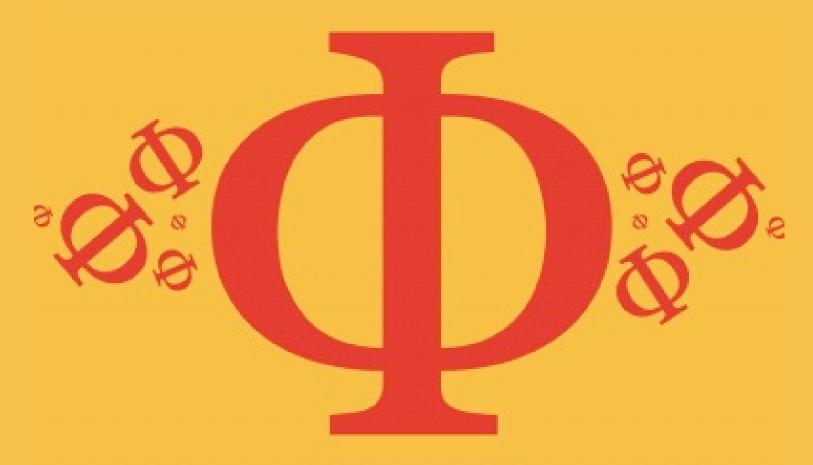


Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts


Detailed mark scheme

Suitable for all boards

Designed to test your ability and thoroughly prepare you

1.1 Measurements in Physics

Hard

PHYSICS

IB HL

1.1 Measurements in Physics

Question Paper

Course	DP IB Physics
Section	1. Measurement & Uncertainties
Topic	1.1 Measurements in Physics
Difficulty	Hard
	EXAM PAPERS PRACTICE

Time allowed: 20

Score: /10

Percentage: /100

The theory of gas flow through small diameter tubes at low pressures is an important consideration of high vacuum techniques.

One equation used in this theory is:

$$Q = \frac{kr^3(p_1 - p_2)}{L} \sqrt{\frac{M}{RT}}$$

Where k is a unitless constant, r is the radius of the tube, p_1 and p_2 are the pressures at each end of the tube, L is the length of the tube, M is the molar mass of the gas, R is the molar gas constant and T is the thermodynamic temperature of the gas.

What are the base units of Q?

 $A. kg s^{-1}$

 $B. kg m s^{-1}$

C. kg mol-1

 $D.kgms^{-2}$

[1 mark]

Question 2

What is the correct value for the Gravitational constant?

A. $6.67 \times 10^{-3} \, \text{nN m}^2 \, \text{kg}^{-2}$

EXAM PAPERS PRACTICE

 $B.6.67 \times 10^5 \, N \, mm^2 \, kg^{-2}$

 $C.6.67 \times 10^{-20} \, kN \, mm^2 \, kg^{-2}$

D. $6.67 \times 10^{-17} \,\mathrm{N \, km^2 \, kg^{-2}}$

[1 mark]

Question 3

Which estimate is realistic?

- A. The kinetic energy of a bus travelling on an motor way is 30 000 J
- B. The power of a domestic light is 300 W
- C. The temperature of a hot oven is 300 K
- D. The volume of air in a car tyre is 0.03 m³

The frictional force F on a sphere falling through a fluid is given by the formula:

$$F = 6 \pi a \eta v$$

In this equation, a is the radius of the sphere, η is a constant relating to the fluid and v is the velocity of the sphere.

What are the units of η ?

- $A.kgms^{-1}$
- B. kg m⁻¹ s⁻¹
- $C. kg m s^{-3}$
- $D. kg m^{-3} s^{-3}$

[1 mark]

Question 5

The speed v of a liquid leaving a tube depends on the change in pressure ΔP and the density ρ of the liquid. The speed is given by the equation:

$$V = k \left(\frac{\Delta P}{\rho}\right)^n$$

In this equation, k is a constant that has no units. DAPERS PRACTICE

What is the value of n?

- A. $\frac{1}{2}$
- B.1
- C. $\frac{3}{2}$
- D. 2

A boy jumps from a wall 5 m high. What is an estimate of the change in momentum of the boy when he lands without rebounding?

- A. $4 \times 10^{0} \, \text{kg m s}^{-1}$
- $B.4 \times 10^{1} \text{kg m s}^{-1}$
- $C.4 \times 10^{2} \text{kg m s}^{-1}$
- $D.4 \times 10^{3} \, kg \, m \, s^{-1}$

[1 mark]

Question 7

When a constant braking force is applied to a vehicle moving at speed v, the distance d moved by the vehicle as it comes to rest is given by the expression:

$$d = kv^2$$

In this equation, k is a constant.

When d is measured in metres and v is measured in metres per second, the constant has a value of k_1 .

What is the value of the constant when the distance is measured in metres, and the speed is measured in kilometres per hour?

A.
$$\frac{k_1}{12.96}$$

EXAM PAPERS PRACTICE

B.
$$\frac{k_1}{3.6}$$

- C. 3.6k₁
- D. 12.96k1

What is the unit for the gas constant in fundamental SI units?

- $A. kg m s^{-2} K mol^{-1}$
- B. kg m² s⁻² K⁻¹ mol⁻¹
- $C. kg^2 m^2 s^{-1} K^{-1} mol$
- $D. kg m^2 s^{-2} mol^{-1}$

[1 mark]

Question 9

Which of the following gives the correct unit for $\frac{g^3}{G}$?

- $A. kg s^{-4}$
- B. kg⁻¹s⁻⁴
- $C. kg m^3 s^{-4}$
- $D. kg s^{-8}$

[1 mark]

Question 10

The drag coefficient C_d is a number with no units. It is used to compare the drag on different cars at different speeds. It is given by the equation

$$C_d = \frac{2F}{\rho v^n A}$$

F is the drag force on the car, ρ is the density of the air, A is the cross-sectional area of the car and v is the speed of the car.

What is the value of n?

- A.1
- B. 2
- C.3
- D. 4