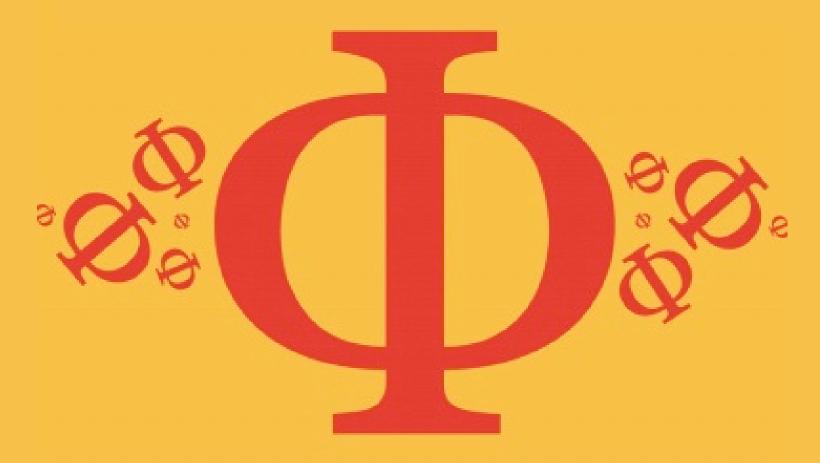


Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts


Detailed mark scheme

Suitable for all boards

Designed to test your ability and thoroughly prepare you

## **5.3 Electric Cells**

Hard



# PHYSICS

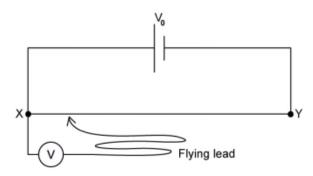
IB HL



### 5.3 Electric Cells

## **Question Paper**

| Course     | DP IB Physics              |
|------------|----------------------------|
| Section    | 5. Electricity & Magnetism |
| Topic      | 5.3 Electric Cells         |
| Difficulty | Hard                       |
|            | EXAM PAPERS PRACTICE       |


Time allowed: 20

Score: /10

Percentage: /100



 $A cell \, with \, e.m.f. \, V_0 \, and \, negligible \, internal \, resistance \, is \, connected \, across \, a \, uniform \, resistance \, wire \, of \, length \, XY.$ 

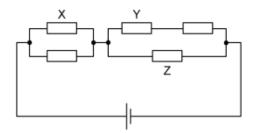


The flying lead connected at X and is able to connect to XY at any distance r from X.

Which expression correctly determines the reading on the voltmeter, V?

A. *r* 

B.  $V_0 r$ 


C.  $\frac{r}{XY}$ 

D.  $\frac{V_0 r}{XY}$ 

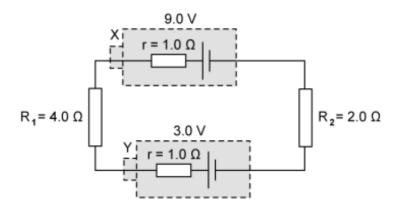




Five resistors of equal resistance are connected to a cell as shown.



Which of the following is correct about the power dissipated  $P_X$ ,  $P_Y$  and  $P_Z$  in resistors X, Y and Z respectively?

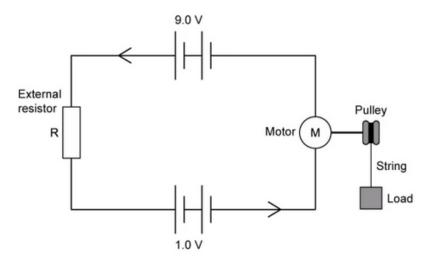

|    | P <sub>X</sub>    | P <sub>Y</sub> P <sub>Z</sub>               |                   |  |  |
|----|-------------------|---------------------------------------------|-------------------|--|--|
| A. | ₽R                | $\frac{1}{3}PR \qquad \qquad \frac{2}{3}PR$ |                   |  |  |
| B. | $\frac{1}{4}I^2R$ | $\frac{1}{3}I^2R$                           | $\frac{4}{9}I^2R$ |  |  |
| C. | ₽R                | $\frac{1}{9}I^2R$                           | $\frac{2}{3}I^2R$ |  |  |
| D. | $\frac{1}{4}PR$   | $-\frac{1}{9}PR$                            | $\frac{4}{9}I^2R$ |  |  |

[1 mark]

#### **Question 3**

#### **EXAM PAPERS PRACTICE**

Two cells, X and Y, each with internal resistance 1.0  $\Omega$ , are connected in a circuit with two resistors as shown.

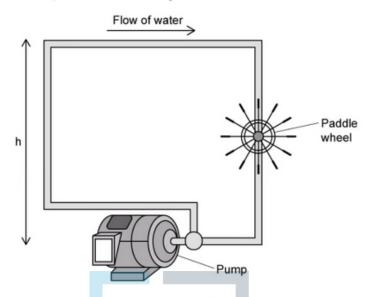



Which of the following statements is not correct?

- A. The circuit charges cell X
- B. The power dissipated in cell X is greater than the power dissipated in cell Y
- C. The charging current is 1.0 A
- D. The circuit charges cell Y



A circuit contains two batteries, an external resistor and a motor, which is attached to a pulley that lifts a load. The direction of current in the circuit is indicated.

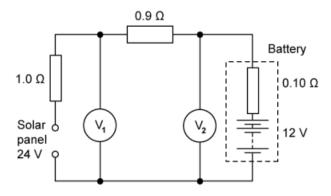



Which of the following energy transformations most accurately describes the behaviour of the circuit?

- A. chemical -> electrical + thermal + mechanical
- B. chemical + electrical → mechanical + thermal
- C. chemical → electrical + thermal + mechanical + gravitational
- $\hbox{D. chemical+electrical} \rightarrow \hbox{thermal+mechanical+gravitational}$



A pump is designed to move water through a certain height h such that the water flows back down, turning a paddle wheel. Such a system is often used to explain the operation of a battery in an electric circuit.



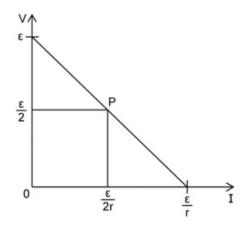

Which row in the table below best contrasts the work done by the pump and a battery?

|    | Pump                                        | Battery                                       |
|----|---------------------------------------------|-----------------------------------------------|
| A. | Does work on the water flowing in the pump  | Does work on the current flowing in the wires |
| B. | Does work on the water flowing in pipes     | Does work on the current flowing in the wires |
| C. | Does work on the water flowing in the pump  | Does work on the ions in the battery          |
| D. | Does work on the water flowing in the pipes | Does work on the ions in the battery          |



A 24 V solar panel charges a 12 V battery with internal resistance 0.10  $\Omega$ .




Which of the following is correct?

|    | V <sub>1</sub> |     |   | V <sub>2</sub> |  |      |
|----|----------------|-----|---|----------------|--|------|
| A. |                | 18  |   | 18             |  | 12.6 |
| В. |                | 30  |   | -12.6          |  |      |
| C. |                | 18  |   | -12.6          |  |      |
| D. |                | 30  |   | 12.6           |  |      |
|    |                |     |   |                |  |      |
|    |                |     |   |                |  |      |
| М  | D              | ΔDF | D | SDDACT         |  |      |



A cell has internal resistance r.

A graph of terminal potential difference V across the cell against current drawn from the cell I is shown. The scales are such that the length  $O(\varepsilon/r)$ . A point P is chosen on the graph, such that  $O(\varepsilon/r)$  is a square.

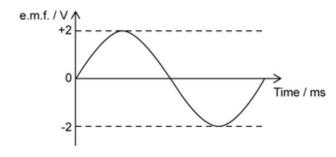


Which of the following statements is correct?

- A. P is the point at which the load resistance is maximum
- B. P is the point at which maximum power is delivered by the cell
- C. P is the point at which minimum power is delivered by the cell
- D. P is the point at which the internal resistance of the cell reduces to zero



[1 mark]


#### Question 8

Which of the following correctly describes the electromotive force of a cell?

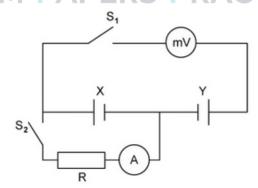
- A. The difference in energy between that needed to drive unit charge through the load resistance and through the cell
- B. The energy used to drive unit charge through the load resistance
- C. The energy used to drive unit charge through the cell's internal resistance
- D. The total energy used to drive unit charge round the complete circuit



The figure shows how the e.m.f. of a simple generator varies with time.



Which of the following statements is incorrect?


- A. The alternating e.m.f. does not affect the internal resistance of the generator
- B. The frequency of the e.m.f. is 200 Hz
- C. The internal resistance of the generator alternates with a frequency of 200 Hz
- D. The internal resistance of a power supply depends on its capacity



[1 mark]

#### Question 10

Two almost identical lead-acid accumulator batteries, X and Y, are connected in a circuit as shown.



The following information is provided:

- $\bullet$  When  $S_1$  is closed and  $S_2$  remains open, the millivoltmeter reads 60 mV
- When both  $S_1$  and  $S_2$  are closed, the reading on the millivoltmeter changes by 20 mV and the ammeter reads 5.0 A

What is the resistance of R?

- $A.2.0 \, m\Omega$
- B. 2.0 Ω
- $C.2.0 \, k\Omega$
- D. 20 kΩ