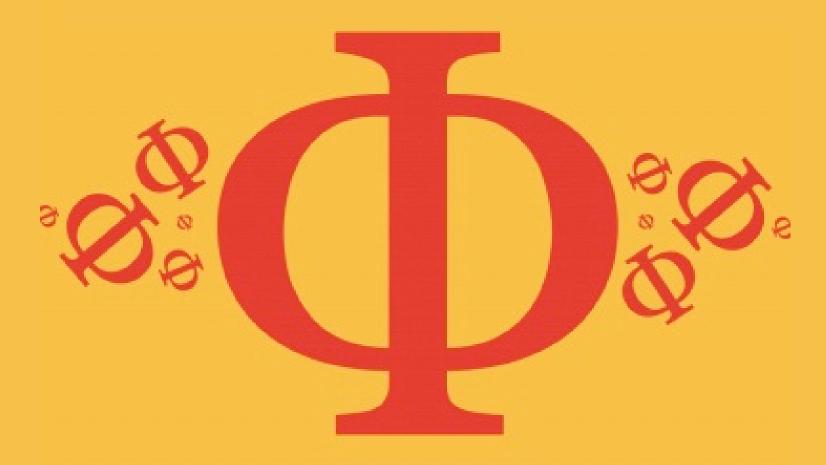


Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts


Detailed mark scheme

Suitable for all boards

Designed to test your ability and

6.5 Neurones & Synapses

Hard

BIOLOGY

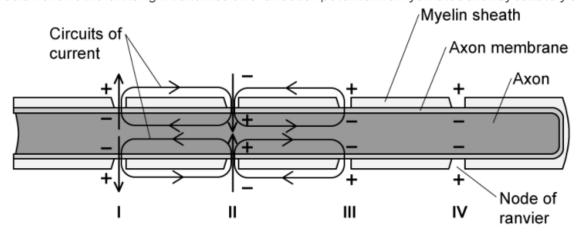
IB HL

6.5 Neurones & Synapses

Question Paper

Course	DP IB Biology
Section	6. Human Physiology
Topic	6.5 Neurones & Synapses
Difficulty	Hard

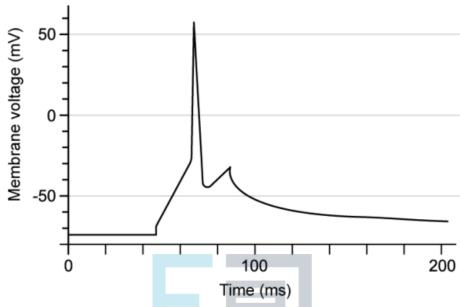
EXAM PAPERS PRACTICE


Time allowed: 10

Score: /5

Percentage: /100

 $The \ diagram \ below \ shows \ the \ left \ to \ right \ transmission \ of \ an \ action \ potential \ in \ a \ myelinated \ axon \ by \ saltatory \ conduction.$



Which of the following rows correctly identifies I - IV?

	I	II	III	IV
Α.	Node at resting potential	Node at action potential	Node at refractory period	Node becoming depolarised
В.	Node at refractory period	Node at action potential	Node becoming depolarised	Node at resting potential
C.	Node at action potential	Node at refractory period	Node becoming depolarised	Node at resting potential
D.	Node at refractory period	A Node becoming depolarised	Node at action potential	Node at resting potential

The oscilloscope trace shown below was taken using a digital oscilloscope. It shows an action potential in a hippocampal pyramidal neurone of a potoroo (a small marsupial species) that occurred when the neurone was stimulated with a current pulse.

EXAM PAPERS PRACTICE

How many action potentials could be stimulated in this neurone every second?

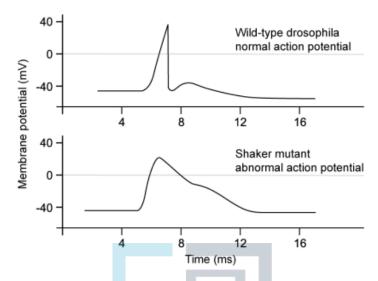
A. 6

B.60

C.12

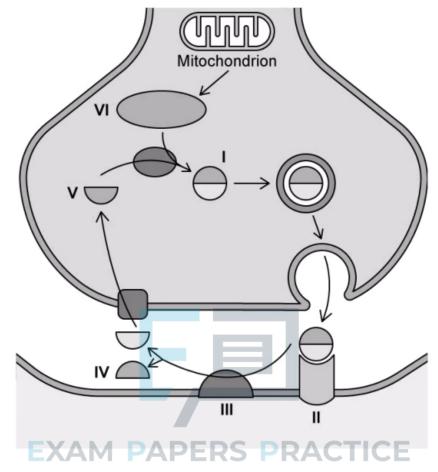
D.7

Neonicotinoids are synthetic compounds similar to nicotine that are commonly found in pesticides. Neonicotinoids are considered to be especially suitable as pesticides because they're not toxic to humans and other mammals.


Which statements I - IV are the reasons for this?

- I. A larger proportion of synapses in insects are cholinergic compared to mammals.
- $II. \ Neonicotino ids \ are \ more \ effective \ at \ preventing \ acetylcholine sterase \ from \ breaking \ down \ acetylcholine \ in \ insects \ compared \ to \ mammals.$
- $III.\,Acetylcholinesterase\,in\,insects\,cannot\,break\,down\,neonicotinoids.$
- IV. Neonicotinoids bind more strongly to acetylcholine receptors in insects.
- A. I and IV
- B. I, II and IV
- C. II and III
- D. II only

A research group of geneticists found a fruit fly mutant that shakes vigorously when anaesthetized with ether. Their studies showed that the shaker mutant has K^+ channels that do not function properly. An action potential of a normal fruit fly and a shaker mutant is shown below.



Which of the following statements (I - IV) could be possible explanations for the differences between the action potentials?

- I. The faulty K⁺ channels don't open for as long so there is slower diffusion of K⁺ ions.
- II. The faulty K+ channels may be opening early, preventing maximum depolarisation.
- III. The faulty K^+ channels cause K^+ ions to diffuse back into the axon more slowly, resulting in slower repolarisation.
- $IV. In wild-type \ drosophila, the functioning \ K^+ channels \ allow \ for a \ faster \ rate \ of \ depolar is at ion.$
 - A. I only
 - B. II and III
 - C.I.II and IV
 - D. I and II

Study the diagram below.

Which of the following table rows correctly identifies I – ${
m VI}$?

	I	II	III	IV	V	VI
Α.	Acetylcholine	Acetyl- cholinesterase	Cholinergic receptor	Choline	Acetyl group	Acetyl-CoA
В.	Acetyl- cholinesterase	Acetyl-CoA	Acetylcholine	Cholinergic receptor	Choline	Acetyl group
C.	Acetylcholine	Cholinergic receptor	Acetyl- cholinesterase	Acetyl group	Choline	Acetyl-CoA
D.	Acetylcholine	Cholinergic receptor	Acetyl-CoA	Choline	Acetyl group	Acetyl- cholinesterase