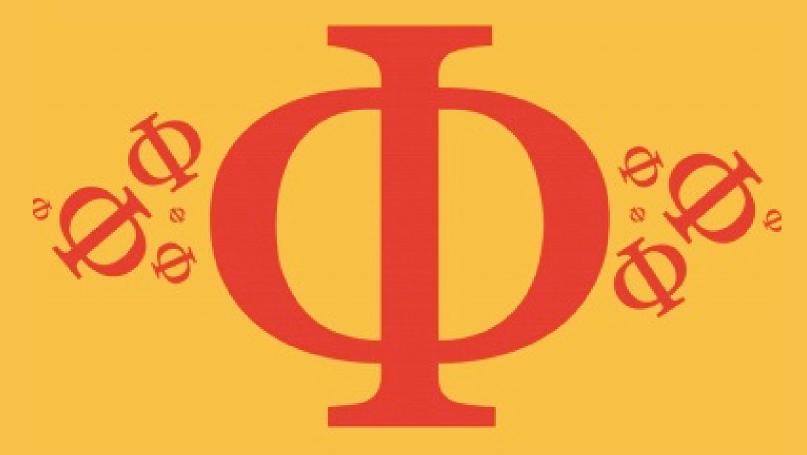


Boost your performance and confidence with these topic-based exam questions


Practice questions created by actual examiners and assessment experts

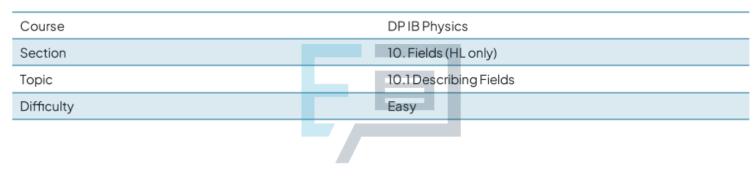
Detailed mark scheme

Suitable for all boards

Designed to test your ability and thoroughly prepare you

# 10.1 Describing Fields Easy




# PHYSICS

**IB HL** 



# 10.1 Describing Fields

# **Question Paper**



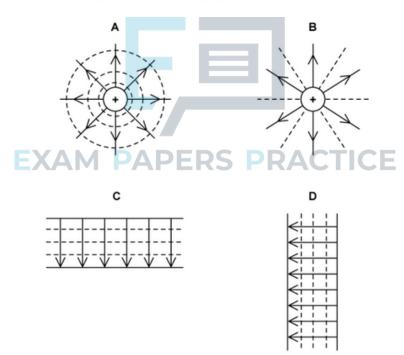
## **EXAM PAPERS PRACTICE**

Time allowed: 20

Score: /10

Percentage: /100




Which of the following correctly describes the value of the gravitational potential at a point infinitely far away from every massive body in the universe?

- A. ∞
- $B.-\infty$
- C.0
- D. π

[1 mark]

#### **Question 2**

Which of the diagrams is not an accurate representation of equipotential lines?





Which of the following terms best describes the shape of an electric field created by a point charge?

- A. Radial
- B. Uniform
- C. Inverse
- D. Vector

[1 mark]

#### **Question 4**

The gravitational field strength at a point P in a gravitational field is defined as:

The force...

A. per unit mass on a mass placed at P

B. on a mass placed at P

C. per unit mass on a small point mass placed at P

D. on a small point mass placed at P



[1 mark]

#### **Question 5**

An equipotential is perpendicular to a field line:

- A. for both electric and gravitational fields
- B. for electric fields only
- C. for gravitational fields only
- D. for neither electric or gravitational fields



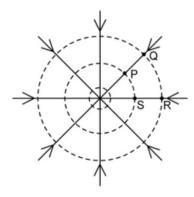
Which of the following statements regarding gravitational potential is incorrect?

- A. It is analogous to the electric potential at a point in an electric field
- B. It is a vector quantity
- C. It is defined as negative because work must be done on a mass to move it to infinity
- D. It is inversely proportional to the distance between masses

[1 mark]

#### Question 7

Which of the following statements is not true about equipotential surfaces in a uniform electrostatic field?


- A. The equipotential lines are straight
- B. The equipotential lines are evenly spaced
- C. The equipotential lines become progressively further apart
- D. The equipotential lines are perpendicular to the field lines

[1 mark]

**EXAM PAPERS PRACTICE** 



The diagram below shows the field lines and equipotential lines around an isolated negative point charge.



Which one of the following statements, when a small charge is moved in the field, is incorrect?

- A. When the small charge is moved from Q to P or R to S the work done is the same in each case
- B. The small charge has a larger potential energy at Q than at S
- C. When the small charge is moved from Q to R it is twice the work done in moving it from P to S
- D. The small charge has a larger electric potential energy at R than at S

[1 mark]

### **EXAM PAPERS PRACTICE**

#### Question 9

Which of the following is incorrect regarding the similarities between gravitational and electrostatic fields?

- A. The field lines around a point mass and negative point charge are identical
- B. The work done in each field is either the product of the mass and change in potential or charge and change in potential
- C. The gravitational potential and electric potential both have a  $\frac{1}{r}$  relationship
- D. The gravitational and electrostatic forces are always attractive



What are the standard units of gravitational potential?

- A. J
- B.V
- $C.Nkg^{-1}$
- D. J kg<sup>-1</sup>

