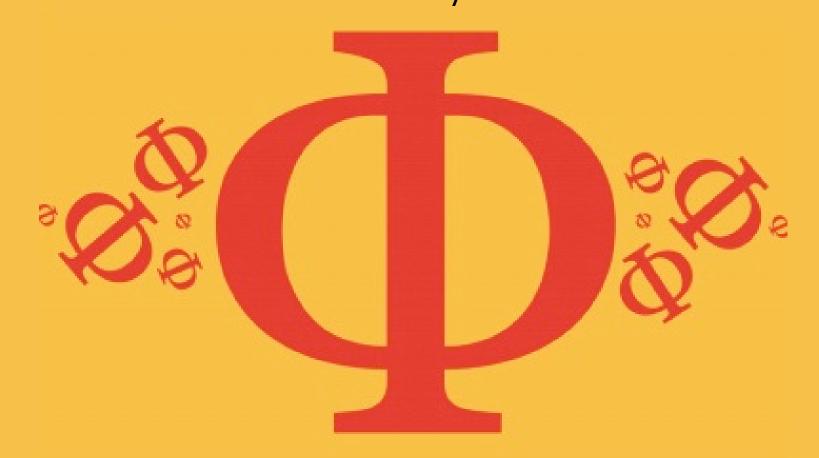


Boost your performance and confidence with these topic-based exam questions

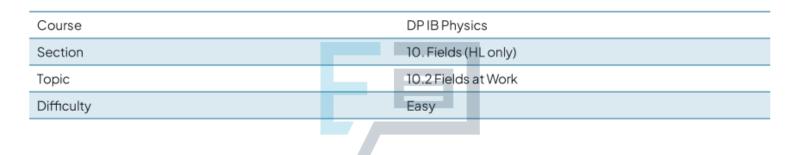

Practice questions created by actual examiners and assessment experts

Detailed mark scheme

Suitable for all boards

Designed to test your ability and thoroughly prepare you

10.2 Fields at Work Easy



PHYSICS

IB HL

10.2 Fields at Work Question Paper

EXAM PAPERS PRACTICE

Time allowed: 20

Score: /10

Percentage: /100

Two point charges q_1 and $2q_2$ are separated by distance 2r.

What is the value of the gravitational potential energy E_p ?

$$A.E_p = \frac{2q_1q_2}{4\pi\varepsilon_0 r}$$

$$\mathrm{B.}E_p = \frac{q_1^{}q_2^{}}{8\,\pi\varepsilon_0^{}r}$$

$$\mathrm{C.}E_p = \frac{q_1^{}q_2^{}}{4\pi\varepsilon_0^{}r}$$

$$\mathrm{D.}E_{p}=\frac{2q_{1}q_{2}}{8\pi\varepsilon_{0}r}$$


[1 mark]

Question 2

An electric field can be defined in terms of the variation of electric potential at different points in the field.

Which graph correctly represents this relationship?

EXAM PAPERS PRACTICE

When a mass is moved against the force of gravity, work is done such that the change in work done, ΔW is equal to the change in gravitational potential ΔV .

Which line correctly identifies the equation and named variables for work done when moving a mass in a gravitational field?

	symbol equation	word equation		
A.	Fs	force × distance		
В.	FΔV	force × change in gravitational potential		
C.	ms	mass x distance		
D.	mΔV	mass × change in gravitational potential		

[1 mark]

Question 4

When a mass moves through a gravitational field the magnitude of the potential energy E_P changes. Which equation could be used to correctly calculate this?

A.
$$\Delta E_p = GMm \left(\frac{1}{r_1} - \frac{1}{r_2} \right)$$

B.
$$\Delta E_p = GMm \left(-\frac{1}{r_1} - \frac{1}{r_2} \right)$$

C.
$$\Delta E_p = GMm \left(\frac{1}{r_1} + \frac{1}{r_2} \right)$$
 EXAM PAPERS PRACTICE

D.
$$\Delta E_p = GMm \left(\frac{1}{r_1} \times \frac{1}{r_2} \right)$$

Which quantity does the following statement define?

The work done by moving a positive test charge from one point to another in an electric field.

- A. Potential gradient
- B. Electric field strength
- C. Gravitational potential
- D. Potential difference

Two parallel metal plates are separated by distance, d and have a potential difference of $V_{\rm e}$.

Which equation correctly gives the magnitude of the electric force acting on a stationary charged particle between the plates if the particle has a charge of Q?

$$A.F = \frac{E}{Q}$$

B.
$$F = k \frac{q_1 q_2}{d^2}$$

$$C.F = ma$$

$$\text{D.} F = \frac{QV_e}{d}$$

[1 mark]

Question 7

Read the following statements about the escape velocity on Earth. Which ones are correct?

Escape velocity;

- I. Increases as the mass of the object increases APERS PRACTICE
- II. Depends on the mass of the Earth and is not affected by the mass of the object
- III. Is defined as the minimum speed that allows an object to escape a gravitational field with no further energy input
- A. I. only
- B. I. and II.
- C. II. and III.
- D. III. only

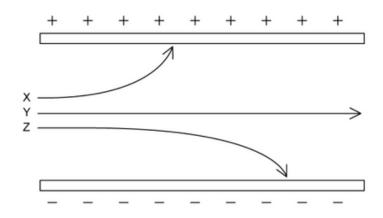
The equation for linear orbital speed is

$$v = \sqrt{\frac{GM}{r}}$$

Which statement is a consequence of this equation?

- A. Orbital speed is the same for all objects, regardless of their mass, when their orbital radius is the same.
- B. Orbital speed is the same for all objects, regardless of their mass, when they orbit the same planet.
- C. The gravitational constant, G, can be derived if orbital speed and radius are both known.
- D. Time period, T can be derived from orbital speed and radius.

[1 mark]


Question 9

Gravitational and electrostatic forces are similar in many ways. Which statements are correct about both?

- I. Both electrostatic forces and gravitational forces are always attractive
- II. Both electrostatic forces and gravitational forces may be attractive or repulsive
- III. Both electrostatic forces and gravitational forces follow an inverse square law
- IV. The equations used to calculate these forces rely on knowing certain universal constants
- A. I and III only
- B. III and IV only
- C. I, II, and III only
- D. II, III, and IV only

A charged particle in an electric field will experience a force on it that will cause it to move. The three particles X, Y and Z are experiencing a force which deflects their motion as shown. What three particles could X, Y and Z be?

	X		Υ	Z
A.	beta-minus particle		photon	nucleus
B.	alpha particle		neutron	photon
C.	neutron		electron	alpha-particle
D.	electron		beta-plus particle	neutron

[1 mark]

EXAM PAPERS PRACTICE