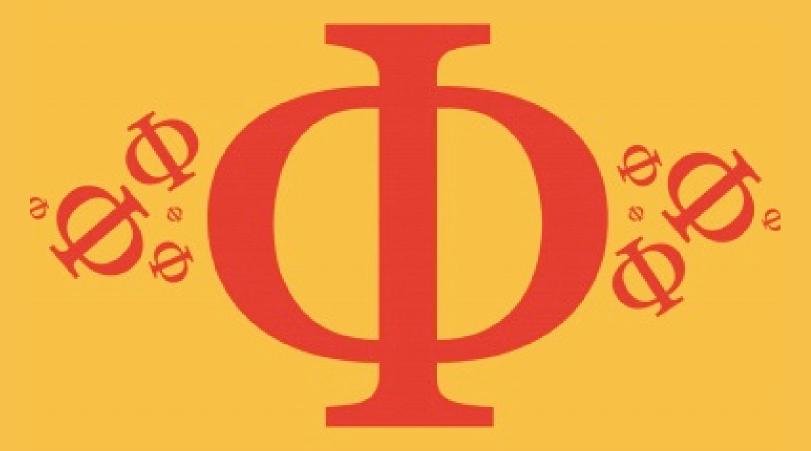


Boost your performance and confidence with these topic-based exam questions


Practice questions created by actual examiners and assessment experts

Detailed mark scheme

Suitable for all boards

Designed to test your ability and thoroughly prepare you

7.1 Discrete Energy & Radioactivity Medium

PHYSICS

7.1 Discrete Energy & Radioactivity

Question Paper

EXAM PAPERS PRACTICE

Time allowed:	20
Score:	/10
Percentage:	/100

Fluorodeoxyglucose is a compound used as a tracer in medical imaging. The isotope fluorine-18 is used, which is a positron emitter.

The way these positrons interact with electrons in the body allows PET (positron emission tomography) scanners to determine the rate of respiration certain cells are performing.

Fluorine-18 decays into an isotope of oxygen.

Which equation below represents the correct nuclear equation for this decay?

[1mark]

Question 2

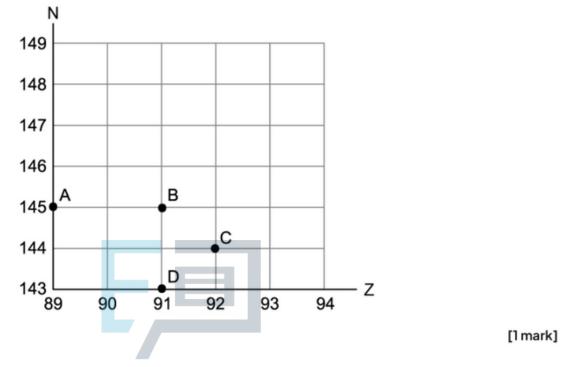
Protactinium-231 $\binom{231}{91}$ Pa) is a radioactive element, it decays by alpha radiation and then beta-minus decay as shown below:

PAPERS PRACTIC

$$231Pa \rightarrow A + \alpha \rightarrow B + \beta^{-} + v_{e}$$

E.

What proton number and mass number will element **B** have?


	Proton Number	Mass Number
Α.	89	229
В.	90	229
C.	89	227
D.	90	227

[1mark]

²³⁸U decays to thorium-234 by emitting an alpha particle and two gamma rays. Thorium-234 then decays into protactinium 92 via beta decay.

Which point on the N-Z graph below represents the position of the granddaughter nucleus, protactinium?

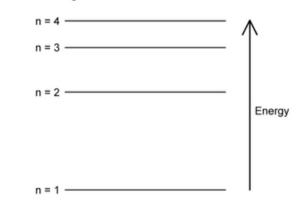
Question 4

EXAM PAPERS PRACTICE

The half-life of carbon-14 is 6000 years.

An ancient elephant tusk has been uncovered and its age is unknown. A 20 g sample of the tusk has an activity of 1.25 Bq due to carbon-14.

A 80 g sample of tusk taken from a living elephant has an activity of 20 Bq.


Use this information to determine the age of the ancient tusk.

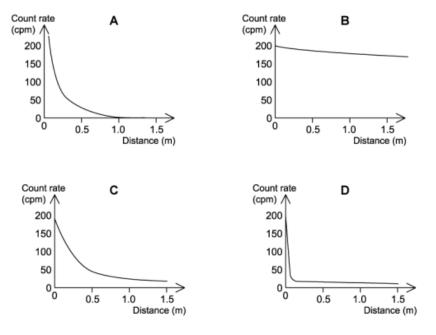
- A. 3000 years
- B.12000 years
- C.18 000 years
- D. 24 000 years

[1 mark]

The energy levels of an atom are shown in the diagram below.

Which transition will emit the photon with the shortest wavelength?

A. n = 4 to n = 1	
B. n = 2 to n = 1	
C. n = 2 to n = 1	
D. n = 4 to n = 3	


[1mark]

Question 6

A radioactive source is known to emit β radiation. A Geiger-Muller tube is used to measure the count rate at increasing

distances from the source.

Wh_ich graph correctly represents the variation in count rate over these distances for β radiation?

Unstable nuclei make up 10% of a sample's mass. The count rate of the sample is measured over a time period of 8 hours.

After some time has passed, the percentage of the sample which is unstable reduces to 2.5%. What is the count rate of the source at this time?

A. 90 cpm

B. 60 cpm

C.45 cpm

D. 30 cpm

	FE		
EXAM	PAPERS	PRAG	CTICE

[1 mark]

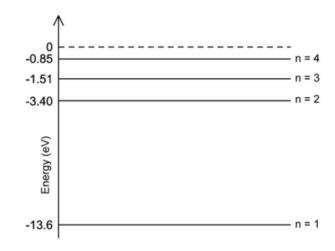
A source is known to be radioactive but the type of radiation being emitted is unknown.

A Geiger-Müller tube is placed close to the source and different materials are placed between the two. A table of the count rates recorded for each material is shown below. The background count rate is 15 counts per minute.

Material	Count rate recorded / counts per minute
Paper	528
Nothing	1064
Thick lead	17
Aluminium	524

What types of radiation are being emitted by the source?

A. α , β and γ


- B. α only
- C. β and γ
- D. α and γ

	E			
EXAM	PAPE	RS PF	RACTIO	CE

[1mark]

Hydrogen atoms feature energy levels as shown below.

Which photon energy will not cause an electron to be excited or ionised in a ground state hydrogen atom?

Question 10

Three of the four isotopes below are the same element. Which isotope represents a different element?

	Nucleon number	Neutron number
Α.	233	141
В.	235	143
C.	238	146
D.	239	146

[1mark]