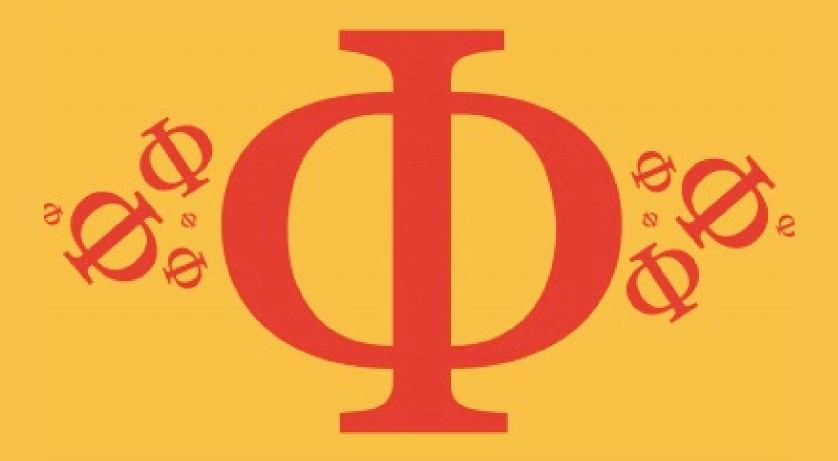


Boost your performance and confidence with these topic-based exam questions


Practice questions created by actual examiners and assessment experts

Detailed mark scheme

Suitable for all boards

Designed to test your ability and thoroughly prepare you

5.2 Heating Effect of Electric Currents Medium

PHYSICS

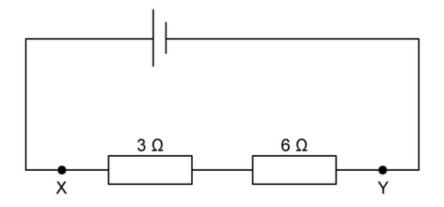
IB HL

5.2 Heating Effect of Electric Currents

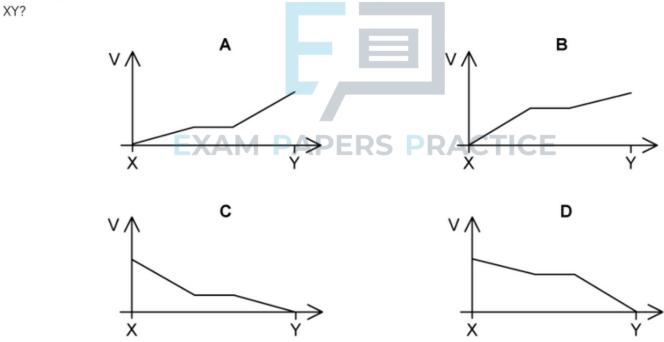
Question Paper

Course		DP IB Physics
Section		5. Electricity & Magnetism
Topic		5.2 Heating Effect of Electric Currents
Difficulty		Medium
EVAN DADEDC DDACTICE		

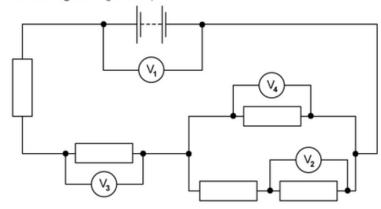
EXAM PAPERS PRACTICE


Time allowed: 20

Score: /10


Percentage: /100

Two resistors are connected to a cell.



Assuming both resistors are made from wires of the same length, which graph shows how the potential V varies along the line

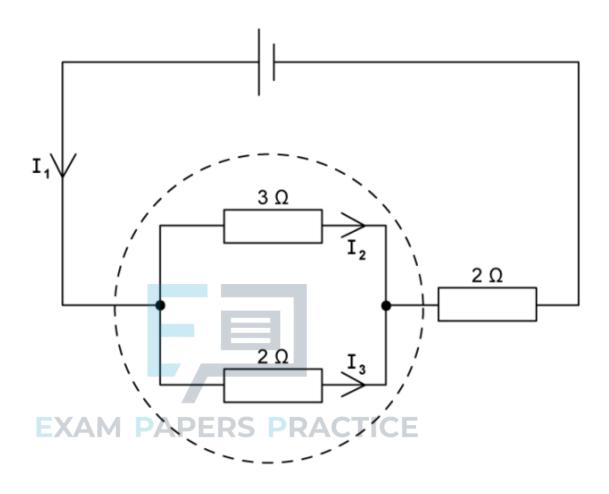
A circuit contains five identical resistors and four identical voltmeters. The reading on voltmeter V_1 is 8.0 V and the reading on voltmeter V_2 is 1.0 V. What are the readings on V_3 and V_4 ?

	reading on voltmeter V_3 / V	reading on voltmeter V ₄ / V
A.	1.5	1.0
В.	3.0	2.0
C.	4.5	3.0
D.	6.0	4.0

[1 mark]

EXAM PAPERS PRACTICE

Question 3


A power cable **X** has resistance *R* and carries current *I*. A second cable **Y** has resistance 2R and carries current $\frac{1}{2}$.

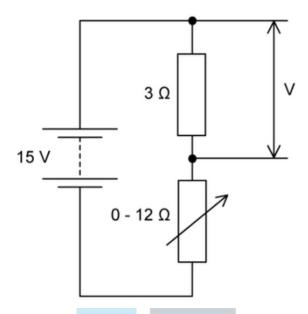
What is the ratio $\frac{power \ dissipated \ in \ Y}{power \ dissipated \ in \ X}$?

- A. $\frac{1}{4}$
- B. $\frac{1}{2}$
- C.2
- D. 4

Kirchhoff's laws are applied to the circuit shown.

What is the equation for the dotted loop?

A.
$$0 = 2I_3 - 3I_2$$


B.
$$0 = 2I_2 - 3I_3$$

$$C.6 = 3I_2 + 2I_3 + 2I_1$$

D.
$$6 = 3I_2 + 2I_3$$

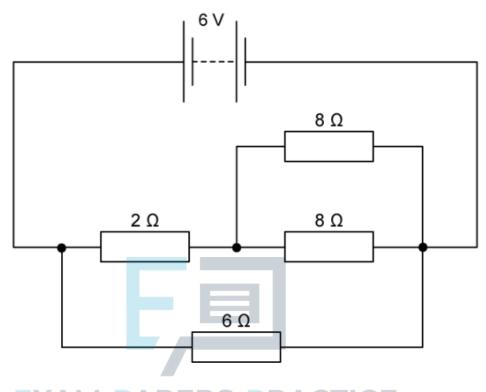
In the circuit shown, the fixed resistor has a value of 3Ω and the variable resistor varies between 0Ω and 12Ω .

The power supply has an emf of 15 V and negligible internal resistance.

What is the range of potential differences V which can be measured across the 3Ω resistor?

A.3V

B.6 V


C.9V

D.12 V

EXAM PAPERS PRACTICE

Four resistors are connected to a battery of e.m.f. 6 V as shown.

If the battery has negligible internal resistance, what is the current in the battery?

A. 2 A

B.3A

C.4A

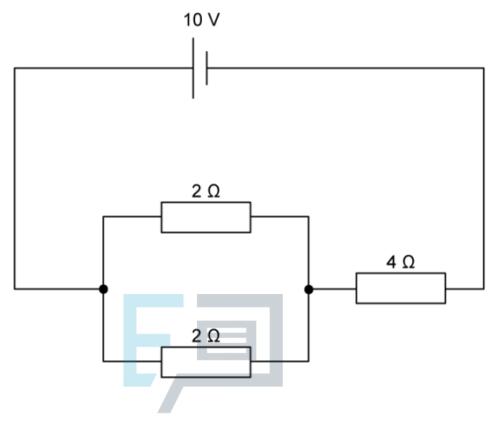
D.5A

[1 mark]

Question 7

Which of the following cannot be the units for resistivity?

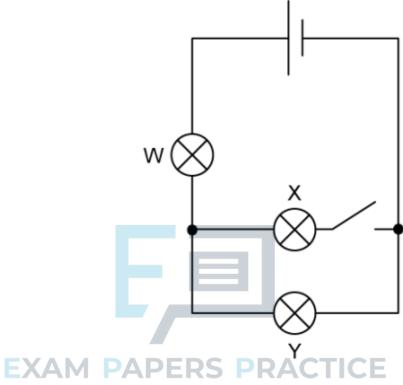
 $A.VmA^{-1}$


 $B.Jm s^{-1}A^{-1}$

 $C.Jm s^{-1}A^{-2}$

 $D.\Omega m$

Three resistors are connected to a cell of e.m.f. 10 V and negligible internal resistance as shown.



What is the power dissipated in one of the 2 Ω resistors and in the whole circuit?

	power dissipated in the 2Ω resistor / W	power dissipated in the whole circuit / W
Α	1	18
В	1	20
С	2	18
D	2	20

 $Three \, identical \, lamps, W, X \, and \, Y \, are \, connected \, to \, a \, cell \, of \, negligible \, internal \, resistance \, as \, shown.$

When the switch is closed, each lamp is lit. Which of the following correctly describes the brightness of lamps W, X and Y when the switch is opened?

	lamp W	lamp X	lamp Y
Α	increases	increases	decreases
В	decreases	off	decreases
С	decreases	off	increases
D	increases	decreases	decreases

A science student who lives in the UK, where the mains voltage is 240 V, buys a light bulb marked 60 W which she uses in her bedroom. The student takes the lightbulb with her on a trip to Canada where the mains voltage is 100 V and also uses it there.

Which line correctly identifies the approximate power dissipated in the bulb in the UK and Canada?

	UK/W	Canada / W
A.	30	10
B.	60	30
C.	60	10
D.	120	60

A.

