

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme

Suitable for all boards

Designed to test your ability and thoroughly prepare you

# 2.4 Momentum & Impulse Medium



## PHYSICS

**IB HL** 



## 2.4 Momentum & Impulse

## **Question Paper**



Time allowed: 20

Score: /10

Percentage: /100



A body of mass 3M at rest explodes into two pieces of mass 2M and M.

What is the ratio  $\frac{\textit{kinetic energy of } 2M}{\textit{kinetic energy of } M}$  and  $\frac{\textit{momentum of } 2M}{\textit{momentum of } M}$ ?

|    | kinetic energy of 2M | momentum of 2M |
|----|----------------------|----------------|
|    | kinetic energy of M  | momentum of M  |
| A. | $\frac{1}{2}$        | -1             |
| В. | 1                    | -1             |
| C. | $\frac{1}{4}$        | 2              |
| D. | $\frac{1}{2}$        | -2             |



[1 mark]

## **Question 2**

Which of the following is an elastic collision?

- A. A ball dropped from a height and bouncing up to a lower height
- B. Two railway trucks colliding and they link together
- C. Two gas molecules collide and a bond is formed between them
- D. Two gas molecules collide and then travel perpendicular to each other



A force acts on a mass of 5.0 kg and it is initially at rest.



What is the time taken for the mass to reach an acceleration of  $2\,\mathrm{m\,s^{-2}}$ ?

A. 2.50 s

B. 2.20 s

C. 2.25 s

D. 2.00 s





A ball of mass m travels horizontally and strikes a vertical wall with a speed of  $v_i$  ms<sup>-1</sup>. It then rebounds horizontally at speed  $v_f$  ms<sup>-1</sup>. The ball is in contact with the wall for time  $\Delta t$ .

$$m \bigcirc \xrightarrow{v_i} \begin{cases} v_i & \text{if } v_i & \text{if } v_i \end{cases}$$

What is if the ball rebounds after an impulse of magnitude 1?

A. 
$$v_{final} = \frac{1 + v_{initial}}{m}$$

B. 
$$v_{final} = \frac{1 + mv_{initial}}{m}$$

C. 
$$v_{final} = \frac{1 - mv_{initial}}{m}$$

D. 
$$v_{final} = \frac{1 - v_{initial}}{m}$$



[1 mark]

## **EXAM PAPERS PRACTICE**

#### Question 5

A stone of mass 0.5 kg is thrown with an initial speed of 10 m s<sup>-1</sup> at an angle  $\theta$  to the vertical. P is the highest point of the motion and air resistance is negligible.



What is the momentum of the stone at P?

A.  $5 \sin \theta$ 

B. 5

 $C.5\cos\theta$ 

D. 0



A truck T moving horizontally collides with an identical truck S that is at rest.



T strikes S with speed 2v.

What is a possible outcome of the collision?











[1 mark]

## Question 7

A ball of mass m strikes a vertical wall with a speed v at an angle of  $\theta$  to the wall. The ball rebounds at the same speed and angle in time t. What is the magnitude of the impulse on the wall?



A. zero

B.2mv

C.  $2mv \sin \theta$ 

D.  $2mv\cos\theta$ 



A ball of mass 4.0 kg, initially at rest, is acted on by a force F which varies with t.



What is the velocity of the ball after 14 s?

- $A.7 \, \text{m s}^{-1}$
- $B.56 \, m \, s^{-1}$
- $C.14 \, m \, s^{-1}$
- $D.28 \, m \, s^{-1}$



[1 mark]

## Question 9

Which of the following is true for momentum and impulse?

- A. Momentum is conserved in an inelastic collision
- B. Impulse is the momentum
- C. The direction in which an object is travelling in doesn't affect its impulse
- D. A heavier object always experiences a greater impulse than a lighter one



Two balls m and 2m collide elastically with speeds v and 2v respectively. After the collision, they both move in opposite directions.









What speed does the 2m ball move with after the collision?

**A.** 
$$\sqrt{\frac{5}{2}}$$
 v

$$B.\frac{5}{2}v$$

$$C.\sqrt{\frac{1}{2}}v$$

$$D.\frac{1}{2}v$$

