	
Α.			ICE
в.	3 <i>T</i> _{1/2}	$\frac{1}{3}A_0$	
C.	T _{1/2}	3A ₀	
D.	3 <i>T</i> _{1/2}	3A ₀	

Alpha particles with various energy E are directed at a nuclei with atomic number Z. Small deviations from the predictions of the Rutherford scattering model are observed.


Which value of E and Z is most likely to result in the greatest deviations from the Rutherford scattering model?

	E/MeV	Z
Α.	39.0	350
В.	2.4	190
C.	39.0	190
D.	2.5	350

[1 mark]

Question 6

Two radioactive nuclides, P and Q, have half-lives of 70 s and 175 s respectively. At time t = 0, samples of P and Q contain the same number of nuclei.

The diameter of Iridium-192 $\binom{192}{77}$ Ir) nucleus is approximately four times that of the diameter of a nucleus of which other isotope?

A. ${}^{3}_{1}H$ B. ${}^{48}_{22}Ti$ C. ${}^{11}_{5}B$ D. ${}^{7}_{3}Li$

[1mark]

Question 8

Two unstable isotopes are initially present in equal numbers. Isotope Y has a half life of 6 minutes and isotope Z has a half life of 3 minutes. Which expression correctly describes the ratio of the activity of Y to Z after 12 minutes?

A. $\frac{e^{-\frac{\ln 2}{2} \times 12}}{e^{-\frac{\ln 2}{2} \times 12}}$		t,E	
B. $\frac{3}{6} \times \frac{e^{-\ln 2 \times 12}}{e^{-\ln 2 \times 12}}$	EXAM	PAPERS	PRACTICE
C. $\frac{1}{2} \times \frac{e^{-4\ln 2}}{e^{-3\ln 2}}$			
D. $\frac{1}{2} \times \frac{e^{-2\ln 2}}{e^{-4\ln 2}}$			

The ratio $\frac{radius \ of \ nucleus \ of \ Y}{radius \ of \ nucleus \ of \ X}$ is equal to 1.2 where the nucleus of X is $\frac{125}{80} X$.

How many nucleons does nucleus Y have?

A. 36

B.125

C.6

D. 216

[1mark]

Question 10

A pure sample of a known element has a very short half-life. What measurement(s), together with the initial activity of the sample, must be made in order to measure the half-life of the element?

- A. The number of moles of the sample.
- B. The activity and the number of moles of the sample after a given period of time.
- C. The number of moles after a given period of time.
- D. The activity after a given period of time.

EXAM PAPERS PRACTICE